Exploiting Run-Time Information for Efficient Processing of Queries *

Craig A. Knoblock
Information Sciences Institute and
Department of Computer Science
University of Southern California

Alon Y. Levy
Al Principles Research Dept.
AT&T Bell Laboratories
600 Mountain Ave., Room 2C-406

4676 Admiralty Way
Marina del Rey, CA 90292
knoblock@isi.edu

Abstract

Information agents answer user queries using a large
number of diverse information sources. The key is-
sue in their perfomance is finding the set of infor-
mation sources relevant to a query. Previous work
has considered determining relevance soley based on
compile-time analysis of the query. We argue that at
compile-time, it is often not possible to significantly
prune the set of sources relevant to a query, and that
run-time information is needed. We make the follow-
ing contributions. First, we identify the different types
of information that can be obtained at run-time, and
how they can be used to prune information sources.
Second, we describe an algorithm which naturally ex-
tends query planning algorithms to exploit run-time
information. Third, we describe the discrimination
matriz, which is a data structure that identifies the
information that can be used to help discriminate be-
tween different possible sources.

Introduction

Information gathering agents are programs that answer
user queries using a large number of diverse informa-
tion sources (e.g., sources on the Internet, company
wide databases). These information sources do not
belong to the agent, rather they are provided by au-
tonomous sources, possibly for a fee. As such, an infor-
mation agent does not maintain any real data, rather
it only has descriptions of the contents of the available
information sources. An agent has a domain model of
its area of expertise (e.g., a class hierarchy describing
properties of objects in its domain), and a description
of how the contents of an information source relates
to the classes in the domain model of the agent. User

*The first author is supported in part by Rome Labora-
tory of the Air Force Systems Command and the Advanced
Research Projects Agency under contract no. F30602-91-C-
0081, and in part by the National Science Foundation under
grant number [R1-9313993. The second author is supported
by AT&T Bell Laboratories. The views and conclusions
contained in this paper are the author’s and should not
be interpreted as representing the official opinion or policy
of DARPA, RL, NSF, Bell Labs, or any person or agency

connected with them.

Murray Hill, NJ 07974

levy@research.att.com

queries are posed using the domain model of the agent.
Given a query, an agent serves as a mediator between
the user and the information sources, by decomposing
the query, sending requests to the appropriate informa-
tion sources, and possibly processing the intermediate
data. As such, the information agent frees the user
of being aware of and sending queries directly to the
information sources.

Several characteristics of this problem require us to
develop solutions beyond those considered tradition-
ally in knowledge and data-base systems. The main
characteristic is that the number of information sources
will be very large, and the agent has only the de-
scriptions of the sources in determining which ones are
relevant to a given query. Second, some information
will reside redundantly in many sources, and access
to sources will not always be possible (e.g., network
failures) and may be expensive (either in time or in
money). Finally, the information sources will be au-
tonomous and, as a result, use different languages, on-
tologies and protocols.

To answer queries efficiently, an information agent
must be able to determine precisely which information
sources are relevant to a given query, and to retrieve as
little as possible data from the relevant sources. Previ-
ous work on information agents (e.g.,SIMS (Knoblock,
Arens, & Hsu 1994), the Information Manifold (Kirk,
Levy, & Srivastava 1995)) have focussed on determin-
ing relevant sources by using information available at
compile time (i.e.,the query and the descriptions of in-
formation sources). However, as the following example
shows, it is not always possible to significantly prune
the set of information sources based solely on compile-
time information.

Example 1: Suppose we are given the following
query asking for papers authored by AAAI fellows:

AAAI — Fellow(x) A Papers(x, y).

