
Distributed Scheduling for Multi-Agent
Teamwork in Uncertain Domains:
Criticality-Sensitive Coordination

Rajiv T. Maheswaran, Craig M. Rogers, Romeo Sanchez,
Pedro Szekely and Po-An Chen

University of Southern California - Information Sciences Institute
4676 Admiralty Way, Suite 1001, Marina Del Rey, CA 90292{

maheswar, rogers, rsanchez, pszekely, pchen
}
@isi.edu

Abstract

We consider a team of agents that are required to coordinate their
actions in order to maximize a global objective. Our domains are
characterized by uncertainty, dynamism, and distributed information.
Determining appropriate actions becomes quite difficult, especially as
the number of agents and the coupling between them increases. This
paper discusses four contributions toward the goal of coordinating
agents under uncertainty in large-scale settings: (i) an approach based
on identifying the criticality of various activities with respect to their
effect on the team reward; (ii) an architecture and implemented coor-
dinator agent that can execute this approach in a distributed manner;
(iii) metrics for evaluating system performance in such settings, and
(iv) a proof of concept of our approach on both focused and randomly-
generated experimental domains.

1 Introduction

This work addresses the collaborative and coordinated execution of activities
of a multi-agent team in domains with uncertainty. Joint operations in mil-
itary settings, project/personnel management in global enterprise settings,



and multiple-rover/UAV missions in science-discovery/search-and-rescue set-
tings are some examples of complex and dynamic execution environments
where effective and efficient coordination is crucial. Characteristics of prob-
lems in these domains include: (i) uncertainty associated with the execution
environment, causing an explosion on the number of system states for which
actions need to be determined, (ii) dynamism, meaning that parameters that
define the initial models of uncertainty and constraints may change in the
execution phase, requiring online reasoning and decision-making, (iii) making
decisions over time, leading to either to a further explosion in the state space
(by including time as an extra state dimension) or action space (by differ-
entiating identical actions at various times), and (iv) partial observability of
global goals and other agents’ policies, where agents’ local policies may not
align towards a coherent global strategy. Discovering an approach that will
scale with computationally-bounded agents making decisions in real-time is
a challenging task.

A centralized problem-solver eliminates the issues of partial observability
and coordination, but puts a high computational burden on a single agent.
When bounded rationality is considered, this agent cannot make decisions in
a timely manner. While we do not address communication failures or delay in
this study, centralization will suffer further when these extensions are added.
Traditional AI methods that can model the distributed nature of the problem
such as SAT or DCR techniques (DCSP, DCOP) cannot currently handle
uncertainty without cumbersome encodings. Standard OR methods such as
mathematical programming or decision-theoretical approaches are built to
handle uncertainty yet they cannot be immediately utilized for our problem
without addressing the partial-observability and multi-agent decision-making
issues within our computational bounds. Developing techniques that handle
all the aspects of these settings is an emerging area of research. This paper
takes a step towards that goal while also addressing the limitations that
are brought about by scale, dynamism and bounded rationality that require
manageable state spaces and quick reasoning.

In this paper, we describe our approach to coordination which is based on
the notion of criticality. Our higher level reasoning has three components: an
opportunistic scheduler (which performs local optimization), a deliberative
scheduler (which performs partially-centralized repairs), and a downgrader
(which proactively guides the execution into better regions of operations).
Each component utilizes low-dimensional metrics that capture criticality with
respect to the decisions assigned to it. In practical systems, decision-making



agents need to manage distributed information, communication and execu-
tion. The effects of these real-world details can be lost in purely theoretical
simulations. To accurately evaluate our approach, we have constructed an
architecture to implement our coordination reasoning in functional agents
capable of running on distributed machines. Furthermore, there is no stan-
dard metric evaluating performance in large-scale settings with uncertainty.
Determining an optimal solution is intractable due to the large number of
potential sample paths. Here, we discuss a tractable option for setting an
upper bar for performance and propose a benchmark approach for a lower
bar. The upper bar is calculated by the performance of a prescient central
agent. The suggested benchmark approach is a fully-local policy that there-
fore scales. Finally, we test the validity of our ideas on both, a focused test
that isolates the capabilities of the approach, and on diverse randomly gener-
ated set of scenarios. While not universally dominant over the performance
evaluation standards introduced (in general, a difficult claim to prove), we
begin to discover the regions of operation where we exceed the benchmark.

