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Abstract

Creating decision support systems to help people coordinate
in the real world is difficult because it requires simultane-
ously addressing planning, scheduling, uncertainty and distri-
bution. Generic AI approaches produce inadequate solutions
because they cannot leverage the structure of domains and the
intuition that end-users have for solving particular problem
instances. We present a general approach where end-users
can encode their intuition as guidance enabling the system to
decompose large distributed problems into simpler problems
that can be solved by traditional centralized AI techniques.
Evaluations in field exercises with real users show that teams
assisted by our multi-agent decision-support system outper-
form teams coordinating using radios.

Introduction
Teams of people need to coordinate in real-time in many
dynamic and uncertain domains. Examples include disaster
rescue, hospital triage, and military operations. It is possible
to develop a plan a priori for these domains, but many parts
must be left unspecified because people won’t know exactly
what needs to be done until they are executing the plan in
the field. Additionally, requirements and tasks can evolve
during execution.

Our work addresses a fundamental multi-agent systems
endeavor of creating decision support systems that help hu-
mans perform better in real-time dynamic and uncertain do-
mains. The technical challenges to compute good solu-
tions for such domains have been well documented (Mur-
phy 2004; Groen et al. 2007; Boutilier 1999). There are two
main contributions in this paper: (1) we present a generic
methodology for human guidance for planning and schedul-
ing activities, and (2) we discuss an extensive investigation
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as to its usefulness in a thorough field exercise conducted by
a third party.

In practice, it is possible to address specific domains with
custom algorithms that use powerful heuristics to leverage
the structures unique to that domain. These solutions are
expensive to create as even these domains involve planning,
uncertainty and distribution. The goal remains to develop
generic approaches that produce good solutions that help hu-
man teams in many domains.

We introduce a new approach, STaC, based on defining
collections of Subteams each with Tasks to perform and
Constraints on how they should be performed. The premise
that people have good intuitions about how to solve prob-
lems in each domain and this approach both matches this
intuition and can be matched to generic models of task allo-
cation problems. The idea is to enable users to encode this
intuition as guidance for the system and to use this guidance
to vastly simplify the problems that the system needs to ad-
dress.

The key to STaC is using the model and guidance to pro-
duce sufficiently smaller task structures that can be central-
ized so that a single agent can determine who does what,
when and where with respect to these significantly simpler
task structures. This mitigates the distribution challenge
and enables using auxiliary solvers based on established AI
techniques which produce good solutions at a smaller scale.
These smaller task structures are solved independently as-
suming that the human guidance has addressed any signif-
icant dependencies. While this may not be the case in all
domains, in many scenarios including ours, humans are far
better at identifying effective structural decompositions than
automated techniques.

STaC addresses tracking the dynamism in these task
structures, the transitioning of agents assignment between
these smaller task structures and the invocation of auxiliary
solvers. Given that the task structures are treated indepen-
dently and sufficiently small to be centralized, we call them
sandbox reasoners. The sandbox reasoners required in each
domain are different, so custom code must be written for
each domain. However, the benefit of the approach is that
sandbox reasoners are significantly simpler than the custom
solvers required to produce a custom solution for a domain.

The paper is organized as follows. The next sections intro-
duces the real-world domain where our approach was tested



Figure 1: Field Exercise Images from Rome, New York,
USA

followed by related work. We then describe the details of the
STaC approach and the particular sandbox reasoners used in
our example domain. We close with evaluation results, con-
clusions and directions for future work.

Field Exercises
The field exercises were based on a simulated disaster res-
cue domain. The challenge was to show that a human-team
supported by intelligent agents could outperform a human
team operating by themselves. The first two exercises were
held in the city of Rome, New York, USA, and the sec-
ond three were in Stanton Wood Park in Herndon, Virginia,
USA. Images of the field exercise in Rome are shown in
Figure 1 and a map of the sites and road network of Stanton
Wood Park are shown in Figure 2. They were organized and
evaluated by independent parties contracted by the DARPA
(Defense Advanced Research Projects Agency) Coordina-
tors program. The rules of the field exercise were created
collaboratively by the teams building coordinator agents,
the independent evaluation team, and subject matter experts.
The specific instances or scenarios that comprised the test
problems were chosen by the independent evaluation team.

