
Criticality Metrics for Distributed Plan and Schedule Management

Rajiv T. Maheswaran and Pedro Szekely
Information Sciences Institute, University of Southern California

4676 Admiralty Way #1001, Marina Del Rey, 90292
{maheswar, pszekely} @ isi.edu

Abstract

We address the problem of coordinating the plans and sched-
ules for a team of agents in an uncertain and dynamic en-
vironment. Bounded rationality, bounded communication,
subjectivity and distribution make it extremely challenging
to find effective strategies. The Criticality-Sensitive Coordi-
nation (CSC) system uses multiple policy modification man-
agers making predictable policy changes based on critical-
ity metrics derived from simple computations on a graph-
representation of the reward function with nearest neighbor
communication. In the context of the DARPA Coordina-
tors program, under an extensive and independent evalua-
tion, the CSC system significantly outperformed competing
approaches based on Temporal Networks and Markov Deci-
sion Processes.

Introduction
Coordinating the execution of activities for a multi-agent
team in dynamic and uncertain environments is critical in
domains such as large-scale disaster rescue, joint military
operations and project management, among others. There
are many characteristics of these domains that make effec-
tive coordination extremely challenging. A team begins
with an initial plan of activities with uncertain duration and
outcome. As uncertainties are resolved during execution,
agents may need to modify their plans, e.g., reschedule or
perform alternate activities. As the scale increases, it be-
comes infeasible to calculate and store an optimal set of
policies that prescribe appropriate plan changes for all con-
tingencies. This introduces one form of dynamism, where
agents must modify their policies over time. A second form
of dynamism occurs when agents’ models of the world or the
team reward function changes during execution. An agent
might discover that an activity will take much longer or is
more likely to fail than originally anticipated. The team
might find unexpected and significant new tasks to perform
in the middle of execution. The initial plan then becomes in-
valid and agents must adapt their plans and schedules during
execution to get a high quality solution.

Other domain characteristics include distribution and sub-
jectivity. As execution evolves, each agent can observe the
outcomes of only some activities. As agents modify their

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

policies, each agent is only aware of the changes to its policy.
Agents may only have partial knowledge of the team reward
function. Thus, agents must share information to choose the
appropriate policy modifications.

Any coordination technology must work within the pace
of execution, and the bounded communication and bounded
rationality limitations of the infrastructure and equipment
available. When coupled with dynamism, centralization is
not a viable strategy, especially as the problem scales. Also,
having a single point of failure is risky and undesirable.
As the number of agents increases, it becomes infeasible to
share all information among all agents without incurring de-
lays that exceed the times at which decisions must be made.
The shared information must be processed and subsequent
policy modifications must be analyzed using the reasoning
cycles available between decision points. Thus, time-critical
domains restrict the number of contingencies that can be
considered. The impact of these difficulties can be greatly
magnified by nonlinearities that arise from conjunction, dis-
junction or synchronization in the team reward function. Re-
searchers have been tackling problems with many of the
characteristics mentioned above, however, conceiving tech-
niques that handle all aspects of these settings is a nascent
area of research.

The DARPA Coordinators program has required solution
concepts that address all the aforementioned characteris-
tics through its goal of creating “distributed intelligent soft-
ware systems that will help fielded units adapt their mission
plans as the situation around them changes and impacts their
plans.” 1 Three teams of researchers pursued three different
solution concepts. One approach was based on Simple Tem-
poral Networks (STNs). Another was based on Markov De-
cision Processes (MDPs). After two years of development
and under independent and extensive testing, both were sig-
nificantly outperformed by a novel approach: the Criticality-
Sensitive Coordination (CSC) system used a set of simple
policy modification managers that were tightly integrated
with criticality metrics that propagated over a graph repre-
sentation of the reward function.

In this paper, we describe the Coordinators problem, de-
velop a formalism for characterizing the three vastly differ-
ent approaches, and describe the metrics and managers of

1http://www.darpa.mil/ipto/Programs/coordinators/

214

Proceedings of the Eighteenth International Conference on Automated Planning and Scheduling (ICAPS 2008)

CSC. We also present the experimental results from the in-
dependent DARPA evaluation of the three approaches, and
discuss the performance of the three systems, which yields
the ideas of predictability and the value of global, accurate
and timely information. We hope that these insights help de-
velop better solution concepts for these important domains.

The CTAEMS Model
The Coordinators problem is formally modeled using a ver-
sion of the TAEMS (Task Analysis, Environment Model-
ing, and Simulation) framework (Lesser et al. 2004) called
CTAEMS (Boddy et al. 2007):

Methods: Each agent i ∈ I has a distinct set of activities
Mi, known as methods, that they can perform (Mi1 ∩Mi2 =
∅, if i1 6= i2), but they can execute only one at a time. If
a method is started at time sm, it will occupy the agent’s
time for a duration δm ∈ ∆m with probability p(δm) and
yield a quality qm ∈ Qm with probability p(qm) when it
completes at end time em = sm + δm. A method must be
attempted in order to yield quality and each method can only
be attempted once. The uncertainty regarding the duration
and quality is resolved only upon completion. Method m
will yield zero quality if it started before its release time
rm or completes after its deadline dm. A method may be
aborted during execution. This yields zero quality (qm = 0)
for the method but frees the agent to perform other methods.