Furthermore, suppose we have one database giving us
the listing of AAAI fellows, and numerous informa-
tion sources providing titles of papers. By considering
the query itself, the information agent is only able to
prune information sources which provide only papers

whose topic is not related to AL still leaving a large
number of possibly relevant information sources. One
method that may also be useful in our context is side-
ways information passing (Ullman 1989), i.e., using the
values obtained by solving one subgoal to restrict the
search for the a subsequent subgoal. However, this
will not always suffice. For example, suppose the first
subgoal yields the binding RonBrachman. The system
does not know enough about Ron Brachman (e.g., af-
filiation, specific expertise) to prune the information
sources considered for the second subgoal. One pos-
sibility is to obtain such information from the source
providing the bindings for the first subgoal. For ex-
ample, the AAAI database of fellows may also con-
tain affiliations. Finally, it may even be beneficial for
the query processor to add new subgoals to the query
in order to obtain additional information about bind-
ings in the query. For example, if our query were sim-
ply Papers(RonBrachman,y), the query processor may
add subgoals (e.g., Affiliation(RonBrachman,y) that will
provide additional information about Ron Brachman.
O

This paper considers the problem of obtaining and
utilizing additional information at run-time. Our first
contribution is to identify the kinds of information
which can be obtained at run-time, how they can be
used to speed up query processing, and different ways
in which such information can be obtained. For exam-
ple, we can obtain additional information about bind-
ings that appear in the query, additional information
about the information sources, or information about
where information has been found. Although some in-
formation can be gleaned from solving subgoals that
appear in the query, we argue that it may be bene-
ficial for the query processor to add subgoals to the
query in order to obtain additional information. Our
second contribution is a novel algorithm that extends
traditional query planning algorithms to consider plans
that may include additional information gathering ac-
tions (i.e., additional subgoals). A key component of
this algorithm is a data structure, the discrimination
matriz, that enables us to evaluate the utility of ad-
ditional information gathering actions. Informally, the
discrimination matrix tells us which of the information
sources we may be able to prune if we perform a pro-
posed information gathering action, thereby enabling
us to estimate the cost of plans with additional sub-
goals.

Domain Model and Source Descriptions

An information agent serves as a mediator to multi-
ple information sources. In order to integrate these
sources, it has a representation of its domain of exper-
tise, called the domain model, and a set of descriptions

! And not even those, under the likely assumption that
our esteemed fellows make contributions in other fields as
well.

of information sources. We assume the domain model
is represented in KL-ONE type language (Brachman
& Schmolze 1985). Such a language contains unary re-
lations (called concepts) which represent classes of ob-
jects in the domain and binary relations (roles) which
describe relationships between objects. Concepts and
roles can be either primitive or complex. Complex con-
cepts and roles are defined by a description which is
composed using a set of constructors (which vary from
one language to another). Below we show a representa-
tive set of constructors that can be used in descriptions:
(A denotes a primitive concept, C' and D represent ar-
bitrary descriptions and R denotes an arbitrary role):
C,D — A | (primitive concept)

T | L] (set of all objects, the empty set)

CnD|CuD | (conjunction, disjunction)

—C | (complement)

VR.C | (universal quantification)

JdR.C | (existential quantification)

(R < a)| (R > a) (range constraints)

(> nR) | (£ nR) (number restrictions)

(fills @ R) (filler restriction)

(oneOf R {a1,...,an}) (restriction on fillers)

Because of space limitations we will not go into
the details of the semantics of such a language. As
two examples, the class (> n R) represents the class
of objects who have at least n fillers on the role R;
the class (fills @ R) represents the objects who have
a as one of the fillers on role R. As an example
of a domain model, we may have a primitive class
Person, the class Al-Researcher, defined by (Person N
(fills research occupation) M (fills field Al)), and the class
Al-advisor, defined by (Al-Researcherl(> 1 student)).

In order to be able to use the data in external in-
formation sources, the agent must have descriptions
of these sources. In our discussion, we assume that
an information source provides data about some class.
Formally, a description of an information source S is
of the form (Dg,ri,...,rs). The first element, Dg is
a description in our language, and rj,...,r; are role
names. The description states that the source S con-
tains individuals which belong to the class Dg, and it
contains role fillers of the roles r3,...,r>.

As examples of information sources, we may have
((Al-Researcher 1 (fills affiliation Bell Labs)),email-
address, paper-titles) providing the email addresses and
papers of Bell Labs researchers, and ((Al-Advisor M (fills
affiliation CMU)),students, paper-titles) providing the
students names and paper titles of advisors at CMU.