Various locations were selected as sites and a feasible road
network was constructed. If the site was populated, it could
have injured people in either critical and serious condition.
Populated sites would also have gas, power and water sub-
stations which may have been damaged. In addition, any
site could have facilities such as a hospital, clinic, ware-
house, gas main station, power main station and water main
station. A team would obtain points by rescuing injured to
hospitals or operational clinics (before a deadline associated
with each injured person) and by repairing main stations and
substations. The goal of a scenario was to accumulate as
many points as possible before the scenario deadline.

The teams were composed of 8 field agents and 2 com-
mand agents. Each agent had a different set of skills. Three
specialists in gas, power and water could perform major and
minor repairs in their respective skill area. The medical spe-
cialist could load any type of injured person by themselves.
The remaining four survey specialists could have any col-
lection of skills involving minor repairs. The field agents

could move throughout the field exercise area and perform
actions. The command agents were located at a base where
they helped to coordinate the activities of the team. The Ra-
dio Team communicated only with radios. Our CSC Team
had ruggedized tablet computers on which our agents were
loaded, in addition to radios. The tablets had cell modems
and GPS.

Many outcomes were revealed during the game for which
little or no likelihood information was given a priori, i.e.,
no probability distribution functions over outcomes. Teams
did know the space of possible outcomes beforehand. A sur-
vey for damage at a main station or substation revealed the
number and type of problems chosen from a set of known
possible problems. A survey for injured at a populated site
revealed the number, types and deadlines for the injured at
that site. As the result of a survey, any team member might
be injured, forcing them to go to an operational medical fa-
cility to recover before proceeding with any other action. A
survey could also reveal that the vehicle of the agent do-
ing the survey had failed and would require a vehicle repair
before the agent could travel to any other site. While travel-
ing, agents could encounterroad blocks which could not be
passed until fixed. Travel and repair times could vary and
repairs could fail. These dynamic and uncertain events were
planned parts of the exercise. In addition, the teams had
to address uncertainties inherent in the environment, such
as noisy radios, weather, and other activities in the public
settings. Furthermore, most of these outcomes were only
observable by the agent encountering the outcome.

The independent evaluation team chose the scenario from
the space of possible exercises and informed the teams of
the details below one day prior to the test: (1) the locations
of populated sites and facilities, (2) the road network and
ranges on travel times between sites, (3) a range for the to-
tal number of injured at each site, (4) the points for rescu-
ing each type of injured, which could vary by type and site,
(5) the points for repairing each substation or main station,
which could vary by type and site, (6) potential problems af-
ter surveys for damage and corresponding repair options, (7)
ranges on repair times, (8) likelihoods of failure for every re-
pair activity, and (9) the skills of the survey specialist agents.
The deadlines (for the scenario and injured) did not allow
teams to do all possible repairs and rescues. The teams had
one day to form a high-level strategy. The only element of
uncertainty which could be modeled accurately with a prob-
ability density function was (8). When a team member com-
pleted a repair activity, they would call the evaluation team,
which would report whether the repair was successful or a
failure. The range in (3) was respected by the scenario de-
signers, i.e., the number of injured did not fall outside the
given range.

There were many rules and couplings that forced agents
to coordinate. To do surveys, gas and power substations
at the site had to be off, which required agents with those
skills. Two agents had to be at the same location simulta-
neously to load a critically injured person or repair a road
block. Repair options could involve multiple tasks and re-
quire two agents with certain skills to act in synchrony or
in a particular sequence. Some repair options required kits



Figure 2: Stanton Woods Park, Herndon, Virginia, USA

which guaranteed their success, but kits were available only
at warehouses. Agents could transport at most one entity,
i.e, either a repair kit or a single casualty. A substation was
considered repaired only if the corresponding main station
was also repaired. A clinic was not operational until all sub-
stations at the site and all corresponding main stations were
repaired. These are examples of rules that, along with the
dynamism and uncertainty in outcomes mentioned earlier,
created challenging real-time real-world distributed coordi-
nation problems.