Tasks: The team reward function is represented using a
task decomposition graph. The root task represents mission
quality. Tasks nodes can be decomposed into many levels
of subtasks. Let C(n) denotes the children of node n. Leaf
nodes (C(n) = ∅) are methods. A node can be a child of at
most one node. Let qn(t) denote the quality of any node n at
time t. Each task node n is associated with a node operator
�n, such as max, min, or sum which takes the qualities
of its children as input and yields the quality of the node
as the output: qn(t) = �n({qñ(t)}ñ∈C(n)). Other opera-
tors include syncsum, for which the quality is the sum of
the qualities of the children that began execution at the ear-
liest time: qn(t) =

∑
n̂∈Ĉ(n) qn̂(t) where the synchronized

children are Ĉ(n) = {n̂ ∈ C(n) : sn̂ = minñ∈C(n) sñ}
and sn = minñ∈C(n) sñ is the start time of node n. The
sumand operator adds the sum of the childrens’ qualities
only if they are all positive: qn(t) =

∑
ñ∈C(n) qñ(t) if

qñ(t) > 0 ∀ñ ∈ C(n) and qn(t) = 0, otherwise.
Links: The task decomposition graph can also include di-

rectional links, called non-local effects (NLEs) in CTAEMS.
Each link l is associated with a link operator −→� l

ns,nt
(·)

where ns and nt are the source and target nodes of the link.
An enables link requires that the quality of the source node
be positive at the start time of a target method for the target
method to obtain positive quality. A disables link precludes
a target method from achieving positive quality if it started
after the source node achieved positive quality. If the tar-
get node of a link is a task, it can be interpreted as multiple
links from the source to all descendant methods of the tar-
get. Additional links include facilitates which modifies the
quality and duration distributions of target methods to make
methods take less time and yield more quality in proportion

to the quality achieved by the source. The hinders link has
the opposite effect.

Reward Function: Let I{·} be an indicator function,
LT (m) be the links whose target node is m (or an ances-
tor of m) and ns(l) be the source node of link l. Then, the
method quality for node m at time t is qm(t) =

qmI{t≥em}I{sm≥rm}I{em≤dm}Πl∈LT (m)
−→� l

ns(l),m(·).

The arguments of the link operators can vary based on their
type. The method qualities propagate through task node op-
erators to determine the root node quality. The objective
of the team is to maximize q0(T), the root quality at ter-
minal time T . While additional modifications can increase
expressibility, the preceding constructs are sufficiently rich
to create problems of great complexity.

Information: Agents are not given the complete task de-
composition graph, known as the objective view, and thus
have incomplete knowledge of the team reward function. In-
stead, they are given a subgraph, or subjective view, which
has (1) methods they own, (2) ancestors of these methods
and (3) nodes that are sources or targets of links with a node
in (1) or (2). An agent only knows distributions, releases and
deadlines of the methods in its subgraph.

Each agent is given an initial schedule consisting of a set
of methods and start times, computed by a centralized solver.
Only the agent owning a method will observe the actual start
time, end time and quality obtained for that method. While
agents are free to share this information, unanticipated de-
lay and failure (getting zero quality) forces agents to modify
the policies generated from this schedule. Exogenous events
such as distribution changes, release/deadline changes and
the arrival of new tasks can alter the reward function during
execution and force agents to modify their plans. So, even
an optimal policy for the original problem can be invalidated
at run-time. Thus, this problem model incorporates all the
challenging characteristics discussed earlier.

CTAEMS Examples

A1 B1 B2 C1 D1C2

Run Experiments
(MAX)

Analyze
Results (SUM)

Meet at 4 PM
(SYNCSUM)

D2C3

Meet at 9 AM
(SYNCSUM)

Analyze
Experiments (MIN)

Review Meeting
(MAX)

Evaluate System
(SUMAND)

Figure 1: An Example Scenario

Consider the scenario in Figure 1. The graph shows task
(oval) and method (rectangle) nodes for a plan where four
agents (A,B,C, D) have an objective of evaluating their
system. This requires both analyzing experiments and hav-
ing a review meeting. To analyze experiments, the team
needs to run experiments which enables performing an anal-
ysis. The initial plan is A1, B2, C2, D1. However, A1 fails
due a hardware error (outcome uncertainty). Realizing this,

215

Agent B starts the experiments on his hardware (B1). Un-
fortunately, B1 takes longer than anticipated (duration un-
certainty) and Agent B cannot complete the analysis (B2)
before the deadline (temporal constraints). Agent C can do
the analysis more quickly (C1), but it precludes having the
review meeting at 9 AM. Agents C and D must switch to
the 4 PM meeting time (C3, D2). This example is a micro-
cosm of some of the difficulties that arise in coordinating in
an uncertain temporally constrained environment. If any of
the method changes did not occur, they would have failed.

While the example might seem trivial, the difficulties are
amplified as the scale grows. A reward graph with approxi-
mately 30 agents and 1000 nodes is shown in Figure 2. The
Coordinators program evaluation involved scenarios of up to
100 agents and over 13000 nodes.

Figure 2: Reward Graph for a 30-agent 1000-node Scenario

Solution Concepts
The three approaches to solving the Coordinators problem
were vastly different. Here, we propose a formalism for
the general problem which can capture all these approaches.
This will help compare and evaluate their performance. To
find an optimal solution to the general multi-agent coordina-
tion problem, one must solve:

π∗ = arg max
π∈Π

V (π, η∗), Π = {π}, πi : X → Ai

where π = [π1 π2 · · ·] is the joint policy, V is the evaluation
function, η∗ is the full information required by the evalua-
tion function, and Π is the space of joint policies composed
of individual policies {πi}, where each is a mapping from
the complete state space X to an individual action space Ai.