Given a query, the information agent needs to de-
termine which information sources are relevant to it.
In previous work (Arens et al. 1993; Levy, Sagiv, &
Srivastava 1994) , we showed how to determine the
relevant information sources based on the query and
the descriptions of the information sources. As a sim-
ple example, suppose our query is AAAI-Fellow(x) A
Papers(x,y). The system can infer from looking at
the query that since AAAIl-Fellow is a subclass of Al-
researcher, the only paper repositories that need to

be considered for the second subgoal are those that
may provide papers by Al researchers. Hence, the two
sources described above will be relevant, (because they
both provide the role paper-titles for classes that are
subsumed by Al-researcher), but a source that provides
only papers by Historians at CMU would be deemed
irrelevant.

Run-time Information

There are several reasons why we cannot significantly
prune information sources at compile-time:

1. The information agent does not know enough about
the bindings in order to prune information sources.
For example, the query processor does not know
enough about Ron Brachman (e.g., affiliation) in
order to prune paper repositories. This is because
the domain model of the agent describes properties
classes of objects in the domain, but not of the (prob-
ably huge number of) individuals in the domain.

2. According to the descriptions of the information
source, there may be a large number of sources that
contain a specific piece of information. It is hard
at compile-time to know which of the information
sources are likely to have the desired data, and there-
fore where to search first.

3. Descriptions of information sources may not be suf-
ficiently detailed, entailing that they are relevant or
when they are not.

Types and Uses of Run-Time Information

We identify three kinds of run-time information that
is useful to speed up query answering. These can be
viewed as directly addressing the problems outlined
above:

Information about individuals: At run-time we
can obtain information about individuals that en-
ables us to determine that they belong to a more
specific domain class than can be determined solely
by the query. This information can be used to prune
information sources considered for subsequent sub-
goals. Specific class information can be obtained by
finding role fillers of the individual (e.g., finding the
affiliation of Ron Brachman enables us to deduce
that he is a member of class Bell-Labs-researcher,
rather than the more general class Researcher). In-
formation about an individual can also be obtained
by finding out how many fillers it has on a specific
role, or by range constraints on its fillers.

Information about location of individuals:
Information sources may contain only a subset of a
class of information specified in a query. Therefore,
knowing that an individual was found in a specific
information source can be used in subsequent sub-
goals that involve this individual. For example, if we
found the individual a in source S, and a subsequent
subgoal asks for the filler of a role R of a, we will

first check whether S contains fillers for R (which
will be known in the description). Some informa-
tion sources may belong to the same provider (e.g.,
a collection of university databases). Therefore, if an
individual was found in one of the sources belonging
to a specific provider, it is likely that we will find
other information concerning this individual in one
of the sources of that provider.

Additional information about sources:

A provider of an information source may not give
the most detailed description possible of the source.
At run-time we can obtain information that enables
us to refine the existing description, such as the size
of the information source (which can be used later in
determining subgoal ordering, as done in traditional
database systems), constraints on the individuals in
an information source (e.g., the age of all individuals
is between 30 and 50).2

Obtaining Run-Time Information

There are several ways to obtain run-time informa-
tion that only require minor changes to the traditional
query processing algorithms. First, run-time informa-
tion can be found by simply solving subgoals that al-
ready exist in the query. Specifically, instead of pass-
ing only the wvalues of the bindings that are found in
solving a subgoal, we can also pass additional knowl-
edge about their type. In particular, if, while solving
a subgoal, we found an individual @ in an informa-
tion source whose description is (Dg,75,...,r}), then
we can infer that a is of type Dg, and use that to
prune the information sources relevant to subsequent
subgoals involving a. Such generalized sideways infor-
mation passing is the basis of the query processor of
the Information Manifold system (Kirk, Levy, & Sri-
vastava 1995). Second, finding an individual in a spe-
cific information source can also be used to prune the
sources considered for the same subgoal in the query.
For example, lacking any other additional information
about Ron Brachman, we may start searching for his
papers in several repositories, until we find some of his
papers in a repository of Al papers. At that point, we
can infer that Ron Brachman is an Al researcher, and
therefore focus our subsequent search to first consider
repositories that may contain Al papers.