2 Model

We model our problem with CTAEMS, which is an adaptation of the TAEMS
formulation [5] representing distributed multi-agent coordination problems.
A scenario is run over a finite horizon of decision epochs indexed by t ∈
{1, · · ·T}. Each agent a ∈ A has the potential to execute a set of activ-
ities or methods. Let (a, m) denote the mth method available to agent a
where m ∈ {1, · · · , Na} and Na is the total number of methods available
to agent a. Each method is assigned uniquely to a single agent, i.e., given
(ai, mi), (aj, mj), if ai 6= aj, then (ai, mi) and (aj, mj) must refer to differ-
ent methods. Each method (a, m) produces some quality qa,m and takes a
duration δa,m from a set of possible qualities an durations, respectively.

δa,m ∈ {δa,m
1 , · · · , δa,m

Na,m,δ}
qa,m ∈ {qa,m

1 , · · · , qa,m
Na,m,q}

The likelihood of obtaining a particular outcome is represented by probability
distributions

P a,m,δ ∈ {pa,m,δ
1 , · · · , pa,m,δ

Na,m,δ}
P a,m,q ∈ {pa,m,q

1 , · · · , pa,m,q
Na,m,q}



Let qa,m(t) denote the quality accrued by a method at time t. Once an agent
starts a method, it can either abort it or wait for its completion in order to
start another method. In addition, each method belongs to a window that
prescribes the earliest time at which it may begin (referred to as the release,
denoted as ra,m), and the latest time at which it may complete in order to
obtain positive quality (referred to as the deadline, denoted as da,m). Thus,
if the start time of method (a, m) is sa,m and the end time is ea,m, we have
qa,m(t) = 0 ∀t, if sa,m < ra,m or ea,m > da,m. If a method has qa,m(da,m) = 0,
then it is considered a failed method or failure. This occurs if qa,m(ea,m) = 0,
if it completes before the deadline (δa,m ≤ da,m), or if the method is aborted.

The qualities achieved by the executed methods are aggregated through
a tree of quality accumulation functions (QAFs) to yield the reward for the
multi-agent team. This tree consists of a hierarchy of nodes, where each leaf
node represents a method associated to a single agent that can execute it.
The non-leaf nodes are tasks with associated QAFs that define their quality
as a function of the qualities of the children. The children of a task can be
methods or tasks. This hierarchy defines how the quality of the root node, the
team reward, is computed from the individual methods that agents execute.

Formally, we index a task by T ∈ {1, · · · , NT} =: T where NT is the
total number of tasks. If N = T ∪ M is the set of all nodes where M is
the set of all methods, let C(n) ⊂ N be the set of children for node n . We
have C(n) = ∅, if and only if n ∈M. Furthermore, if node n has no parent,
n /∈ C(ñ), ∀ñ ∈ N , then it is the root node of a tree. Here, we consider
cases where the task structure is a single tree and only a single node (task)
may be a root. Let Qn(t) denote the quality accrued at time t at node n. If
n ∈M, then Qn(t) = qn(t). If n ∈ T , then

Qn(t) = f : {Qñ(t) : ñ ∈ C(n)} → IR

where f is the quality accumulation function. The quality accumulated at
the root node at time T is the reward to the team.

The QAFs include: (i) Min, which yields the minimum value of qualities
of the children, used to model situations where all children must succeed for
the parent to accumulate quality. (ii) Max, which yields the maximum value
of qualities of the children, used to model situations where at least one of the
children must achieve positive quality. (iii) Sum, which adds the qualities of
the children, also used to model situations where some children must succeed.
(iv) SyncSum, which adds the qualities of the children whose start time is
the earliest start time of all children.



An additional complexity is the possibility of non-local effects (NLEs)
between nodes. An NLE is an enabling condition between nodes represented
by a directed link between a source and a target. Target methods started
before all their sources have accumulated quality will fail (accumulate zero
quality). The start time for a node n (denoted as sn), that is a task is the
minimum start time of its children: sn = min{sñ}ñ∈C(n). If the target is a
task, the NLE applies to all descendant nodes. Thus, if E = {(ns, nt)} is a set
of source and target nodes that capture all enables NLEs, then Qnt = 0 ∀t
if Qns(snt − 1) = 0 for any ns that is part of a pair (ns, ñt) where ñt = nt or
nt is a descendent of ñt.