For the Coordinators problem, the evaluation function V
is the expected root quality at the terminal time and the full
information η∗ is the complete reward graph and distribu-
tions, releases and deadlines for all methods. The actions
available to the i-th agent, Ai are to start a method in Mi,
abort an executing method, or do nothing. If one could (1)
solve this problem offline, given that evaluating V for a sin-
gle policy requires analyzing all sample paths of the system,
(2) investigate the entire space of policies, (3) store the entire
joint-state-space-to-action mapping in a single agent, and (4)
communicate the joint state in a timely manner, the results
would still be suboptimal when η∗ changed during execu-
tion. So, even given a good initial policy, which is difficult
to obtain, agents will have to change their policy dynam-
ically during execution. Another reason for dynamic pol-
icy modification is that bounded rationality prevents agents
from investigating a large policy space. Thus, it is better to
develop a policy incrementally as the uncertainty resolves

itself during execution:

πt
i = arg max

πt
i∈bΠt

i

V̂ (πt
i , η

t
i), Π̂t

i ⊂ {πt
i}, πt

i : Z(ηt
i) → Ai

where the i subscript indicates the parameter will vary by
agent and the t superscript indicates parameters can change
over time. For any z ∈ Z(ηt

i) there is a mapping θ(z) ⊂ X
which indicates the set of joint states that leads to that cir-
cumstance. These must be distinct: θ(z1) ∩ θ(z2) = ∅. The
circumstance set is a function (or determiner) of the informa-
tion ηt

i that can (or needs to) be delivered at the time when
actions need to be taken. If one wants to use the joint state
space as the circumstance set (Z(ηt

i) = X), then one must
be able to construct a system that can deliver that informa-
tion. A schedule is a policy where the circumstance set is
time (z ∈ Z(ηt

i) ⇒ z = t). The choice of Z determines
the policy representation of the solution concept. Given the
policy representation, Π̂t

i denotes the subset of policy space
that will be investigated during a policy modification phase
at time t. Policies in this space will be evaluated by V̂ which
also is a function (or determiner) of the information that is
propagated. To have a dynamic policy, there must be an
action a ∈ Ai that is “modify policy” along with circum-
stances that trigger it. The choices of Z, ηt

i , Π̂i, and V̂ char-
acterize a solution concept.

Other Approaches
Two of the approaches that were investigated in the Coor-
dinators program extended distinct and prevalent schools of
thought in planning and scheduling: Markov Decision Pro-
cesses (MDPs) and Simple Temporal Networks (STNs).

The MDP-based approach (Musliner et al. 2006) ad-
dressed the infeasibility of reasoning over the joint state
space by setting the circumstance set to a subset of local state
space that is reachable from the current local state, Z(ηt

i) =
X̂t

i ⊂ Xi. The process of updating X̂t
i is referred to as

“unrolling”. During a policy modification phase, all policies
that could be formed with the currently unrolled state space
are investigated. The best actions for these states was deter-
mined by a value function, V̂ MDP , based on the agent’s sub-
jective view of the reward function. Values for the frontier of
the unrolled state space are determined through a fast greedy
search. Negotiated commitments, ηt,MDP

i , bias the value
function to induce desired coordinated behavior (Witwicki
and Durfee 2007).

The STN-based approach (Smith et al. 2007) addressed
temporal uncertainty by using a time interval (instead of a
point) as the circumstance that denotes feasible start times
for a method to be executed: Z(ηt

i) = {(sm, s̄m)} ∀m ∈
MS

i ⊂ Mi. As execution evolves, the system used STN
constraint propagation, ηt,STN

i , to update the start intervals
of methods in MS

i . A policy modification phase was trig-
gered if execution was forced outside the given set of in-
tervals. The policy space considered included changes to
the time intervals or the method set to be executed. The
evaluation function, V̂ STN , was the root quality of the sub-
jective reward, computed using the expected outcomes of

216

methods. Agents engaged in speculative joint policy modi-
fications that were profitable according to V̂ STN .

The CSC System
The policy representation of CSC is similar to that of the
STN-based system. It is a method set to be executed where
each method has a start time interval and a priority: Z(ηt

i) =
{(sm, s̄m, ρm)} ∀m ∈ MS

i ⊂ Mi. If a method m1 with
priority ρm1 is executing at time sm2

and ρm2 > ρm1 , we
will abort m1 and start executing m2.

Each agent is given an initial schedule, {tm}m∈MS
i

, com-
puted by a centralized solver before execution. This is used
to create the initial policy, i.e., the executable method set
and start windows, in both the CSC and STN-based sys-
tems. The MDP-based approach uses the initial schedule
to create their initial unrolled state spaces, {X̂0

i }. While
the STN-based system updates the start windows and con-
straints throughout execution, CSC does not. Instead, we
use a different information sharing mechanism based on the
graph representation of the reward function. The mecha-
nism quickly propagates simple metrics that are triggers for
actions and evaluators for policy modification.

We assign an agent to each node n in the graph with the
responsibility to update and disseminate all metrics associ-
ated with that node: µn = {µτ

n}τ . Currently, we assign each
node randomly to an agent whose subjective view contains
it. Each metric µτ

n can either be local, i.e., determined by
that node, or a function of metrics that exist on neighboring
nodes, B(n), i.e., nodes connected to n via a parent-child
relationship or a directional link (e.g, enables, etc.). When-
ever any metric is updated, its new value must be propagated
to its neighbors. Each metric type τ has an operator ⊗τ that
defines how it is updated:

µτ
n = ⊗τ ({µn̂}n̂∈B(n))

We want these operations to be simple and fast so informa-
tion can propagate through the graph quickly.

