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Abstract. We address multi-agent planning problems in dynamic environments
motivated by assisting human teams in disaster emergency response. It is chal-
lenging because most goals are revealed during execution, where uncertainty in
the duration and outcome of actions plays a significant role, and where unex-
pected events can cause large disruptions to existing plans. The key to our ap-
proach is giving human planners a rich strategy language to constrain the assign-
ment of agents to goals and allow the system to instantiate the strategy during
execution, tuning the assignment to the evolving execution state. Our approach
outperformed an extensively-trained team coordinating with radios and a tradi-
tional command-center organization, and an agent-assisted team using a different
approach.
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1 Introduction

Recent disasters in Haiti, Chile, Christchurch and Japan caution us that emergency
response is a significant practical global issue. They draw attention to the need for
technologies that assist human responders to perform more effectively. We address a
fundamental challenge in these domains: most important tasks (e.g., rescuing injured,
restoring services) are only revealed during execution, i.e., the severity, type and loca-
tions of injured people or the damage done are revealed while the rescue operation is
being performed. Humans form high-level strategies that do not fully specify actions
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and dynamically implement them with information revealed during execution. Addi-
tional complexities include managing teams with heterogeneous capabilities, tasks that
require coordination of multiple skills and resources, task failure, loss of agent capabil-
ities and uncertain durations.

There are several relevant multi-agent system approaches. However, most require
a specification of the problem that is infeasible under conditions where most tasks are
revealed during execution. Considering all evolutions (e.g., all possibilities of injured
and damage) scales the problem beyond the capabilities of current technologies. It is
prudent and often necessary to allow humans to outline a high-level strategy. This ne-
cessitates having a formalization that captures how humans describe strategies, while
maintaining sufficient richness to enable computational assistance for execution. The
challenge is devising a strategy specification language amenable to human strategic
thinking and algorithms to execute such strategies flexibly and efficiently.

Our contribution is an approach, STaC, composed of a strategy specification lan-
guage that captures human-generated high-level strategies and corresponding algorithms
that execute them in dynamic and uncertain settings. This partitions the problem into
strategy generation, designed by humans and understood by the system, and tactics, or-
chestrated by the system with information to and from responders on the ground. STaC
gives the ability to create changing subteams with task threads under constraints (e.g.,
focus on injured). The connection between a STaC strategy and the STaC execution al-
gorithm is the notion of capabilities: agents have capabilities; tasks require capabilities.
STaC dynamically updates the total capability requirements (TCRs) for the tasks in the
strategy and assigns agents to tasks during execution following the human guidance.

STaC was evaluated in three high-fidelity independently-conducted real-world field
exercises. We outperformed a traditional human approach by a significant margin in all
three exercises, where a third team using software-assisted agents did not succeed. Ad-
ditional analyses show STaC robustness with respect to strategy and automated planners
that manage goals.

2 Motivation

Fig. 1. Agent activities in the field exercises (left) and map of park and pathways (right).

We were challenged to create a multi-agent system that improved performance in
simulated disaster-rescue field exercises. Each exercise was conducted in a park. Dif-
ferent parts were designated as sites with an unknown number of injured in serious or
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critical condition as well as gas, power and water substations which may have been
damaged. Park pathways were roads that agents walked to travel between sites (see
Fig. 1). Teams earned points by rescuing injured to hospitals or operational clinics (be-
fore a deadline associated with each injured person) and restoring damaged substations.
The goal was to maximize points in 90 minutes.

The points per rescue and repair differed by site, injury type and service type. The
number of injured or type of damage at each site was unknown ahead of time. To dis-
cover this information, agents with capabilities to survey for injured or survey for dam-
age needed to visit the sites. Before performing any survey, the site first had to be
isolated to ensure safety for those conducting the surveys. Isolation, survey, repair and
rescue tasks all required different combinations of capabilities.

Each team had 8 field agents and 2 commander agents. Each field agent had different
capabilities, which included performing major or minor repairs for gas, power or water
and saving certain types of injured. Commander agents stayed at a base and helped to
coordinate activities. The baseline Radio Team operated under a traditional command
structure and communicated only with radios. Our STaC Team and a third team with
a different approach had radios and ruggedized tablet computers with cell modem and
GPS capabilities running agents.

Consider an agent who completed surveys for damage and injured at a site. They
can (1) start a low-probability repair alone, (2) wait for another agent to start a medium-
probability repair, (3) get a repair kit from the warehouse for a high-probability repair,
(4) rescue seriously injured, (5) wait for another agent to rescue critically injured, or (6)
go to another isolated site and perform surveys. The right choice depends on the avail-
ability of other agents. Making good decisions is difficult without situational awareness.