A third method, which is the focus of this paper,
is based on actively seeking information about indi-
viduals in the query. Instead of relying on informa-
tion obtained from solving subgoals that appear in the
query, our approach involves adding new subgoals to
the query, which may yield the desired information.
For example, given the query Papers(RonBrachman,y),
our approach will attempt to add subgoals that yield
useful information about Ron Brachman, such as Af-
filiation(RonBrachman,x), which, if found, will enable

2Note that information obtained in this fashion is not
guaranteed to persist over time.

us to prune the paper repositories considered for the
second subgoal. The key question that needs to be
addressed is how to find such new subgoals that will
reduce the overall cost of solving the query (which now
includes the cost of solving the new subgoal). We for-
malize and solve this problem in the following sections.

A Cost Model

In order to address the question of the utility of obtain-
ing additional information, we formally define the cost
model we use to compare among various query plans.
Numerous cost models have been proposed for evalu-
ating database query plans (e.g., (Jarke & Koch 1984;
Greiner 1991)). Since we do not want our analysis to
be specific to any of these single models, we will con-
sider a model that hides the model-specific details, and
relies on features common to a wide array of models.
We assume our query is specified as follows:

Q=0Q1(X1)A...AQn(Xn)

The @;’s are predicates in the domain model, and
the X;’s are tuples of variables or constants. Given
a partial ordering O of the subgoals and a specific in-
formation source S that may be relevant to the sub-
goal Q;(X;), we assume that there is some function
c(Q;(X;), S, 0) that provides an estimate of the cost
for accessing and retrieving the required data from S.
In different cost models, this function may depend dif-
ferently on factors such as the size of S, the expected
number of relevant facts in S, considering the bind-
ing pattern of X;, or the initial cost of setting up a
connection with S.

Given the query @), we denote by S; the set of sources
that are deemed relevant to the subgoal @;, using the
information present in the query (as outlined in the
previous section). Since we may not know which infor-
mation source contains the requested data, the overall
cost of retrieving the data for @); will be the sum of
the costs of retrieving the information from all of the
relevant information sources, i.e.,

C(Qiasiao) = Z C(Qi’5¢0)'
SES;

We assume there is a function f(C(Q1,81,0), ...,
C(Qn,Sn,0)) that combines the costs of the single
subgoals to determine the overall cost of a plan to an-
swer this query. This function will determine heavily
on the ordering O.

Our approach to actively seeking information about
objects involves considering query plans that contain
one or more additional subgoals, called discrimination
queries, of the form p(a, X), where a is a constant,
denoting an individual, that appears in the query.?

®For simplicity of exposition we are assuming that the
additional subgoals involve an object appearing in the origi-
nal query. This may be generalized straightforwardly to the
case where the discriminating query includes only variables

Adding such subgoals changes the cost of the query
plan in two ways. First, it adds the cost of solving
the additional subgoal, which can be estimated as de-
scribed above. Second, it enables us to prune the sets
S;, ..., 8, of the information sources relevant to subse-
quent subgoals. The key to extending our cost model
to consider the effect of additional subgoals is to esti-
mate the value of C(Q;,S;, 0), without knowing the
values returned for p(a, X), and therefore not knowing
which subset of §; will be relevant to the query.