Local metric updates can occur when agents act or make
observations that affect the method nodes they own (e.g.,
start times, end times, quality obtained). These updates are
propagated to neighboring nodes which can cause metric up-
dates in those nodes and ultimately result in a cascade of
information flow through the graph. Appropriately chosen
metrics can give agents more timely and accurate assess-
ments of global state and the reward function from which
to decide when and how to make policy modifications.

The information available to an agent is a collection
of metrics on the nodes in its subjective view: ηt

i =
{µn(t)}n∈Gi where Gi is the subgraph known to the i-th
agent and µn(t) represents the values of all metrics at node
n at time t. These metrics trigger policy changes, Z(ηt

i) and
influence the evaluation functions V̂ (πt

i , η
t
i). Policy modifi-

cations are performed by set of managers, each responsible
for a particular type of policy modification. Thus, the policy
modification space Π̂t

i will differ based on the manager that
is triggered.

CSC Metrics
A simple metric calculated via the CSC information sharing
mechanism is quality accumulated at a node at the current
time t: µq

n(t) = qn(t). A similar simple metric is quality
status of a node, which indicates if it is possible for a node to
get more quality: µqs

n (t) = I{p[qn(T)>qn(t)]>0}. From these
simple metrics, we can compute more advanced metrics.

Backbone Value (µbb+): The backbone value estimates
the probability that the root task will fail, if a given node fails
(p[q0(T) = 0|qn(T) = 0]). If node n has achieved positive
quality, µbb+

n = 0, since it cannot fail. If it cannot improve
(µqs

n (t) = 0), µbb+
n = 0, since it cannot alleviate the fail-

ure. The failure of a node can affect the root task through its
parent and nodes it enables. The price of failure via enable-
ment is the probability that failure of the enabled node e(n)
causes root failure:p[q0(T) = 0|qe(n)(T) = 0] = µbb+

e(n).
If the parent node P (n) has a conjunctive node operator,
e.g., �P (n) ∈ {min, sumand}, then the price of failure is
the probability that failure of the parent causes root failure:
µbb+

P (n). If the parent has a disjunctive node operator, e.g.,
�P (n) ∈ {max, sum}, then the price of failure of the par-
ent can be split among the children who could alleviate that
failure, i.e., those that can still accumulate quality. Thus, we
have µbb+

n (t) =

I{qn(t)=0} µqs
n (t) max

{
f bb+

(
µbb+

P (n),�P (n)

)
, µbb+

E(n)

}
where µbb+

E(n) are the backbone values of all nodes enabled by

n, f bb+
(
µbb+

P (n),�P (n)

)
= µbb+

P (n) for conjunctive �P (n),

and f bb+
(
µbb+

P (n),�P (n)

)
= µbb+

P (n)/
∑

ñ∈C(P (n)) µqs
ñ (t)

for disjunctive�P (n). The max operation chooses the single
most damaging path to the root in the graph. An alternative
metric uses the

∑
operation.

The µbb+ metric can help identify critical methods to exe-
cute even though the reason for their criticality might not be
visible in the agent’s subjective view. If an agent could exe-
cute m1 or m2 and qm1 � qm2 but µbb+

m1
= 0 and µbb+

m2
= 1,

it would realize that even though m1 was a much higher
quality method, it does not affect root failure, while failure
to execute m2 assures root failure.

Backbreaker Value (µbb−): The backbreaker value es-
timates the probability that the root task will fail, if the node
does not fail (p[q0(T) = 0|qn(T) > 0]). The success of a
node can damage the root task through disables links. If a
node n has achieved positive quality, µbb−

n = 0, since it can-
not mitigate the damage. If it cannot improve (µqs

n (t) = 0),
µbb−

n = 0, since it cannot cause failure through disable-
ment. The price of success via disablement is the proba-
bility that failure of the disabled node d(n) causes root fail-
ure: µbb−

n = p[q0(T) = 0|qd(n)(T) = 0] = µbb+
d(n), the

backbone value of d(n). This price is passed to a node’s
children as the success of the children cause success in the
parent. If a node’s parent has a disjunctive node operator,
then µbb−

n = µbb−
P (n) because qn(t) > 0 → qP (n)(t) > 0. If a

node’s parent has a conjunctive node operator, then all chil-
dren must succeed for the parent to succeed so µbb−

P (n) can be

217

split among n and its siblings. Thus, we have µbb−
n (t) =

I{qn(t)=0} µqs
n (t) max

{
f bb−

(
µbb−

P (n),�P (n)

)
, µbb+

D(n)

}
where µbb+

D(n) are the backbone values of all nodes disabled
by n and f bb− is the opposite of f bb+ with respect to con-
junctive and disjunctive operators.

The µbb− metric can help identify methods to avoid ex-
ecuting even though the reason might not be visible in the
agent’s subjective view. If an agent could execute m1 or m2

and qm1 � qm2 but µbb−
m1

= 1 and µbb+
m2

= 0, it would real-
ize that even though m1 was a much higher quality method,
it will assure root failure and m2 is a better method to exe-
cute. The backbone and backbreaker metrics can be adjusted
to prevent the failure of non-root tasks by setting their back-
bone values to one.