Dynamism is added through the capability of the environment to change
or use different probabilities, releases, or deadlines than those stated at t = 1.
These changes can occur at any time and may or may not be announced to the
agents. For example, an unmodeled failure can occur, when the environment
returns a failure for a method whose prescribed distribution contained no
failure outcomes. While the model described here is only a subset of TAEMS,
it is sufficiently rich to create problems of great complexity.

The challenge for the multi-agent team is to make the appropriate choices
of methods to execute that yield the highest quality at the root of the
CTAEMS hierarchy. The agent team is equipped with an initial static sched-
ule (i.e., a list of methods to execute and associated start times). This is typ-
ically a bad strategy as it does not react to failures or varying execution times
which may invalidate or cripple future activities. Effective policies must react
dynamically not only to the uncertainties in the durations and qualities of
methods in the schedule, but also to the dynamism of the environment, and
generate new schedules as the sample path unfolds. Reacting to the state
of the system is made more difficult by the fact that agents cannot see the
entire CTAEMS hierarchy. Agents have a subjective view consisting of the
methods they can execute and their direct ancestry to the root node, along
with immediate NLE source or target nodes of any nodes in the ancestry.
This models the partial-observability inherent in multi-agent systems, where
an agent cannot monitor the entire system and often is not aware of the
states, actions or even the existence of other agents in the team.



3 Approach

Our approach consists of embedding the notion of criticality in three higher-
level reasoning components: a locally optimized resource allocation (oppor-
tunistic scheduler), a partially-centralized solution repair (deliberative sched-
uler) and proactive re-prioritization (downgrader). To construct a functional
agent capable of utilizing these strategies, we developed an architecture for
our Criticality-Sensitive Coordinator (CSC) agent that is displayed in Fig-
ure 1. The higher-level reasoning components are triggered and supported by
a state manager and an execution controller. We first discuss these support
modules that provide the infrastructure for information, communication and
execution. Then, we describe the higher-level reasoning components.

P, α

P, α

P, α 

Downgrader

Options

Local
State

Remote

Schedule

Deliberative
Scheduler

Opportunistic
Scheduler

P, α 

P, α
P, α

Coordination 
Reasoners

State Manager

Execution Controller

Environment

Figure 1: CSC Architecture



3.1 State Manager and Execution Controller

3.1.1 State Manager

The purpose of the state manager is to give the reasoning components the
information they need to act. It also performs the communication necessary
to keep this information up-to-date. There are essentially two types of such
information: probabilities and importance, denoted by p and α respectively
in Figure 1. Both types of information are kept about the current schedule
and about potential schedules that the agents may engage. Probabilies and
importance are stored in a structure known as a profile. These quantities in
various combinations are the input that capture criticality in the higher-level
reasoning components.

The probabilities about the current schedule enable agents to determine
whether they should change the current schedule. The importance allows
them to determine the marginal contribution that any individual method has
on the success probability of the current schedule. The potential probabilities
allow agents to reason about the probability improvements that could be
achieved by engaging new options. The potential importance allows agents
to determine whether methods can still contribute to the overall quality of
the schedule.

The probability and importance of current and potential schedules are
global quantities that, in general, depend on the local state of all agents.
We have developed distributed algorithms that compute approximations of
these values based on local information and approximations received from
other agents. The state manager uses these algorithms and protocols to
share local information with other agents.

3.1.2 Schedule

The system stores the current schedule in a distributed manner in the state
managers of each agent. Every method has an associated scheduled start win-
dow and a priority. At the beginning of a run, these are determined based on
an initial schedule contained in the initial subjective view of an agent. At run-
time, the opportunistic scheduler, deliberative scheduler and the downgrader
alter the current schedule by modifying the start windows and priorities of
scheduled methods, or by adding new methods to the schedule. The delib-
erative scheduler can create a set of schedule changes that are installed on
remote agents while the other two operate only on local methods. To reduce



the potential conflicts during remote schedule updates running in parallel, a
locking mechanism is in place that serializes the distributed installation of
schedules.