The Radio Team realized that commanders could not make detailed decisions for
agents in the field. Instead, they employed a strategy that formed subteams, defined
itineraries for subteams and restricted actions to specific tasks (e.g., isolation, power
repairs, critical injured rescue). These structural restrictions enabled commanders to
delegate detailed decision-making to agents in the field. One commander assembled
up-to-date situational awareness from multiple simultaneous field reports. The other
focused on problem solving to execute the strategy by directing agents to locations,
where agents would decide how to accomplish tasks. Consider the following exchange:

Agent 1: Found power problem at Site 2, need power specialist.
Agent 1: Found 3 seriously injured at Site 2.
Commander: Power Specialist, go to Site 2.

In the meantime, Agent 1 succeeds with a low probability power repair.
Agent 1: Power repaired at Site 2.
Commander: Agent 1 go to Site 3 and do surveys.
Commander: Power Specialist, skip Site 2 and go to Site 4.

Agent 1 and the Power Specialist are a subteam responsible only for power repairs
and surveys for injured. Agent 1 arrives at Site 2 first, surveys for power damage, re-
ports a problem, and, after looking at repair tasks, requests the Power Specialist. Agent
1 then surveys for injured and because the Power Specialist has not arrived, attempts and
completes a low-probability repair. Consequently, the Commander redirects the Power
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Specialist to Site 4. Agent 1 makes detailed field decisions such as doing the power
survey first to discover the needed capabilities and attempting the low-probability re-
pair. The Commander, who has better situational awareness, executes the high-level
strategy, i.e., assigning agents to goals. This simple scenario illustrates the management
commanders perform. The complexity increases as all 8 agents frequently and often si-
multaneously report status, and task failures, delays, agent injuries, vehicle breakdowns
and road blocks occur. The structural restrictions of the strategy let the Radio Team
partition responsibility for decisions in a manner that allowed them to perform well.

Two insights yielded avenues for improvement: (1) humans do not execute their
strategies efficiently (e.g., it may take a human commander a few minutes to gather
situational awareness, calculate the desired actions and communicate them to the team),
and (2) humans sometimes forget to task agents or communicate actions (e.g., forgetting
to tell the Power Specialist to skip Site 2) causing waste. If a system could generate
the appropriate assignments, it could calculate and communicate them in seconds and
would not forget to enact them. The cost is that the formalization that systems require
do not have the expressivity to capture the full space of strategies and adaptations that
humans can generate. Thus, we must find a scheme and associated algorithms where
loss in expressivity and flexibility is overcome by gain in efficiency of execution.

3 Approach

System

Domain Model

User Guidance

Field Reports

Agent to Task assignments:
"agent-i do task-j at location-k"

Fig. 2. The problem to be solved.

Figure 2 shows inputs and outputs of a system that addresses our problem. The do-
main model gives utilities for potential goals (e.g., restore power at Site 2) and tasks that
achieve them, agents and capabilities, geography of sites and roads, etc., before execu-
tion. Field reports, received during execution, include discovered goals (e.g., 5 critically
injured at Site 3), task success/failure, agent locations and availability, etc. User guid-
ance is information provided by a human planner to influence system behavior. The
objective is generating actions for human agents, i.e., where to go, what to do.

An “ideal” system could select assignments to maximize utility without user guid-
ance. Current planning technology does not support this. We encoded simplified ver-
sions of the field exercise scenarios in PDDL [7]. We made all goals known a priori
(i.e., gave prescience on what would be discovered), fixed travel durations, and removed
failure, deadlines on injured and all dynamic events (e.g., road blocks, agent injuries,
vehicle breakdowns). From the deterministic planners we tried, only LPG-TD [8], and
SGPLAN [6] could scale up to 5 sites under such restrictions3. This verified the need
for significant user guidance in this domain.

3 SGPLAN was the winner of suboptimal tracks in the 4th and 5th ICAPS International Planning
Competition, while LPG-TD got a second prize in the 4th competition.



Automated Adaptation of Strategic Guidance in Multiagent Coordination 5

STaC

Domain Model

User Guidance

Field Reports

Agent to Task assignments:
"agent-i do task-m at location-k"

Automated 
Planner

Agent to Task assignments:
"agent-j do task-n at location-l"

Automated 
Planner

Strategy

{ Agent to Goal Type }

Tactics

{ Agent to Goal }

Fig. 3. STaC problem reformulation.