Schedule Probability (µp): The schedule probability
metric is the likelihood that the current node will obtain pos-
itive quality at t = T under the current policies of all agents:
µp

n(t) = p[qn(T) > 0|πt]. While this is not entirely trivial
to calculate, as it requires an appropriate approximation op-
erator ⊗p at task nodes, we omit the details of how this is
calculated. We mention it because it is needed for the fol-
lowing advanced metric.

Root Gain (µα): The root-gain metric estimates the
change in the probability of success of the root task as a
factor of the change in the probability of success of the
node given the current policies: µα

n = ∂µp
0/∂µp

n. Thus,
if the schedule probability of only node n was increased by
dµp

n, the schedule probability of the root would increase by
dµp

0 = µα
ndµp

n. To determine how to calculate µα
n , we de-

compose µα
0 as follows: dµp

0/dµp
n =

∂µp
0

∂µp
P (n)

∂µp
P (n)

∂µp
n

+
∑

ñ∈E(n)

∂µp
0

∂µp
ñ

∂µp
ñ

∂µp
n
−

∑
ñ∈D(n)

∂µp
0

∂µp
ñ

∂µp
ñ

∂µp
n

= µα
P (n)gn(P (n)) +

∑
ñ∈E(n)

µα
ñgn(ñ)−

∑
ñ∈D(n)

µα
P (n)gn(ñ)

where P (n) is the parent of n, E(n) are the nodes enabled
by n, D(n) are the nodes disabled by n, and gn(ñ) =
∂µp

ñ/∂µp
n.

This decomposes µα
n into parameters that can be deter-

mined from metrics in the node’s neighborhood. The µα

values are available as metrics and gn(ñ) can be calculated
from µp as follows: gn(ñ) = (1−µp

ñ)/(1−µp
n) if ñ = P (n)

and �ñ is disjunctive and gn(ñ) = µp
ñ/µp

n if ñ = P (n) and
�ñ is conjunctive, ñ ∈ E(n), or ñ ∈ D(n). 2 If an agent is
choosing among otherwise equivalent methods, utilizes µα

and executes the activity m∗ = arg maxm{µα
m p[qm(T) >

0]} , it will choose the activity that increases the probability
of root success the most.

Target Quality (µtq) The target quality of a node is the
quality value beyond which there will be no contribution to
the quality at the root: µtq

n =

arg max
qn

{qn : ∃ε > 0 s.t. p[q0(T |qn + ε)− q0(T |qn)] > 0} .

2discussion of singularity conditions are omitted due to space

To calculate this, we need to use some other simple metrics.
Let µm

n be the maximum quality that node n could obtain
without the aid of facilitation. This is important because
it’s the upper bound on the input for facilitation links. With
µm

n , we can construct µf
n, the maximum quality that node n

could obtain with the aid of facilitation and the current state
of hinders links. Given these metrics, we have µtq

n =

min
{

µf
n,max{µtq

P (n), µ
m
n I{F (n) 6=∅}, εI{E(n)6=∅}}

}
.

This states that the target quality of n should be the smaller
of the maximum achievable quality µf

n and the largest goal
quality which could be your parent’s target quality µtq

P (n),
the upper bound for facilitation µm

n if n a facilitator (F (n) 6=
∅), or some small positive quality ε > 0 if n is an enabler
(E(n) 6= ∅). This metric is very useful because verifying
qn(t) ≥ µtq

n (t) reveals whether a task or method is useful.
All the metrics discussed here are ultimately a function of

method qualities qm(t) and time which are dynamic. Hence,
all the metrics are dynamic. All the computations needed
to calculate the metrics are extremely simple. Thus, the
CSC nearest-neighbor information-propagation mechanism
can track uncertainty and dynamism during execution and
deliver globally-aggregated timely metrics to agents.

CSC Managers
We now discuss the three main managers that perform dy-
namic policy modifications in CSC.

Remover: Whenever the quality accumulated for a
method is at least its target quality, qm(t) ≥ µqs

m , the Re-
mover is triggered and the method is removed from the
method set MS

i :

Z(ηt
i) = Z(ηt−1

i) \ (sm, s̄m, ρm)

If µqs
m changes while m is executing and the Remover is trig-

gered, m will be aborted.
Opportunistic Inserter(OI): The OI is triggered when-

ever an agent is idle. It then investigates policy modifica-
tions of adding one method to be started immediately:

Z(ηt
i) ∈ {Z(ηt−1

i) ∪ (t, t′, ρm)}m∈Mi

where Z(ηt−1
i) contains the previous method set, (t, t′) is

a start window that allows m to start immediately, and ρm

is a priority that is lower than priorities of methods in the
initial schedule. This ensures that when the next method is
supposed to be started t = s∗m = minm∈MS

i (Z(ηt−1
i)) sm, the

added method will be aborted if the method to be started at
s∗m has a higher priority.

The OI uses several criticality metrics to decide whether
to insert a method in its current policy, and which method
to insert. The agent will order useful methods based on
their values of µbb+, µbb−, µα, and µp. This helps to add
any methods that are critical to execute to avoid root failure,
avoid methods that can cause root failure, favor the meth-
ods that will help the root succeed the most and favor the
methods that will succeed at the highest rate, respectively.