3.1.3 Profiles

Profiles are designed to reason about uncertainty. A profile contains: (i) a
pair representing probability and busy-cycles of a CTAEMS node, and (ii)
an importance value. These measures are used to evaluate the current and
potential schedules. Probabilities reflect the likelihood that methods will
achieve positive quality before their deadlines. For the current schedule,
probabilities for methods are calculated using information about the distri-
butions of durations and their execution windows. In addition, we factor in
the probabilities of enabling methods. The busy-cycles are a resource con-
sumption measure also calculated from the duration distributions. These
pairs are propagated throughout the system via nearest neighbor communi-
cation. Using these probabilities, we can calculate the importance of each
node to the overall system performance based on the importance values in
the local view of each node, again in a distributed manner. The potential
profiles consist of a single pair for the methods, denoting their likelihood and
costs independent of the current schedule and a set of pairs for higher nodes,
that represent potential solutions for achieving positive quality at that node.
We use these profiles to obtain potential importance, which determines if a
method or node can still contribute to helping the team goal succeed. As
in the case of the scheduled profiles and importance, the potential measures
are propagated in a distributed manner through communication to relevant
neighbors.

3.1.4 Execution Controller

The execution controller manages the flow of data between the agent and the
underlying execution or simulation environment, including inter-agent mes-
saging. It converts execution environment events, such as starting execution
of a method, into a platform-neutral representation for portability. It runs at
a higher priority level than the rest of the agent, avoiding priority inversions
when accessing shared data. This allows it to continue to execute scheduled
methods even when the rest of the agent lags behind the pace of execution
environment events. This is critical in large-scale problem domains with un-



certainty where reasoning components may be overrun due to computational
and communication-handling burdens.

The execution controller contains its own distributed window-sliding sched-
uler. A scheduled method’s execution will be delayed until its enabling con-
ditions are met, even if some enabling conditions depend upon the state
of methods residing in other agents. The necessary inter-agent communica-
tions will take place autonomously between execution controller instances. A
method will be dropped from the schedule when one or more of its enabling
conditions has failed. When a set of methods is to be initiated synchronously
on a set of agents, the execution controllers will communicate to ensure that
synchronized execution takes place in the execution environment once all
enabling conditions have been met.

3.2 Higher-Level Reasoning Components

3.2.1 Opportunistic Scheduler

The opportunistic scheduler is instantiated whenever there is a gap where
an agent is idle. At this point, the agent estimates the window of avail-
able resource, namely execution time before the next high priority method
is scheduled to begin. The agent then may choose to begin executing a
method that is not part of the current schedule. The goal is to choose the
best method to execute given the resource restrictions, without harming the
existing schedule. Using local knowledge of the reward function and methods
scheduled to be executed, the agent dismisses methods that may cause harm
(e.g. starting a method under a SyncSum may damage a coordinated start
by other methods). Then, the opportunistic scheduler utilizes the scheduled
probabilities and importance measures in the profile to calculate a criticality
factor that determines the method with the greatest likelihood of helping
the team. This method is inserted with a medium priority such that any
(existing or future) alterations to the schedule by the deliberative scheduler
are not affected. Every agent runs an opportunistic scheduler to maximize
the use of its execution capabilities.

3.2.2 Deliberative Scheduler

The deliberative scheduler is triggered when the scheduled probability of
nodes falls below a threshold determined based on the position of the node



in the CTAEMS task structure. Thus, scheduled probability and task struc-
ture combine to form the criticality factor for the deliberative scheduler.
Because these probabilities are calculated for methods and nodes through-
out the structure, the deliberative scheduler can (and often is) called to fix
problems predicted to occur in the future. This is an important capability
given that repairing a failure at a particular time can necessitate scheduling
methods before that time due to the enables NLEs. When a problem at
a node is detected, the deliberative scheduler accesses the profile to obtain
probabilities of potential schedules. Potential probabilities of the problem
node are constructed using combinations of potential probabilities of chil-
dren nodes to create a Pareto frontier of options. These options, along with
the transitive closure of the Pareto frontiers of potential probabilities for
nodes that enable something in the subtree of the problem node, are sent to
a scheduler. The scheduler checks the feasibility of the various options and
assigns start windows to the appropriate methods to fix the problem node.

3.2.3 Downgrader

The downgrader utilizes the potential importance as its measure of criticality
to determine whether methods in the schedule can still contribute to the team
goal. The priorities of methods are reduced if it is determined that they
can no longer contribute to boost the probability of the root task, freeing
agent resources for other scheduler components that schedule methods at
higher priority. These methods are not removed from the schedule given
that they may boost the total quality. Downgrading gives methods installed
by the deliberative scheduler a higher likelihood of succeeding by removing
unimportant methods that start earlier, and gives the opportunistic scheduler
more chances to be instantiated. The preceding effects serve to enhance the
robustness of the system.