We reformulated the problem as shown in Figure 3. The human planner gives a
strategy that specifies how agents are assigned to goal types (e.g., rescue, restore, iso-
late, survey) under various constraints (location, timing, ordering). STaC provides the
tactics, i.e., assigning agents to discovered goals by fusing the strategy with field reports
(e.g., discovered goals, agent locations, availability) during execution. Once agents are
assigned to goals, automated planners (one for each goal) handle the agent-to-task as-
signment. The decomposition allows the automated planners to independently solve
significantly smaller problems, i.e., single goals instead of the entire mission.

For this approach to work, we must solve two related problems: (1) We need a
strategy specification language that enables human planners to express agent-to-goal-
type assignments, and relevant constraints. (2) We need algorithms to efficiently execute
the strategy, i.e., make appropriate assignments of agents to discovered goals.

3.1 Problem Formulation

We do not present our full formalization of the general problem (described in Section 2)
due to space. However, we discuss a few key ideas that will aid in understanding our
approach. Before the exercise begins, there are certain goals (e.g., isolation, surveys)
that we know we can achieve if we so choose, because the associated tasks to com-
plete them exist (e.g., turning off power and gas for isolation). But, we cannot know
whether there are people to rescue at a site or whether a particular substation needs
restoration until we survey that site during execution. Thus, we introduce a concept,
goal type, to discuss goals we might discover during execution. Utilities are associated
with achieving particular goal types (rescues and restorations) at particular sites, if they
are discovered during execution. Rescuing critically injured as Site 1 may be twice as
valuable as restoring power at Site 7 which in turn may be twice as valuable as restoring
gas at Site 7.

If we discover these goals in the exercise, task hierarchies capture the set and se-
quence of actions needed to achieve them. The leaves represent actions that agents with
appropriate capabilities must perform. Each goal may have multiple task hierarchies
that could achieve the goal but failure of any task within a hierarchy means that it no
longer can achieve the goal. For example, a broken transformer at a power substation
has multiple repair options. Each repair option is a task hierarchy that may have en-
ablement or synchronization constraints. Similarly, there are several ways to rescue an
injured person. Our task representation is a variant of CTAEMS [3], extended so that
the capabilities needed to perform tasks are explicitly represented.
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3.2 Strategies

STaC strategies enable human planners to (1) flexibly assign goals or goal types to
appropriate subteams, (2) re-form subteams as needed, (3) order goals, while allow-
ing parallelism, and (4) address special situations that require clever use of valuable
resources and remaining time. We define a STaC strategy using a grammar:

1. <strategy> := <thread>+
2. <thread> := <agent>+ <goal-constraint>+
3. <goal-constraint> := <goal-spec> <constraints>
4. <goal-spec> := <goal> | <goal-type> <location>
5. <constraints> := [<timing-constraints>] (<capability> <usage-limit>)*

Strategies are composed of threads that can operate in parallel during execution based
on agent availability. Each thread is composed of a subteam (<agent>+) and a sequence
of goal or goal types they should pursue under some constraints (<goal-constraint>+).
Threads and goal-constraint tuples are ordered and agents move sequentially through
those where they are part of the subteam. Timing constraints prevent agents from at-
tempting goals when there is insufficient time, redirecting them to quicker goals when
time is running out. Capability constraints limit how often a capability can be exercised
while pursuing a goal. Using these constraints, a human planner can control the amount
of work done (e.g., rescue only 4 injured). In a later thread, a subteam can revisit the
same location and achieve more goals of the same type. Goals and goal types can appear
in multiple threads and multiple times within a single thread. Thus, human planners can
create strategies that specify multiple attempts to meet goals at different times, with
different agents and different constraints.

The table below shows an example strategy. For compactness, we show it in tabular
format rather than the grammar, and encode goal types and locations as g@l where g is
a goal or goal type and l is a location:

Thread Subteam Goals & Constraints
1 A1 survey@(a, b, c, d)
2 A2, A3 gas@(a, b)
3 A4, A5 power@(c, d)
4 A1, A4 water@(a, b)
5 A2, A3, A5 injured@(a, b, c)[drop-off 6]
6 A1, . . . , A5 critically-injured@(d, e)

In thread 1, A1 is to survey locations a, b, c and d. The others are split into subteams
optimized for gas (thread 2) and power repairs (thread 3). Subteams are reshuffled after
these threads complete. The strategy limits each subteam to specific goals with the
expectation that threads 1,2 and 3 complete at roughly the same time.