218

Policy Manager (PM): The PM is triggered at every t
and investigates policy modifications where a method in the
method set MS

i is replaced with a sibling method:

Z(ηt
i) = {Z(ηt−1

i) \ (sm, s̄m, ρm) ∪ (sm′ , s̄m′ , ρm′)}
where m ∈ MS

i and m′ ∈ C(P (m)) ∩ Mi. The set of
siblings for each method is pruned by eliminating any sib-
ling whose schedule probability µp or expected quality is
not within some threshold of the original method’s values.
Methods are then pruned if they have link properties that
are worse than the original method, e.g., they don’t enable
something that the original does or disable something useful
that the original does not. From this final set, methods are
ordered based on expected quality and then probability and
the best is chosen. The PM is useful for managing uncer-
tainty during execution, by replacing a method that is run-
ning long with a shorter method that is sure to succeed or
swap methods quickly based on facilitation or hinders ef-
fects on method quality.

Additional managers exist to handle special node opera-
tors such as syncsum or exactlyone (the CTAEMS ana-
logue to exclusive-or). These do not engage in significant
policy modification but are there to ensure that the intended
policy execution is not violated. We have also developed a
manager to handle disables effects by changing start win-
dows: the Backbreaker Shifter. However, it was not sub-
mitted for the independent evaluation. The idea of CSC
managers is that policy modification should occur through
a union of focused policy modification managers that have
limited scope in which they can perform well.

Experiments
The three approaches were evaluated on scenarios con-
structed by an independent third party, assisted by two of the
original designers of TAEMS. Additionally, each of the three
teams provided a set of scenarios.The independently created
data set consists of 14 groups of scenarios, each group con-
taining 32 similar scenarios, for a total of 448 scenarios. The
scenarios were produced using a scenario generator that ran-
domly combined a variety of templates (Decker and Gar-
vey 2007). Each template produces a CTAEMS structure
that captures a specific coordination challenge. Examples
include (1) Synchronization, where agents must maximize
activities started at the same time, (2) Dynamics, where the
task structure, NLEs and other constraints are changed often
during execution, and (3) NLE-Mixture, where a group of
tasks are connected by randomly chosen NLEs. Each sce-
nario group contains a different mix of instances of these
templates. Each group also differs on the settings of sce-
nario generator parameters that controls failure rates, dis-
tributions of method outcomes, tightness of release/deadline
constraints and activity overlap. The scenarios have between
25 and 100 agents, 848 and 13,662 nodes, and 104 and 827
NLEs. Proponents of each approach submitted 64 scenarios
each, intended to highlight the strengths of their approach.
All scenarios contain an initial schedule produced by a cen-
tralized scheduler

The simulations for the main systems were run on a clus-
ter of Intel Core Duo machines on a Gigabit network. Each

agent and the simulator ran on a different machine.3 Mes-
sage throughput was limited as all inter-agent messages were
sent via the simulator where logs were kept. In the 100-
agent simulations, agents were able to send between 25 and
65 messages per second. The simulator marked time with
pulses that were one second long. Scenarios had horizons
between 373 and 1,728 pulses. Method durations varied, but
over 95% were between 3 and 14 pulses. In scenarios with
many agents, several methods could complete on each pulse,
i.e., dynamism was on the order of a second.

The score of a simulation is the quality achieved at the
root task at the end of a simulation run. The scores on dif-
ferent scenarios varied significantly, from a few hundred to
tens of thousands. To normalize each scenario, the best score
obtained by any system or baseline was set to 100, and the
scores of the other systems and baselines were scaled ac-
cordingly. To give some context to the performance of the
systems, we ran CSC with only the Opportunistic Inserter
with the added method chosen randomly.

Figure 3 shows the results. Rows represent systems and
columns represent scenario groups. The numbers in paren-
thesis represent the number of agents in each scenario in a
group.4 The cells show the average normalized scores for all
systems by scenario group. The first column is the average
over all independent scenarios. The best score in each col-
umn was shaded dark grey. The light grey shading indicates
that the score was significantly better than Random Insertion
(using error bar analysis).

Discussion
The unmodified initial schedule performs abysmally, aver-
aging 38% over the 448 independent tests illustrating the
need for good distributed dynamic solutions. The first main
result is that CSC significantly outperformed the other ap-
proaches, obtaining the highest score in 436 of 448 (97%)
of the independently generated scenarios. The normalized
scores over those scenarios were: CSC (98%), STN (80%),
MDP (56%). We note that CSC is robust enough to score
97 on the independent tests without an initial schedule. The
second main result is that the other approaches were mostly
unable to outperform the relatively simple local algorithm
of randomly adding methods to the initial schedule without
perturbing it.

To understand these results, we return to our formalism
for the approaches. First, when looking at the evaluation
functions, V̂ MDP assumed that a greedy forward search
would provide a good estimate of the value of the boundary
of the unrolled state space, and V̂ STN used expected out-
comes as input. Consider the cost of representing a method
with uniform bimodal distributions for quality qm ∈ {0, 10}
and duration δm ∈ {1, 11} with a single point distribution
qm = 5, δm = 6.

3The baseline was run on a configuration where all agents ran
on a single machine as Java threads. We ran a subset of scenarios
in both configurations and verified that the average score differs by
less than 0.1%. We didn’t run the 100-agent set as each took over
4 hours.