4 Metrics for Performance

Evaluating performance of a system dealing with uncertainty at a large-
scale is especially challenging. The notion of optimality is difficult because
finding an optimal solution is computationally intractable as the number
of sample paths that the system can take is immense. Furthermore, with
dynamic model changes, finding an optimal solution, becomes even more



daunting and potentially impossible if the space of changes is uncountably
large or undefined. Here, we discuss two possible methods to evaluate system
performance for the static problem with uncertainty and scale, though the
ideas may be extended to domains with dynamism.

To obtain an upper bound, for each run of a scenario, we construct a pre-
scient solver that knows the duration and quality outcomes of the problem
a priori. With this information in hand, the prescient solver can compose a
schedule of methods with no failure that can run without repair and maxi-
mize the quality of the root. The quality of this solution will be higher than
the expected quality of an optimal causal solution, even if it were computa-
tional tractable. We have devised a pseudo-boolean encoding that takes the
outcome draws, and yields the maximum achievable quality for any trial of
a scenario.

In addition to an upper bound, we propose the need for a lower bound to
evaluate systems. One should be able to determine how much improvement
a particular reasoning strategy has added beyond a basic implementation
that suits the environment’s restrictions. The quality of simply executing an
initial schedule is generally too low for a benchmark, as it may be easy to
improve with simple reasoning. We propose that a benchmark system for
large-scale multi-agent systems in uncertain domains be one where agents
make the best local decision at all time without any communication. This
system is scalable to any degree as there are no effects of communication.
Computing a local decision with the given bounded rationality must be fea-
sible for any worthwhile investigation. This is similar to the opportunistic
scheduler, without the measure of importance. Thus, we propose the Bench-
mark Opportunistic Scheduler and Prescient Optimal Solution as metrics for
lower and upper bars of performance, respectively, for large-scale systems
with uncertainty.

5 Experiments

In order to test our system and its various reasoning components against the
metrics proposed earlier, we conducted an extensive sets of experiments. Here
we describe results for (i) a constructed scenario intended to isolate and test
various reasoning components to verify the validity of our concepts (hereby
referred to as the backup problem), and also (ii) a large set of randomly
generated examples.



Intuitively, the backup problem has a set of primary agents, each working
on a single problem over time. A set of of backup agents are available to buffer
or repair the activities of the primary agents and are capable of working on
multiple problems (though not simultaneously). The challenge is to find the
best way to assign backup agents to methods that leads to the greatest num-
ber of problems being completed successfully. The CTAEMS formulation of
the backup problem is parameterized, but for simplicity we discuss a concrete
set of instances. We begin with a root node with 20 children nodes referred to
as problems. Each problem node is a Min QAF, and has identical structure
to other problem nodes except for the probability distributions and agent
ownership of the methods. Each problem has W children, referred to as win-
dows. Due to the Min QAF of the problem, all windows must be successfully
completed to successfully complete the problem. The window nodes (Sum
QAFs) determine the release and deadlines for all the the methods under it.
The interval between release and deadline is of length 40 and each window
overlaps with the adjacent windows by 8, i.e. the release and deadlines of the
windows are: {[0, 40], [32, 72], [64, 104], ...}. There is a Max QAF node under
each window with four methods as children, i.e. at least one of the children
must succeed to successfully complete a window. One method is the primary
method and is part of the initial schedule. All primaries are assigned to a
primary agent that handles all primary methods for a single problem. Thus,
there are 20 primary agents. There are 3 additional backup methods whose
owner is determined by drawing randomly from a pool of 10 backup agents.
The primary methods have quality outcomes q0,m ∈ {0, 1} with success prob-
ability P (q0,m = 1) ∈ [0.5, 1.0] and have durations δ0,m ∈ {7+ds, 8+ds, 9+ds}
with probabilities p0,m,δ ∈ {0.25, 0.50, 0.25} and ds ∈ [−4 4]. Primary
methods are released at the beginning of the window and have deadlines
at the end of the window. The backup methods have quality outcomes
q0,m ∈ {0, 1} with success probability P [q0,m = 1] ∈ [0.8, 0.9] and have du-
rations δ0,m ∈ {23, 24, 25} with probabilities p0,m,δ ∈ {0.25, 0.50, 0.25}. The
release of each backup method is the beginning of the window plus a shift
drawn randomly from {1, · · · , 7}. The deadline of each backup method is the
end of the window. We ran the backup problem with windows ranging from
W ∈ {1, · · · , 10} with our system run on a distributed cluster of 8 machines.
In the 10-window case, this is a system with 30 agents, 800 methods, and over
1000 nodes which is quite large for settings with uncertainty. For this exam-
ple, we wanted to isolate the opportunistic scheduler and the downgrader,
so the deliberative scheduler was not used in testing. The performance of



our system with respect to the separately simulated benchmarks is shown in
Figure 2.