The discrimination matriz, whose construction is de-
scribed in detail in Section | is used to estimate these
costs, by estimating the number of information sources
that will be relevant, given the answer to the new sub-
goal. A discrimination matrix is built for a given role
R in the domain, and it tells us how finding the value of
the role R of an object will discriminate between the
possible information sources. Clearly, the number of
possible values for the role R may be infinite. The first
piece of information given by the discrimination matrix
is a partition of the set of values of R to regions, such
that two values of R in the same region will deem the
same set of information sources relevant. For example,
if the R is a role whose range is the real numbers, and
the descriptions of the information sources only men-
tion constraints of the form R < 100 and R > 200, then
the regions will be {(—o0,100),[100,200], (200, c0)}.
Given these regions, the discrimination matrix tells us
which information sources are relevant to the query,
given that the role R falls in that region. Formally,
given a set of information sources §, we use the dis-
crimination matrix to obtain a partition of § into the
regions of values of R. If r is a region of R, its partition
will contain the subset of § that are relevant if we are
looking for individuals whose filler of R is in r. A role
R provides good discrimination for a subgoal @; if it
partitions the set §; evenly over many regions.

It should be noted that the discrimination matrix
can also be used to partition the sources given multi-
ple discrimination queries about an object a. To deter-
mine the discrimination achieved by multiple subgoals,
we simply take the cross products of the regions given
by each subgoal. For example, suppose the analysis of
the query shows that there are six potentially relevant
information sources, § = 51, ..., Sg, for retrieving the
information for a subgoal ;. We have two discrimi-
nation matrices, one for role R; and one for Rs, each
having three regions. Suppose that for the role Ry we
obtain the partition {{S1, Sa}, {Ss, 54, S5},{S6}}, and
for Ry the partition is {{S1},{S2, S5},{S4, S5, Ss}}.
Taking the cross products of these partitions to com-
pute the discrimination that would be obtained by
finding both R; and R, would yield 9 regions, the

from the Q. However, in that case the cost analysis will de-
pend on whether we are solving the query tuple-at-a-time
(as in Prolog), or using traditional database methods in
which we solve the query by some sequence of join opera-
tions on the solutions of each subgoal.

non-empty ones being:*
{51}171: {52}172’ {53}2721 {S‘h 55}273a {56}373'

Finally, we use the partitions to estimate the cost of
subgoals after a discriminating subgoal has been exe-
cuted as follows. Suppose Z%, ..., Z¢, is the partition by
a role R of the sources §; that are relevant to ();. Since
we do not know in which of the regions the answer to
the discrimination query will be, we assume the worst-
case. The advantage of a worst-case estimate for the
discrimination is that we can guarantee that we will
never spend more time gathering additional informa-
tion than the time to simply execute the query against
all relevant sources. In the worst case the cost of the
Q; will be the maximum cost of all the partitions, i.e.,

Cr(Q:,Si, 0) = maz(C(Q;, T3, 0), ..., C(Qi, I, 0)).

Using this function, we can now compute the overall
cost of answering the query) using the additional dis-
criminating query R(a, X). If this cost is lower than
the original cost of solving @) with the ordering O, then
we have saved some work. Note that we can execute
several discriminating queries in), and the cost of
each would simply be added to the total. Also, we can
perform the discrimination recursively, i.e., try to re-
duce the number of sources needed in order to solve
the discriminating queries.

Searching the Space of Query Plans

Given our cost model, we are now able to search the
new space of plans. Originally, the space of plans in-
cluded all the possible orderings of the subgoals of Q.°
The new space includes plans that involve discriminat-
ing queries. Specifically, if a1, ..., @y, is a plan (where
the a;’s are either subgoals of () or new discriminating
subgoals), then so is a1, ..., a4, 8, @iy1, .. ., m, Where
(is a new discriminating query involving variables or
constants appearing in «jy1,...,&y,. We can extend
any algorithm for searching the original set of plans as
follows. Given any plan P from the original space, we
search through the space of plans in which one or more
discriminating queries is added to P. That is, we se-
lect one of the subgoals, and a possible discriminating
query, and evaluate the cost of the plan including the
new subgoal. The search terminates where there are
no additional discriminations that produce a cheaper
plan than the best one found so far.

This approach for deciding on the best plan for eval-
uating a query has several useful features:

e If the cost of performing the discrimination is more
expensive than just executing the query, then the
algorithm would chose to just execute the query.

*The superscripts denote the original regions from R;
and R respectively.