The goal was to see if humans operating with radios and
a multi-agent decision-support system could outperform hu-
mans operating with only radios. While some aspects of a
real-world disaster scenario were abstracted, we believe the
field exercises closely approximated the challenges of help-
ing a human team solve difficult real-world problems.

Related Work
The STaC framework was developed during the DARPA
Coordinators program. In the first two years, DARPA ran
competitive evaluations on simulated scenarios, and CSC
(Criticality-Sensitive Coordination), the underlying system
behind the STaC framework, won such evaluations by con-
siderable margins against two competing approaches based
on Markov-Decision-Processes (MDPs) (Musliner et al.
2006) and Simple Temporal Networks (STNs) (Smith et al.
2007).

The MDP-based (Musliner et al. 2006) approach ad-
dressed the infeasibility of reasoning over the joint state
space by setting the circumstance set to a subset of local
state space that is reachable from the current local state,
unrolling the state space by doing a greedy estimation of
boundary values. It biased its local reward function on the
commitments made by the agents during execution. How-
ever, such approximations lose critical information, explor-
ing state spaces that are far from good distributed solutions.

The STN framework (Smith et al. 2007) addressed tem-
poral uncertainty by using a time interval (instead of a point)

as the circumstance that denoted feasible start times for a
method to be executed. The system used constraint prop-
agation to update the start intervals of the agents’ activities
during execution. A policy modification phase was triggered
if execution was forced outside the given set of intervals.
One of the problems of this approach is that agents tried
to maintain consistency and optimize their local schedules,
losing information that was needed to timely trigger policy
modifications for their schedules.

We encoded scenarios of the field exercise as planning
problems using PDDL (Planning Domain Definition Lan-
guage) (Fox and Long 2006). The motivation was to identify
to the extent to which current automated planning technol-
ogy can address complex distributed, resource-driven, and
uncertain domains. Unfortunately, this proved to be ex-
tremely difficult for state-of-the-art planning systems. From
the set of planning systems tried, only LPG-TD (Gerevini
et al. 2005), and SGPLAN (Chen, Wah, and Hsu 2006)
solved a few simplified problems, after uncertainty, dy-
namism, non-determinism, resource-metrics, partial observ-
ability and deadlines were removed. Planners were unable
to scale to more than 5 sites. LPG-TD produced solutions
more efficiently but less optimally.

In general, mixed-initiative approaches where humans
and software collaborate can often produce better solutions
for complex problems. Mixed-initiative planning systems
have been developed where users and software interact to
construct plans. Users manipulate plan activities by remov-
ing or adding them during execution while minimizing the
changes from a reference schedule (Ai-Chang et al. 2004;
Hayes, Larson, and Ravinder 2005; Myers et al. 2003).
Most of these systems are centralized, so humans and sys-
tems are fully aware of the entire plan, and of the conse-
quences of updating it. In our scenario, agents (including
humans) have subjective views of the world, and any deci-
sion may trigger many unknown global effects.

Multi-agent systems for disaster domains have been stud-
ied in the context of adjustable autonomy. The idea is to
improve limited human situational awareness that reduces
human effectiveness in directing agent teams by provid-
ing the flexibility to allow for multiple strategies to be ap-
plied. A software prototype, DEFACTO, was presented and
tested on a simulated environment under some simplifica-
tions (e.g., no bandwidth limitations, reliable communica-
tions, omnipresence) (Schurr et al. 2005).

The STaC Approach
Our goal is to create a general framework for incorporating
human strategic guidance. We introduce the formalism for
STaC guidance and give an example from our domain. We
then describe how this guidance is executed with the use of
Total Capability Requirement (TCR) sets. We provide an
example of a TCR set and discuss how dynamic updates en-
able execution of the guidance.

STaC Guidance
We make the following assumptions about a general multi-
agent coordination problem. There are a set of agents N and



a set of actions A. Agents have capabilities from a set of
capabilities: Θn ∈ Θ. Each action is mapped to a capability,
i.e., γ : A → Θ. An agent can perform any action for which
it has the capability.