What we can extract is that the Benchmark Opportunistic Scheduler
(BOS) does outperform the Initial Schedule Execution. Since it is a simple
strategy that improves quality, it serves as a better baseline for comparison.
In the backup problem experiment, the Prescient Optimal Solution (POS)
always yielded the theoretical maximum. This may imply that using POS
as an upper bound may be too strong or perhaps not as useful. It could also
be an artifact of our construct. In our experiments, CSC is shown to have
outperformed BOS. The reason for this is that the opportunistic scheduler
uses global information to better allocate backups, and the downgrader frees
up resources for these repairs to occur. This, by no means suggests that this
phenomenon is universal.

To further test our system, we randomly generated 86 scenarios that were
designed on a categorization of our scenarios based on NLE chains and failure
rates. We have four subclasses (empty, low, medium and high) where each
subclass relates to the number of NLE chains or failures introduced into a
particular problem. The entire problem space is then partitioned as a cross
product of the factors and their subclasses. Finally, each subspace of prob-
lems is built with scenarios using increasing degrees of window overlap. The
results of four agents running 8 trials per scenario for both the distributed
implementation of CSC and BOS are shown in Figure 3. CSC outperforms
the benchmark in 73% of the scenarios.

6 Related Work

The coordination of multi-agent systems in dynamic, distributed, stochas-
tic, temporally-constrained and partially observable domains is a challenging
problem. One way to control cooperative multi-agent systems under such
conditions is through Decentralized MDPs (DEC-MDP or DEC-POMDP).
Unfortunately, the most general decision-theoretic models for this problem
have been proved to be extremely complex (NEXP-complete) [12, 1, 11].

In order to lower complexity, some models restrict the types of interac-
tions allowed in the system, the amount of communication among agents,
or the general features they are able to address. One of such models is the
Opportunity Cost DEC-MDP (OC-DEC-MDP) [2]. This model bases its
computation in local policies, taking into account the loss in value produced



Figure 2: Backup Problem

Figure 3: CSC vs.Benchmark



by its local computation. The approach also enforces temporal constraints
among the activities to eliminate the communication among agents. Al-
though, our approach also computes local estimates of the probability of
success for each activity, such estimates are propagated in a distributed
manner to the interacting agents. Other approaches allow the agents to
communicate to exchange local policies. The DEC-POMDP with communi-
cation (DEC-POMDP-Com) [7] presents a first greedy meta-level approach
to agent communication, unfortunately the number of agents considered by
the framework is very small.

Another way of modeling the multi-agent coordination problem is through
traditional AI methods. The Distributed Constraint Optimization Problem
(DCOP) framework captures the locality of interactions among agents with a
small number of neighbors [4], it fails to capture the uncertainty in the general
problem. Network Distributed POMDPs have been proposed to address these
issues [9]. Unfortunately, they solve only small problems.

Decision-theoretic planning can also be used to model our problem [8]. In
this model, execution monitoring of the system and replanning are very im-
portant. Conditional plans are generated in order to deal with contingencies
during execution. Replanning is invoked when an agent identifies unsatisfied,
or likely to fail conditions. However, the requirements for a rich model for
actions and time are generally problematic for planning techniques based on
MDP, POMDP, SAT, CSP, planning graphs or state space encodings [3]. Fi-
nally, scalability is also an issue given the size of the problem and the number
of potential contingencies. Our approach tries to alleviate these problems by
being proactive, and focusing on activities with high probability of failure.
Some other techniques that follow similar reasoning are Just-In-Case (JIC)
contingency scheduling [6] and Mahinur [10], but they focus in a centralized,
single-agent solution to the problem.