While the strategy sends both A2 and A3 to locations a and b, STaC algorithms
will optimize the execution by determining when agents can skip goals, locations and
threads. For example, the surveys A1 performs may reveal no damage in b or reveal
goals with tasks requiring a single agent. In the former case, both agents can advance
to their next threads without visiting location b. In the latter case, one agent will be sent
to location b while the other proceeds to its next thread.
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In threads 4 and 5, subteams are reshuffled to optimize for different goal types. A1

and A4 focus on water repairs at locations a and b, which by this time should have been
surveyed. The other agents focus on rescuing injured at locations a, b and c. Thread 5
limits the agents to rescuing 6 injured people by limiting the drop-off capability. This
forces agents to move to other locations where they are also needed. In thread 6, all
agents come together to rescue critically injured at two locations until time runs out.
The sequence in which agents arrive at thread 6 is determined by events and outcomes
during execution. The example illustrates how a strategy can exert control while also
providing flexibility to accommodate variance during execution. A strategy constrains
the space of execution paths for a team. The instantiated path is determined at run-time.

An important issue is to help human planners develop good strategies. We built
simulation and visualization tools to help human planners understand the evolution of
strategies [10]. Using these visualizations, planners can observe the behavior of sub-
teams and refine the strategies as appropriate.

3.3 Executing Strategies

A strategy puts structure on who can be assigned to what, when and where. Once goals
are discovered during execution, the exact who, what, when and where must be decided
based on agent availability and location along with the strategy. We must continuously
assign and re-assign agents to goals. The choice of which agents remain and which are
passed to the next goal depends on the needs of the particular goal being considered.

Our strategy execution algorithms calculate the capability requirements needed to
achieve each goal and ensure that the collective capabilities of the agents assigned to
the goal are sufficient to meet the capability requirements of the goals. The capability
requirements are updated dynamically when agents complete tasks. As these require-
ments change, unneeded agents are re-assigned to the next goals in the strategy.

We assign agents to goals based on total capability requirements (TCR). The TCR
of a task characterizes the set of capabilities required to complete it. TCR calculations
aggregate capabilities required by atomic actions up the task hierarchy, across enable-
ments and synchronizations that may need to be performed at different locations. TCRs
are defined as follows:

1. <tcr> := <req>+
2. <req> := <req-num> <req-type>
3. <req-type> := <req-elem>+
4. <req-elem> := <capability> <location> <amount>

A TCR structure is composed of requirement elements (line 4) which denotes that
a certain amount of a particular capability is required at a particular location, e.g., two
instances of minor power at Site 3. A requirement type (line 3) is a collection of these
elements. Restoring a power at Site 1 could require simultaneously turning on power
at the substation, and a power main located in a different city, Site 2.. The requirement
type for this task would be composed of two requirement elements: one instance of
minor power at Site 1 and one instance of major power at Site 2. A requirement (line
2) states how many instances of a particular requirement type are needed. If there are 5
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critically injured at a site, the requirement for rescuing all of them would be 5 instances
of the requirement type to rescue one critically injured. Finally, the TCR for a task is a
collection of requirements. This could represent the requirements for all tasks at a site.

The TCR for a task is computed bottom-up, starting with the actions at the leaves
of task structures. The local TCR for leaf nodes is a single requirement type, composed
of one requirement element for one instance of the capability associated with the action
at the location to be performed. The TCRs for all nodes incorporate TCRs from all en-
abling nodes and children nodes, if they exist. We first discuss how TCRs from children
are aggregated and then present the general algorithm for updating TCRs (Fig. 4).

AsyncMerge (Alg. 1) takes in a set of TCRs and outputs a single TCR. This is ap-
plied only to tasks that do not require any synchronization of their children. We decom-
pose and organize all the TCRs by requirement types, and then aggregate the associated
requirement numbers based on how the planner views execution of that requirement
type. A key definition is the function Operator[reqType] which determines how the ag-
gregation occurs. For a requirement type where the planner desires serial execution, the
operator is max. This may be used for repairs where a single skill can be used to sat-
isfy multiple requirements. Alternatively, if the planner desires parallel execution, the
operator is sum. This may be used to increase resources allocated to rescuing injured.