®For some execution models, only partial orderings of
the subgoals need to be considered.

e If there is more than one possible discrimination that
can be performed, the algorithm will consider the
various combinations.

e If any of the discriminating queries can be retrieved
from multiple sources, then discrimination will be
considered recursively and the final choice will be
made based on the overall cost.

The Discrimination Matrix

Recall that we view each information source S as pro-
viding fillers of roles of some instances of a domain
class Cg. Hence, if we need the value of a certain role
P of some object a, we will consider all sources who
provide the role P, and such that Cs does not con-
tradict the class information we already have about a.
The discrimination matrix of a role R tells us which
information sources would be relevant if we also knew
the value of the filler of R of the object a. Given a set
of information sources &, which are deemed relevant
from the analysis of the query, we can use the discrim-
ination matrix of R to partition & depending on the
value of R, which we may obtain at run-time.

Below we describe an algorithm for constructing and
updating the discrimination matrix. The matrix is
built by exploiting the descriptions of the contents of
the information sources, and is a persistent data struc-
ture that needs to be modified only when an informa-
tion source is added or deleted, and is therefore cheap
to maintain. In particular, it can be built at compile-
time before answering any queries. We distinguish
roles whose range are numeric attributes from those
whose range is non-numeric. In Section we describe
an algorithm for creating a discrimination matrix for
non-numeric roles, which uses constraints specified by
the constructors fills and oneOf to partition the infor-
mation sources. Section describes an algorithm that
uses constraints specified by the constructors > and <
to partition sources. It should be noted that we focus
on the above constructors because these are the most
likely to yield discrimination between sources. For ex-
ample, it is likely that paper repositories will differ
based on the affiliation of the authors, which is spec-
ified by the fills constructor. Information source pro-
viding the same data (e.g., stock market prices) may
be distinguished based on the date of the data, which
is specified using the < and > constructors. Finally, it
should be noted that by treating the number of fillers
as a numeric attribute, the algorithm presented in Sec-
tion can be directly used to determine discrimination
when the discrimination query returns the number of

fillers of a role R.

Non-numeric Roles

In the algorithm below assume that the role R can
have a single filler. If the role has multiple fillers, the
algorithm is essentially the same, except that we ignore
the fills constructor. Knowing the value b of a filler of

the role R of an instance can affect the relevance of an
information source S in two ways:

1. If the description Cs entails (fills R a), then S will
be relevant if and only if a = b.

2. If the description Cg entails ((oneOf R {a1, ..., am}),
then S will be relevant if and only if b €
{ala] am}'

Hence, if A is the set of constants that appear in fills
and oneOf constraints in the descriptions of the infor-
mation sources, then the possible values of R can be
classified into |A|+1 regions: one region for every value
in A and one region for all values not mentioned in 4.
The algorithm for building the discrimination matrix
is shown in Figure 1. Informally, the algorithm creates
a hierarchy of labels. Each label denotes a subset of
the regions of . With each label L, the algorithm as-
sociates a set of information sources Sources(L). An
information source S will be in Sources(L) if the de-
scription of S entails that the value of R must be in one
of the regions in L. Given a set of information sources
S, we use the discrimination matrix to partition them
as follows. The set of information sources in the parti-
tion of a value r are those sources in § that appear in
the set associated with some label that includes r.

It should be noted that although the number of
possible labels that can be generated is exponential
in the number of constants in .4, the algorithm will
only generate at most a number of labels as the num-
ber of information sources.® Therefore, since adding
a new information source to the matrix can be done
in time O(log(n)), where n is the number of informa-
tion sources, the overall complexity of the algorithm is

O(nlog(n)),

Initialize matrix with the label L' —=top and Sources(Ll) =0.

for every source S whose associated class is given by the description Cs

do: if Cs |= (oneOf R {ay, ...
if there exists a label L = {ay, ..
else create a new label L = {aq, ...
and place L in the hierarchy.
if Cs |= (fills R b) then do the same for the set {6}.
if Cs does not entail any such constraints on the fillers of R

then add T to Sources(Ll).

,an}) then

Figure 1: Creating a discrimination matrix for non-
numeric roles. TOP denotes the set of all regions of

R.