The problem is composed of a collection of tasks T . Each
task t ∈ T is associated with a set of potential actions in-
volved in completing it: At ⊂ A. It is not necessary that
{At} be disjoint. Furthermore, for the purposes of guidance,
it is not relevant how these tasks relate to the actual reward
function. It is only important that the notion of tasks exists.

We can define a generic representation for human strate-
gic guidance as follows. Guidance is an ordered set of guid-
ance groups: G = {Gi}. Each guidance group Gi is asso-
ciated with a subteam of agents Si ⊂ N and an ordered set
of guidance elements Ei. Each guidance element ej

i ∈ Ei,
where j denotes the index of the guidance element in the
set, is composed of a task tji ∈ Ti, a set of constraints Cj

i ,
and a temporal bound bj

i . The constraints Cj
i are a collec-

tion of capability-number pairs {(θ, nθ)} where θ ∈ Θ and
nθ ∈ Z∗ is a non-negative integer. The pair (θ, nθ) indi-
cates that each agent in the subteam can use the capability θ
at most nθ times for the task in the guidance element. The
temporal bound bj

i ∈ {0} ∪ {<,>} × R+ is another con-
straint that can indicate that the guidance element is only
valid if the time remaining is greater or less than some num-
ber (bj

i = 0 indicates no temporal constraint). Thus,

G = {Gi} = {(Si, Ei)} = {(Si, {(tji , C
j
i , bj

i )})}
= {(Si, {(tji , {(θ

j,k
i , nθj,k

i
)}, bj

i )})}.

We refer to this as the STaC (Subteam-Task-Constraints) for-
malism for strategic guidance. One can now define a strat-
egy composed of a sequence of subteams, each responsible
for a collection of tasks, each of which are to be performed
under some constraints. We note that since agents will tra-
verse the elements of this guidance in order, STaCs are ac-
tually queues.

Field Exercise Example We first defined a set of capa-
bilities that were relevant to the field exercise. We also as-
sociated each capability with several capability classes for
more compact expression of constraints. Below are the set
of capabilities and associated classes for actions involving
gas and injured, respectively. Capabilities and classes for
power and water are analogous to those for gas.

gas_major: gas, gas_main

gas_minor: gas, gas_main

survey_gas_main: gas, gas_main, survey

survey_gas_sub: gas, survey

turn_off_gas_main: gas, gas_main, turnoffs

turn_off_gas_sub: gas, turnoffs

pickup_gas_kit: gas, pickup

dropoff_gas_kit: gas, dropoff

load_critical: critical, injured

assist_load_critical: critical, injured

survey_injured: injured, survey

generic: injured

Consider the STaC guidance fragment below. We see
an ordered set of guidance groups, each with a subteam of
agents and an ordered set of guidance elements. The only()
operator sets the capability-number pairs for all capabili-
ties not in the argument to zero. The no() operator sets the
capability-number pairs for all capabilities in the argument
to zero. The intent of this plan fragment is for the survey
specialist to turn off services at the substations at Site 4 and
Site 3, enabling other agents to work there. The gas and sur-
vey specialists go to the warehouse at Site 6, pick up gas
kits, then restore the gas main station and gas substation at
Site 1. The medical specialist and survey specialist are re-
sponsible for making sure they each rescue two critically in-
jured people before rescuing all others. The gas and power
specialist are then responsible for doing everything except
water-related actions at Site 4, but if less than 10 minutes
are left in the scenario, they switch to rescuing injured.

survey_specialist_1:

( task_site_04, [ only( turnoffs ) ], 0);

( task_site_03, [ only( turnoffs ) ], 0);

gas_specialist, survey_specialist_1:

( task_site_06, [ only( pickup_gas_kit ) ], 0),

( task_site_01, [ only( gas ) ], 0);

survey_specialist_1, medical_specialist:

( task_site_04, [ (load_critical, 2) ],0),

( task_site_04, [ only( injured ) ],0);

gas_specialist, power_specialist:

( task_site_03, [ no(water) ], >10),

( task_site_03, [ only( injured ) ], 0);

Here, the tasks chosen for each guidance element are all
those associated with a particular site. This is not a require-
ment in the guidance formalism. For example, the second
guidance group could have also been:

gas_specialist, survey_specialist_1:

( task_site_06, [ only( pickup_gas_kit ) ], 0),

( task_gas_main, [ ], 0),

( task_gas_substation_site_01, [ ], 0);

This would have specified a fixed ordering between re-
pairing the main station and the substation which did not
exist in the original. The expression of guidance is not nec-
essarily unique and can be tailored to the intuition and struc-
ture that the designer finds most appropriate.