7 Conclusion

In this paper, we presented a criticality-sensitive approach to coordinating
multi-agent systems operating in uncertain and larg-scale domains. The dis-
tributed implementation of our ideas has shown in many cases to improve
upon a proposed benchmark system. Interestingly, preliminary ablation stud-
ies (not discussed here) show no significant difference in the qualities obtained
using the deliberative scheduler only, the opportunistic scheduler only or the



deliberative and opportunistic scheduler together. This is surprising as the
deliberative and opportunistic schedulers use very different approaches. We
speculate that the structure of the problems is such that both approaches
identify similar solutions. In order to verify this hypothesis, we are now
conducting experiments to analyze the detailed behavior of the system on
specific problem instances. We are also working on a range of evaluation
tools ranging from problem generators, additional visualization tools and
centralized algorithms to compute alternate performance metrics. Identify-
ing the regimes in which each scheduler is dominant has not yielded any
insight, thus far, into why the winning scheduler was the best choice. These
investigations reflect our understanding that, while a model such as TAEMS
can be stated succinctly, the uncertainty and scale combine very rapidly to
form problems that are challenging to solve and understand.

8 Acknowledgments

The authors would like to thank Marcel Becker, Stephen Fitzpatrick, Gergely
Gati, David Hanak, Jing Jin, Gabor Karsai, Bob Neches, Nader Noori, Kevin
Smyth and Chris van Buskirk for their contributions to the design, imple-
mentation, debugging and testing of CSC.

The work presented here is funded by the DARPA COORDINATORS
Program under contract FA8750-05-C-0032. The U.S.Government is autho-
rized to reproduce and distribute reports for Governmental purposes notwith-
standing any copyright annotation thereon. The views and conclusions con-
tained herein are those of the authors and should not be interpreted as nec-
essarily representing the official policies or endorsements, either expressed
or implied, of any of the above organizations or any person connected with
them.

References

[1] D. Bernstein, R. Givan, N. Immerman, and S. Zilberstein. The complex-
ity of decentralized control of markov decision processes. Mathematics
of Operations Research, 27:819–840, 2002.

[2] A. Beynier and A. Mouaddib. A polynomial algorithm for decentralized
markov decision processes with temporal constraints. In Proceedings



of the 4th International Joint Conference on Autonomous Agents and
Multi Agent Systems(AAMAS-05), 2005.

[3] J. Bresina, R. Dearden, N. Meuleau, D. Smith, and R. Washington.
Planning under continuous time and resource uncertainty: A challenge
for ai. In Proceedings of UAI, 2002.

[4] J. Cox, E. Durfee, and T. Bartold. A distributed framework for solving
the multiagent plan coordination problem. In Proceedings of the 4th
International Joint Conference on Autonomous Agents and Multi Agent
Systems(AAMAS-05), pages 821–827, 2005.

[5] K. Decker and V. Lesser. Quantitative modeling of complex computa-
tional task environments. In Proceedings of the 11th National Conference
on Artificial Intelligence (AAAI-93), pages 217–224, 1993.

[6] M. Drummond, J. Bresina, and K. Swanson. Just-in-case scheduling.
In Proceedings of the 12th National Conference on Artificial Intelligence
(AAAI-94), pages 1098–1104, 1994.

[7] C. Goldman and S. Zilberstein. Optimizing information exchange in
cooperative multi-agent systems. In Proceedings of the Second In-
ternational Joint Conference on Autonomous Agents and Multi Agent
Systems(AAMAS-03), pages 137–144, 2003.

[8] M. Littman, J. Goldsmith, and M. Mundhenk. The computational com-
plexity of probabilistic planning. Artificial Intelligence Research (JAIR),
9:1–36, 1998.

[9] R. Nair, P. Varakantham, M.‘Tambe, and M. Yokoo. Networked dis-
tributed pomdps: A synthesis of distributed constraint optimization
and pomdps. In Proceedings of the 4th International Joint Conference
on Autonomous Agents and Multi Agent Systems(AAMAS-05), 2005.

[10] N. Onder and M. Pollack. Conditional, probabilistic planning: A uni-
fying algorithm and effective search control mechanisms. In Proceedings
of the 16th National Conference on Artificial Intelligence (AAAI-99),
pages 577–584, 1999.



[11] D. Pynadath and M. Tambe. The communicative multiagent team de-
cision problem: Analyzing teamwork theories and models. Artificial
Intelligence Research (JAIR), pages 389–423, 2002.

[12] J. Shen, R. Becker, and V. Lesser. Agent Interaction in Distributed
MDPs and its Implications on Complexity. In Proceedings of the Fifth
International Joint Conference on Autonomous Agents and Multi-Agent
Systems, 2006.