Numeric Roles

When the values of a role are numeric, they can affect
the relevance of an information source mainly through
constraints of the form (< R a) or (> R a).” We can

Furthermore, note that if the number of labels created
is close to the number of sources, that would actually mean
that R is providing good discrimination.

"In this section we only discuss < and > constraints, but
the algorithm can be easily extended to consider < and >.

.,an} then add I to Sources(L).
,an} with Sources(L) = {I}

assume that the description of an information source
entails two constraints, one of the form (> R ajoy) and
the other of the form (< R apign) (note that azo, may
be —co and ap;gn may be 00). As in the non-numeric
case, if A = {a1,...,am,} is the sorted set of con-
stants that appear in the descriptions of information
sources, then the possible regions of R are: {(—o0, a1),
(ala a2)a ey (am—la am); (Clm, OO)}

The algorithm, shown in Figure 2, builds a vec-
tor of triplets (a;, S, S;). The number a; is in the
set AU {—00,00}, and S}, S; are sets of informa-
tion sources. The set SZ-+ are the information sources
who become relevant when the value of R is in the
range (a;, @;41), and are not relevant when the value
of R is in the range (a;_1,a;). Similarly, the set S}
are the information sources that are irrelevant when
R € (ai,a;41) and relevant when R € (a;-1,a;). The
discrimination matrix can be used to partition a set of
sources S as follows. The sources in the partition of a
region r = (@, a;41), are the sources in S that appear
in SJ-+ for some j <1, and do not appear in the S;” for
any j <z1.

Inserting an information source into the matrix can
be done in time O(log(n)) in the number of information
sources, n. Therefore, the overall running time of the
algorithm is O(nlog(n)). Since the determination of
the regions of R requires that we sort the values in A,
it is clear that O(nlog(n)) is also a lower bound on the
time to build the discrimination matrix.

Begin with the vector ¥V = {(—oc, 9, 0), (o0, 8,0)}.
for every source S whose associated class is given by the
description Cs and Cs = (R > aiow) A (R < anign), do:
if @iow is in position ¢ of V
then add I to S,
else add (aiow, I, 0) to V.
if anign is in position 7 of V
then add I to S,
else add (aiow,®, 1) to V.

Figure 2: Creating a discrimination matrix for numeric
roles.

Example 2: Suppose we are given 3 sources with
the following constraints on R, S1: (1< R< 3), S2:
(2 < R < o0)and S3: (1 < R < 2). The algorithm
would begin with the vector: {(—oo,®,0), (co,®,0)}.
Considering S1 would result in the vector
{00, 0,0), (1, {51},0), (3,0, {51}, (00,0, 0)}. After
processing S2 we would get {(—o0,0,0),(1,{S1},0),
(2,{52},0), (3,0,{S1}), (c0,0,{S2})}. Finally, after
considering S3 the resulting vector will be {(—oc, 0, 0),
(1L{SLS310), (2,4521,{53)), (3,0,{S1}),
(oo, {52})}.

For simplicity of exposition we also ignore the distinction
between open and closed regions.

From this matrix, we can deduce for example that in
the region (2,3) the relevant information sources will

be S1 and S2. O

Related Work

Our work can be viewed as a form of semantic query
optimization (SQO) (King 1981; Chakravarthy, Grant,
& Minker 1990; Hsu & Knoblock 1994; Levy & Sagiv
1995), where new subgoals are added to a query by an-
alyzing the integrity constraints known about the data.
In our context, the analogue of integrity constraints are
the descriptions of the information sources. The key
issue in SQO, that has prevented it from wide usage
in database systems, is that often the analysis of the
integrity constraints introduces additional joins to the
query, or even disjunctive subgoals, which are usually
considered very expensive operations. In contrast, our
work provides a cost model that better estimates when
such joins will be beneficial. Furthermore, a key aspect
in our cost model, which has no parallel in standard
SQO, is the ability to determine that the number of
information sources accessed is reduced.