STaC Execution
Given STaC guidance, the agents have no semantic aware-
ness of what it signifies beyond identifying tasks and limit-
ing actions. This is due to the generality of the formalism.
Furthermore, the guidance does not specify which actions to
perform, which agents should perform them, the timing of
these actions or how to react to any dynamism and uncer-
tainty during execution. We address those challenges here.

Total Capability Requirement (TCR) Sets Given the
STaC formalism, one of the key decisions that every agent
must make is when to transition from one task to another.
A simple solution is to wait until the current guidance ele-
ment is completed and then move to the next guidance el-



ement (which may involve going to the next relevant guid-
ance group). This approach would lead to an agent idling if
unable to contribute to the current guidance element.

Consider the example discussed earlier. If the gas spe-
cialist arrives at Site 1 first and discovers that all the repair
options for the gas main station and gas substation can be
completed by the gas specialist alone, or that there exists re-
pair options for both the main station and the substation that
can be performed by the gas specialist alone and are guaran-
teed to succeed, the gas capabilities of the survey specialist
are not needed. It may make sense for the survey specialist
to skip Site 1 and head to Site 4 to help the medical special-
ist rescue injured, even though the repairs at Site 1 have not
been completed. It is important to determine dynamically
whether the capabilities of each agent in the subteam are
needed for the task being executed in the guidance element.

Total Capability Requirement (TCR) sets are a mecha-
nism to achieve this. For every task t ∈ T , there is an asso-
ciated TCR set Rt = {Rt

i}, which is a set of requirements.
Each requirement Rt

i = (nt
i, Q

t
i) is a tuple of a requirement

number nt
i and requirement type Qt

i. A requirement type
Qt

i = {qt
i,j} is a collection of requirement elements, where

each requirement element is a tuple qt
i,j = (ct

i,j , l
t
i,j , n

t
i,j)

where ct
i,j is a capability, lti,j is a location, and nt

i,j is an
element number. Thus, Rt = {Rt

i} = {(nt
i, Q

t
i)} =

{(nt
i, {qt

i,j})} = {(nt
i, {(ct

i,j , l
t
i,j , n

t
i,j)})}.

2:[(gas_minor, site_01, 1)]

1:[(gas_minor, site_01, 2)]

4:[(assist_load_critical, site_01, 2)]

1:[(power_minor, site_01, 1) (power_minor, site_03, 1)]

Consider the example above which is a possible TCR set
for task site 01. This indicates that there are two in-
stances of the need for a single agent with gas minor capa-
bility, one instance of a need for two agents with gas minor
capability, four instances of a need for two agents capable
of loading a critically injured person and one instance of a
need for having an agent with power minor capability at Site
1 at the same time that there is an agent with power minor
capability at Site 3. The first requirement could occur be-
cause the gas main station has two problems, each of which
could be solved with a gas minor repair. The second require-
ment could occur because the gas substation has one prob-
lem that requires two agents with gas minor skills to perform
a synchronized repair. The third requirement could be due
to the discovery of four critically injured people. The fourth
requirement represents the need for remote synchronization:
the need for two agents at two different locations at the same
time. In the field exercise, some power substations required
an agent at the substation and another at the main station
simultaneously to turn the power substation on.