4the Flexible Scheduling number is a mean

219

86 97 80 85 83 95 92 52 39 26 98 99 n/a 0 49 14Random Insertion

13 85 42 45 49 97 45 61 36 23 61 95 82 96 0 31 88Distributed MDP

86 87 71 73 63 93 76 90 74 70 77 96 81 94 0 70 17Flexible Scheduling

98 99 99 99 99 99 100 96 96 94 93 93 99 99 100 84 24CSC
Co

nt
in

ge
nt

 (3
3)

Dy
na

m
ic

(3
3)

M
ixt

ur
e

(2
5)

M
ixt

ur
e

(5
0)

M
ixt

ur
e

(7
0)

NL
E

Ci
rc

ul
ar

 (3
3)

NL
E

 M
ixt

ur
e

(5
0)

NL
E

Ne
ga

tiv
e

(3
3)

Re
al

 W
or

ld
-1

 (3
3)

Re
al

 W
or

ld
-2

 (3
3)

Sy
nc

hr
on

iza
tio

n
(3

3)

Ti
gh

t D
ea

dl
in

es
 (3

3)

Un
ce

rta
in

ty
 (3

3)

M
ixt

ur
e

(1
00

)

CS
C

(2
1)

Fl
ex

ib
le

 S
ch

ed
. (

22
)

Di
st

rib
ut

ed
 M

DP
 (1

2)

6977

56

80

98

AV
ER
AG

E

Figure 3: Experimental Results: Average Normalized Scores for Systems and Baseline Over Different Groups of Scenarios.

Both these assumption lose a lot of information because
they attempt to approximate q0(T), the actual reward func-
tion, and make sacrifices to do so. CSC never attempts to
approximate q0(T). Instead, it attempts to discover features
of q0(T) such as the likelihood it is zero. On can sacrifice
less for a more restricted evaluation function.

Second, it appears that the information ηt
i propagated in

the other approaches do not trigger policy modifications very
often. It takes leaving the unrolled state space or a feasible
set of start windows to trigger a policy modification. CSC
on the other hand, updates metrics on every event from ev-
ery agent leading to triggers for many policy modification
investigations.

Third, the policy modification spaces X̂t
i for the MDP-

based and STN-based approaches are relatively rich, i.e., all
policies supported by the unrolled state space for the MDP
or start window shifts and joint moves in the STN. CSC pol-
icy modification spaces are very small: remove a method,
add a method, switch to a sibling method. It isn’t that we
didn’t want to make more complex moves, but getting the in-
formation to evaluate these moves properly is quite difficult.
We believe that if you are in an area where you can’t see very
well, then you don’t walk around there, because you might
fall in a hole. The nonlinearity in the reward functions due
to conjunctions, enables, disables, etc. assures us that these
holes do exist.

The key design choices for a solution concept are the pol-
icy modification space Π̂t

i and the information ηt
i since the

evaluation function V̂ (·, ηt
i) and circumstance set Z(ηt

i) de-
pend on the latter. We believe that one should choose policy
modification spaces for which your information is likely to
match the true evaluation function. Formally, choose Π̂t

i ⊂
Πt

i to maximize the probability that V̂ (π1, η
t
i) > V̂ (π2, η

t
i)

implies V (π1, η
∗) > V (π2, η

∗) over π1, π2 ∈ Π̂t
i. This idea

of predictability seems to be a vital principle in these chal-
lenging domains. By inserting new methods at a lower pri-
ority, the Random Insertion baseline is restricted to a space
that is less likely to damage the joint policy from the ini-
tial schedule. To deal with the restrictions that predictability
induces, we advocate using information to create multiple
evaluation functions that allow for multiple predictable pol-
icy modification spaces.

There seem to be lessons to be learned in how to con-
struct this information: (1) global view: the MDP and STN
approaches both leveraged the subjective view of agents and
key parts of their evaluation functions. CSC used metrics
that traveled across multiple subjective views giving a more
global picture. (2) accuracy over approximation: informa-
tion is typically a projection of either the true value func-
tion, joint policy or joint state given some assumption, e.g.,
greedy construction of frontier value, expected outcomes,
evaluating with probability of getting positive quality. It
seems to be better to get an accurate view of a smaller pic-
ture than an approximate view of the big picture, especially
in domains with nonlinearity. (3) timely data: one must be
able to act within the pace of the dynamics and uncertainty
resolution of the environment. Random insertion had two
key positive characteristics: it acted predictably and it acted
often. Thus, to construct good policies, having timely infor-
mation for making decisions is vital.

Clearly, CSC is not a complete solution. The MDP team
contributed scenarios where MDPs can be fully unrolled to
find the optimal solution. Their system performed well on
these problems because they were relatively small, and the
embedded lotteries were confined to a single agent. There-
fore, they bypassed the bounded rationality and communi-
cation limitations that arise in general problems. However,
they did identify reward functions for which current CSC
criticality metrics cannot discriminate as well.

We are not claiming that CSC metrics are good univer-
sally, even though they performed extremely well in these
problems. We described the system and proposed a frame-
work to help develop a theory of why it’s difficult to do well
in these important domains and discover how we may build
good solutions to the general problem. While there are many
questions to be asked and answered, we believe the signif-
icance of the effort and the resulting empirical evidence in-
dicates that CSC contains important properties of good so-
lutions. The key ideas from this endeavor might be that pre-
dictability and criticality metrics are more important than the
policy representation that is used. The MDP and STN ap-
proaches might be improved significantly if the information
used to construct their evaluation functions were global, ac-
curate, timely metrics and the space of policy changes were
circumscribed to be more predictable.

220

Related Work
Earlier approaches to TAEMS problems include Generalized
Partial Global Planning (GPGP) (Lesser et al. 2004) and
Design-To-Criteria (DTC) (Wagner and Lesser 2000). These
approaches used a notion of commitments whereby an agent
promises to achieve quality on certain nodes by specified
times. Similar to the MDP-base approach, agents maintain
local policies to achieve their commitments and re-negotiate
commitments when they cannot keep them or when the op-
portunity arises to achieve better quality.