Another related idea appears in the work by Finger
(Finger 1987) on the use of supersumption to further
constrain a design to find solutions faster. The idea
is to add constraints to the design by inferring a set
of ramifications from the partial design. These con-
straints can reduce the design space by constraining
the values of certain aspects of the design. There are
also interesting examples of supersumption that can-
not be deduced from the ramifications, but Finger does
not suggest an approach to adding these constraints.
His work assumes that a set of axioms is given that can
be used to augment a design. In our work, we do not
assume that the constraints can be inferred directly,
rather we developed an approach to gathering addi-
tional information at run time that is likely to further
constrain a query.

The recent work on Softbots for Unix by Etzioni et
al. (Etzioni & Weld 1994) exploits the use of additional
information gathering actions to determine where to
locate information. The information gathering actions
are in the context of a software agent that can manip-
ulate the environment as well as gather information.
However, the specific information gathering goals are
encoded as explicit preconditions of the planning op-
erators. In this paper we present a more general infor-
mation gathering framework that identifies a variety of
different types of information about bindings that can
be exploited and presents an approach to automatically
selecting useful information gathering goals.

Conclusion

This paper provides an important capability for effi-
ciently locating information, in a setting that involves a
large number of sources which are costly to access. We
have argued for the need for exploiting information ob-
tained at run-time, and described the kinds of run-time

information that would be useful for a query proces-
sor. We presented an algorithm that extends classical
query planning algorithms to exploit run-time infor-
mation. The algorithm is based on a cost model that
is able to estimate the utility of additional discriminat-
ing queries at run-time. An interesting question raised
by our work is to find properties of the extended space
of plans that enable us to search it more efficiently.

References
Arens, Y.; Chee, C. Y.; Hsu, C.-N.; and Knoblock, C. A.

1993. Retrieving and integrating data from multiple infor-
mation sources. International Journal on Intelligent and
Cooperative Information Systems 2(2):127-158.

Brachman, R., and Schmolze, J. 1985. An overview of
the KL-ONE knowledge representation system. Cognitive
Science 9(2):171-216.

Chakravarthy, U. S.; Grant, J.; and Minker, J. 1990.
Logic-based approach to semantic query optimization.
ACM Transactions on Database Systems 15(2):162-207.

Etzioni, O., and Weld, D. S. 1994. A softbot-based inter-
face to the internet. Communications of the ACM 37(7).

Finger, J. J. 1987. Ezploiting Constraints in Design Syn-
thesis. Ph.D. Dissertation, Department of Computer Sci-
ence, Stanford University.

Greiner, R. 1991. Finding optimal derivation strategies
in a redundant knowledge base. Artificial Intelligence
50(1):95-116.

Hsu, C.-N., and Knoblock, C. A. 1994. Rule induction
for semantic query optimization. In Proceedings of the
Eleventh International Conference on Machine Learning.

Jarke, M., and Koch, J. 1984. Query optimization in
database systems. ACM Computing Surveys 16(2):111-
152.

King, J. J. 1981. Query Optimization by Semantic Reason-
ing. Ph.D. Dissertation, Stanford University, Department
of Computer Science.

Kirk, T.; Levy, A. Y.; Sagiv Y.; and Srivastava, D. 1995.
The information manifold. In In Working Notes of the
AAAI Spring Symposium on Information Gathering in
Distributed Heterogeneous Environments.

Knoblock, C.; Arens, Y.; and Hsu, C.-N. 1994. Cooperat-
ing agents for information retrieval. In Proceedings of the
Second International Conference on Cooperative Informa-
teon Systems.

Levy, A. Y., and Sagiv, Y. 1995. Semantic query opti-
mization in datalog programs. In Proceedings of the ACM
Symposium on Principles of Database Systems, San Jose,

CA.

Levy, A. Y.; Sagiv, Y.; and Srivastava, D. 1994. Towards
efficient information gathering agents. In Working Notes
of the AAAI Spring Symposium on Software Agents, Stan-
ford, California, 64-70.

Ullman, J. D. 1989. Principles of Database and
Knowledge-Base Systems, volume 2. Rockville, Maryland:
Computer Science Press.