If the guidance element was:
( task site 01, [ only( gas ) ], 0 )
then only the first two requirements involving the gas minor
capability would be considered when deciding whether an
agent should remain committed or released from the task.
The TCR sets are dynamically updated such that once a
skill is no longer needed, as repairs are completed or injured

Figure 3: Model Template for Power Substation

are loaded, the appropriate requirements are decremented or
deleted.
Calculating TCR Sets Our calculation of TCR sets can
best be described in the context of our modeling specifi-
cation for the field exercise scenarios. We used a hier-
archical task network structure that was an extension of
CTAEMS (Boddy et al. 2007), which is itself a variant of
TAEMS (Lesser et al. 2004) developed for the DARPA Co-
ordinators Phase 2 evaluation. The essential property was
that tasks (including the root task which represented the
overall reward function) were composed of subtasks itera-
tively until reaching a primitive task which was composed of
actions. Tasks could also have non-hereditary relationships
such as enablement and disablement. Every task was also
associated with state aggregation functions that determined
how the state of its subtasks (or child actions) affected the
state of the task. An example of a template used to model
power substations is shown in Figure 3. This also illustrates
the issue of dynamism as the task node for Problems must
remain without children until the power substation is sur-
veyed for damage. Then, the appropriate problems and re-
pair options are added dynamically to the model. It would be
cumbersome and practically infeasible to express every pos-
sible combination of problems and repair options that could
occur. The issues are similar when it comes to modeling the
discovery of injured people.

The TCR set for a given task is calculated by applying a
TCR aggregation function, chosen based on the state aggre-
gation function associated with the task, to the TCR sets of
its subtasks and enabling tasks. For example, a sum state
aggregation function would correspond to a union TCR ag-
gregation function, and a sync state aggregation function
would correspond to a cross-product TCR aggregation func-
tion. Thus, TCR sets would start from actions, which are
each associated capability and flow forward and up through
enablement and ancestral links to form TCR sets for every
task. These sets can be dynamically updated as tasks change
states.

For example, once a task is completed, the TCR set can
be set to null indicating that it does not require any more ca-
pabilities. This makes the TCR sets vanish as tasks are com-
pleted, allowing agents to be released as soon as possible. In
order to address the dynamic nature of the model, tasks that
might be expanded during execution must be marked with
TCR sets that indicate reasonable upper bounds on needed
capabilities. These sets are then changed to the actual TCR



sets once outcomes has been observed in the environment.
Having an HTN-based model helps to construct and man-
age TCR sets, but is not necessary. As long as there exists a
non-cyclic mapping that describes the relationships of tasks
to other tasks and actions, a dynamic methodology to assign
TCR sets to tasks can be constructed.

Partial Centralization
STaC execution can be implemented such that a single agent
is responsible for choosing all actions involved with a sin-
gle task-constraint tuple of a guidance element. We create
a mapping, ω : T → N , where every task has an owner.
The task owner contacts agents who are responsible for re-
lated tasks and actions to subscribe to relevant state updates.
When an agent reaches a particular task-constraint tuple, it
cedes autonomy to the owner of that task until the task owner
releases the agent from that commitment. The owner agent
keeps track of the set of capabilities of all agents bound to
that task as well as the TCR set of that tasks and repeat-
edly solves an optimization problem to find the best set of
agents to keep for the current TCR set. If the solution is
a set that is a strict subset of the bound agents, it can re-
lease the other agents. Our optimization problem minimized
a weighted combination of the number of agents kept and
their capabilities. The key insight here is that partial central-
ization of autonomy always occurs implicitly and thus, it is
beneficial to align the metric for partial centralization with
the properties of the domain where it matters.

Sandbox Reasoning
Once the task owner has chosen which set of agents to keep,
it must then also decide, subject to the constraints in the
guidance, which actions to perform and which agents should
perform to accomplish the task. We call this process sand-
box reasoning because the task owner’s deliberation over
what to do for a single task-constraint tuple is isolated from
all actions and tasks that are not related to the task at hand.
The task owner does not need to consider impact on the fu-
ture or on concurrently executing tasks. It is given a col-
lection of agents and autonomy to use them however it sees
fit to accomplish the task as well as possible. The conse-
quences of the interactions have, in principle, been consid-
ered and addressed by human strategic guidance.

In creating the agent model for a field exercise scenario,
we instantiated structure (sometimes, dynamically during
execution) from a small set of templates. Examples include
power substation restoration (as shown in Figure 3) or criti-
cally injured rescue. We believe that the notion of using tem-
plates for generation and more significantly for guidance is
a general principle that is applicable to many domains. This
belief was also reflected in the DARPA Coordinators pro-
gram and its Phase 2 evaluation. The main templates needed
for guidance were a repair and rescue manager.