Alternate scheduling models that address uncertainty are
Simple Temporal Problems with Uncertainty (STPU) (Vi-
dal and Fargier 1999) and Probabilistic Simple Temporal
Problems (PSTP) (Tsamardinos 2002). STPUs model un-
certain durations using lower and upper bounds. A polyno-
mial algorithm can compute activity start times that satisfy
all constraints as execution unfolds. If the constraints can-
not be satisfied, STPUs provide no measure of the extent to
which the constraints cannot be solved. PSTPs extend ST-
PUs by using probability distributions to quantify duration
uncertainty. PSTPs cannot be solved in polynomial time, so
are not useful for constructing timely metrics.

A Distributed Constraint Optimization Problem (DCOP)
based solution to CTAEMS problems is addressed in (Sul-
tanik, Modi, and Regli 2007). Uncertainty modeling in
DCOPs leads to state space explosion, making it infeasible
to find solutions with current algorithms. Constraint Pro-
gramming has been used to find upper bounds for optimal
solutions, by averaging the optimal solutions in CTAEMS
problems where uncertainty is eliminated (van Hoeve et al.
2007). These bounds assume prescient knowledge of uncer-
tain outcomes. The timeliness of full centralization, partial
centralization and decentralization schemes for multi-agent
systems in dynamic domains and solving problems with
graphical reward functions was investigated in (Harbers,
Maheswaran, and Szekely 2007). Centralization is shown to
be a poor strategy under bounded rationality and communi-
cation. Partial centralization that takes advantage of reward
structure can make information sharing more timely.

Conclusion and Future Work
Real-time multi-agent planning and scheduling involving
uncertainty, dynamism and a nonlinear reward function are
extremely challenging. Extensions of traditional techniques
such as MDPs and STNs do not immediately yield good so-
lutions. New ideas are needed in this important and emerg-
ing problem area. We are currently in the process of ex-
tending our approach to deal with location reasoning as well
as resources. These issues only exacerbate an already dif-
ficult problem. Through building the CSC system, exten-
sive and independent testing, and developing a formalism to
understand these problems, we submit that the ideas of pre-
dictability and global, accurate, timely metrics are a good
starting point 5.

5The work presented here is funded by the DARPA COOR-
DINATORS Program under contract FA8750-05-C-0032. The
U.S.Government is authorized to reproduce and distribute reports
for Governmental purposes notwithstanding any copyright annota-

References
Boddy, M.; Horling, B.; Phelps, J.; Goldman, R. P.; Vin-
cent, R.; Long, A. C.; Kohout, B.; and Maheswaran, R.
2007. CTAEMS language specification: Version 2.04.
Decker, K., and Garvey, A. 2007. Darpa coordinators sce-
nario generation cookbook: Version 2.7.
Harbers, T.; Maheswaran, R. T.; and Szekely, P. 2007.
Centralized, distributed or something else? Making timely
decisions in multi-agent systems. In Proceedings of the
Twenty-Second AAAI Conference on Artificial Intelligence,
738–743.
Lesser, V.; Decker, K.; Wagner, T.; Carver, N.; Garvey, A.;
Horling, B.; Neiman, D.; Podorozhny, R.; Prasad, M. N.;
Raja, A.; Vincent, R.; Xuan, P.; and Zhang, X. Q. 2004.
Evolution of the GPGP/TAEMS domain-independent coor-
dination framework. Autonomous Agents and Multi-Agent
Systems 9(1-2):87–143.
Musliner, D. J.; Durfee, E. H.; Wu, J.; Dolgov, D. A.; Gold-
man, R. P.; and Boddy, M. S. 2006. Coordinated plan
management using multiagent MDPs. In Proceedings of
the 2006 AAAI Spring Symposium on Distributed Plan and
Schedule Management.
Smith, S.; Gallagher, A. T.; Zimmerman, T. L.; Barbulescu,
L.; and Rubinstein, Z. 2007. Distributed management of
flexible times schedules. In Proceedings of the Sixth In-
ternational Joint Conference on Autonomous Agents and
Multi Agent Systems (AAMAS 2007).
Sultanik, E.; Modi, P. J.; and Regli, W. C. 2007. On mod-
eling multiagent task scheduling as a distributed constraint
optimization problem. In Proceedings of the 20th Inter-
national Joint Conference on Artificial Intelligence, 1531–
1536.
Tsamardinos, I. 2002. A probabilistic approach to robust
execution of temporal plans with uncertainty. In Proceed-
ings of the Second Hellenic Conference on Artificial Intel-
ligence, 97–108.
van Hoeve, W. J.; Gomes, C. P.; Selman, B.; and Lombardi,
M. 2007. Optimal multi-agent scheduling with constraint
programming. In Proceedings of the Nineteenth Confer-
ence on Innovative Applications of Artificial Intelligence.
Vidal, T., and Fargier, H. 1999. Handling contingency
in temporal constraint networks: From consistency to con-
trollabilities. Journal of Experimental and Theoretical Ar-
tificial Intelligence 11:23–45.
Wagner, T., and Lesser, V. R. 2000. Design-to-criteria
scheduling: Real-time agent control. In Agents Workshop
on Infrastructure for Multi-Agent Systems.
Witwicki, S., and Durfee, E. 2007. Commitment-driven
distributed joint policy search. In Proceedings of the Sixth
International Joint Conference on Autonomous Agents and
Multi Agent Systems (AAMAS 2007).

tion thereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed or
implied, of any of the above organizations or any person connected
with them.

221