The repair manager would take as input (1) a collection
of facilities that had been damaged, (2) a set of problems
for each facility, (3) a set of repair options for each prob-
lem, (4) set of agents with (5) associated capabilities and
(6) times that they would be available to be scheduled for

Figure 4: Herndon Evaluation

activities, The output would be a policy that yielded a col-
lection of agent-action tuples given a simplified version of
the state. While this may seem field-exercise specific, this
reasoner had no semantic knowledge of the field exercise.
We obtained policies by using a sampling technique where
we generated policies over multiple sample traces of a simu-
lation with randomized assignments of agents to repairs. We
then used a heuristic to choose the policy that minimized idle
time. The details are omitted due to space.

The key idea is that we could create a sandbox reasoner
that can solve a generic context-independent problem which
could be applied to many tasks in the guidance.

The rescue manager would similarly take as input a list of
agents and a set of injured with associated types and dead-
lines, and output a set of agent-action pairs when agents be-
came idle. We used a simple reactive planner with a hand-
ful of simple heuristics to determine when to wait for an
agent to help load a critically injured (which requires two
agents to be present simultaneously) and when to take a se-
rious (which could be done by one agent). This also can be
formulated as a generic problem consisting of a set of tasks
with associated deadlines and durations. The tasks can be
either a singleton action or require synchronized actions by
two different agents. The rules were variations of: “If an
agent is on the way and it will arrive later than the duration
of the singleton action, perform the singleton action and re-
turn to the site, otherwise, wait for the agent.”

For either manager, one could, in theory, use an MDP or
STN-based approach if it yielded a solution within the limits
of bounded rationality in the domain at hand. The general
philosophy of the STaC approach to guidance, its execution
and sandbox reasoning is to create a generic framework for
human strategic input to decompose a very difficult problem
into smaller problems that can be solved in isolation with au-
tomated tools created to solve large classes of task structures
that appear in the guidance. Our system was completely un-
aware of any semantics of the field exercise, and a similar
approach could be used in a completely different domain.

Evaluation
Figure 4 shows the scores for the three scenarios run in
Herndon. For each scenario, the top, lighter bar shows the
radio-team score, and the bottom, darker bar shows the score
of the team using the CSC system described in this paper.
The middle bar shows the results of a simulation of the



scenario using a baseline version of the system with sim-
ple sandbox reasoners. In order to calibrate the simulation
scores, we also ran a simulation of the complete version of
the system using the same dice rolls used in the physical sce-
nario. The simulation results for the full system were within
200 points of the results obtained in the field, which sug-
gests that if the baseline system had been used in the field,
the results would also be close to those shown in the figure.

The baseline repair manager uses a random strategy
where agents randomly select a repair task from the set of
tasks that the agent is eligible to perform according to its ca-
pabilities. The baseline rescue manager uses a greedy strat-
egy where agents select the injured with the earliest deadline
that lives long enough to arrive to the medical facility before
the deadline and agents don’t wait for a partner that enables
loading a critically injured that they would not be eligible to
load otherwise.

The results show that more sophisticated sandbox rea-
soners always resulted in better scores: 5.8%, 8.4% and
24.8% improvements. In scenarios 1 and 2, while the dif-
ferences were small, the baseline system outperformed the
radio team. In scenario 3, the difference is more significant.
This scenario emphasized injured, and the greedy strategy
used in the simple version of the system delayed rescuing
the critically injured. Agents rescue seriously injured with
later deadlines instead of waiting for a partner to rescue a
more valuable critically injured with an earlier deadline.

Figure 5 shows simulation results that compare the effects
of alternative strategies. We organized these strategies along
two dimensions: the number of clinics that would be made
operational (0, 1 and 2), and the number of independent sub-
teams (1, 2 and 4). In the strategies with 1 clinic, the team
repaired the clinic that was considered most useful (closest
to the most valuable injured). In the scenarios with 2 and
4 teams, we specified the teams so that they could perform
repairs independently. In the strategies with 0 clinics, the
teams performed no repairs and rescued injured to a medical
facility that was always operational and required no repairs.
In the strategies with 1 and 2 clinics, the agents first repair
the main stations, then the clinics and then visit the remain-
ing sites to rescue all injured and perform all repairs accord-
ing to the following algorithm. First, the sites are ordered
according to the total expected number of points achievable
at the site. The teams take turns picking the next most valu-
able site from the ordered list until the list is exhausted. The
idea is to complete the most valuable sites first so that when
time runs out the most valuable sites have been completed.

Figure 5 shows that in the Herndon 1 and 2 scenarios, the
strategies that repair 1 or 2 clinics are competitive with the
radio team, outscoring them in 11 out of the 12 strategies
involved. However, in all three scenarios, the CSC strat-
egy used in the field was significantly better than all the
alternative strategies. The difference is due mainly to the
use of constraints. In the alternative strategies, the agents
performed all tasks at a site, whereas the strategies used in
the field used constraints to prevent agents from perform-
ing tasks that we deemed not worthwhile. In addition, we
used constraints on the number of injured rescued to prevent
agents from rescuing all injured at a site before moving to

the next site. Instead, we used longer itineraries that visited
sites multiple times in a round-robin, so agents would rescue
the most urgent injured first.

Conclusions and Future Work
Our 18-month experience working on a system to compete
against radio teams in the field exercises provided evidence
for the benefits of our approach. Our starting point was
our generic CSC system developed during the previous two
years to solve generic, synthetically generated problem in-
stances specified in CTAEMS. Even though the synthetically
generated problem instances were generated according to
templates that combined “typical” coordination situations,
the resulting problems were not understandable by humans.
In contrast, the field exercise problems are more natural, and
appeal to our lifetime of experience coordinating every day
activities. Intuitions about space, distance, time, importance
and risk all came into play, enabling teams of humans to
devise a sophisticated strategy with a few hours of brain-
storming. It became obvious early on that the generic CSC
system would not be able to produce solutions comparable
to the desired sophisticated, coordinated behavior of human-
produced strategies.

Our existing system had performed extremely well in
Phase 2 by using our Predictability and Criticality Metrics
(PCM) approach. In the PCM approach, the policy modifi-
cations that agents consider are limited to those that can be
evaluated accurately through criticality metrics that capture
global information. These policy modifications were simple
and thus the reasoners that implemented them were simple
too.

For the field exercises, we extended our approach so that
policy modifications would be constrained using the guid-
ance provided by the users. This guidance was in the form
of a sequence of sites to visit. The system was left to make
decisions that we believed it could evaluate accurately (e.g.,
how to perform repairs or rescue injured at a single site). The
system relied on the TCR-set criticality metric to determine
how to move agents along the list of guidance elements. The
approach worked well. Our users outperformed the radio
team because they were able to communicate their strategy
to their agents, and the system optimized the execution of
the strategy, adapting it to the dynamics of the environment.

The field exercises in Rome used a simpler language for
specifying guidance. It had a single guidance group con-
sisting of the entire set of agents. Also, it did not support
constraints to control the capabilities within a guidance el-
ement. In that evaluation, our system remained competitive
with the radio team, but lost in two out of the three scenarios.

The final language for guidance was inspired by our ob-
servations of the radio-team strategies, extensive discussions
with subject matter experts and extensive numbers of simu-
lations. We noted that while the human team could not ex-
ecute a strategy as well as we could, the space of strategies
that they were able to engage were far more sophisticated
than ours. This led to the creation of a the more sophisti-
cated formalism for capturing human strategic guidance.

We have taken the first step towards generic coordination
technology that end-users can tailor to specific problem in-



Figure 5: Baselines

stances. The approach was validated in one domain thanks
to the extensive and expensive evaluations carried out by the
DARPA Coordinators program. In the future, we hope to
be able to apply this approach to other application domains.
One key area that needs to be investigated is extensions to al-
low human users to make guidance adjustments during ex-
ecution. There are situations where a series of outcomes
either invalidates an assumption when creating the a priori
guidance or creates an opportunity to improve on that guid-
ance. Addressing this requires the ability for human users
to quickly and easily understand and modify the guidance
while it is being executed. Even more advanced steps would
be evaluating and ultimately generating appropriate online
guidance modifications.
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