SyncMerge (Alg. 2) also takes in a set of TCRs and outputs a single TCR. This
aggregates the TCRs of children of synchronization tasks which require capabilities to
be devoted in a manner such that each child node executes simultaneously. A subtlety
of synchronization tasks is that their children may be achieved in multiple ways. The
TCR for a synchronization task must consider all ways that the children can be executed
simultaneously. Each requirement in the TCR of a child node captures the capabilities
that may be needed for it to succeed. A combination of requirements is a set that takes
one requirement from the TCR of each child. We gather all such combinations to char-
acterize what may be needed to successfully execute the synchronized task.

Consider a synchronized task with two children having TCR1 = {1 · (gas, a, 1), 1 ·
(water, a, 1)}, TCR2 = {1 · (power, b, 1)}. Here, the first child has two requirements
at location a, the second has one requirement at location b. All requirement types have
a single element, representative of primitive actions. The TCR of the synchronized task
will have TCR0 = {1 · [(gas, a, 1)(power, b, 1)], 1 · [(water, a, 2)(power, b, 1)]}. This
states that the task could require a gas capability at a with a power capability at b or a
water capability at a with a power capability at b. At least two agents are required.

The UpdateTCR procedure (Alg. 3) dynamically updates the TCR of any task, based
on the TCRs of both subtasks and enabling tasks. If the task is a leaf node (i.e., action),
we use local TCR. Otherwise, we collect the TCRs of the children subtasks and apply
the appropriate merge operation based on the task type. We then add the TCRs of the
enabling tasks and merge them using AsyncMerge. As actions get completed or the
deadline associated with any node passes, the local TCR becomes the empty set. These
modifications get propagated up to parent nodes and forwarded through enablement
relationships so TCRs are an up-to-date picture of capability requirement.

Task TCRs are used to determine when an agent can be released from a goal-
constraint tuple in a thread. AgentSelection (Alg 4.) takes in the current TCR for a
task, the relevant constraints according the the human strategy for the current execution
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Alg 1: AsyncMerge(tcrSet)

reqSet = ∅; reqTypeSet = ∅
for all tcr ∈ tcrSet do

for all req ∈ tcr do
for all reqSet← reqSet ∪ req do

reqSet← reqSet ∪ req
for all reqType ∈ req do

reqTypeSet← reqTypeSet ∪ reqType
for all reqType ∈ reqTypeSet do

num = 0
for all req ∈ reqSet do

if GetType(req) = reqType then
num =

Operator[reqType](num, GetNum(req))
newTcr← newTcr ∪ NewReq(num, reqType)

return newTcr

Alg 2: SyncMerge(tcrSet)

reqTypeSet = ∅
for all tcr ∈ tcrSet do

for all req ∈ tcr do
for all reqType ∈ reqTypeSet do
newReqType = reqType

for all reqElem ∈ GetType(req) do
newReqType
← newReqType ∪ reqElem

newSet← newSet ∪ newReqType
reqTypeSet = newSet

for all reqType ∈ reqTypeSet do
newTcr← newTcr ∪ NewReq(1,reqType)

return newTcr

Alg 3: UpdateTCR(t)

tcrSet = ∅
if isAction(t) then

tcrSet← tcrSet ∪ localTCR(t)
else

for all subTask ∈ ChildrenOf(t)
tcrSet← tcrSet ∪ TCR(subTask)

if TaskType(t) = Synchronization then
tcrSet = SyncMerge(tcrSet)

else
tcrSet = AsyncMerge(tcrSet)

for all enablerTask ∈ EnablersOf(t) do
tcrSet← tcrSet ∪ TCR(enablerTask)

return newTcr = AsyncMerge(tcrSet)

Alg 4: AgentSelection(agents,tcr,constraints)

newTcr = removeDisallowed(tcr,constraints)
remainingSubsets = PowerSet(agents)
for all subset ∈ PowerSet(agents) do

for all cap ∈ capabilities do
if NumAgents(subset,cap) <

Needed(cap,newTcr) then
remainingSubsets←

remainingSubsets \ subset
minSet = GetSmallest(feasibleSet)
return bestSet = GetLowestCost(minSet)

Fig. 4. Strategy execution algorithms.

of this task and the available agents. First, we trim the TCR according to the capability
constraints from the strategy, e.g., the strategy might disallow performing any repairs at
the current time, so we remove requirements related to repair. Then, for each capabil-
ity, we calculate the needed amount by the maximum <amount> in any <req-elem>
with the given <capability> in the modified TCR. We consider all possible subsets of
available agents who can meet all the needed amounts of required capability.

We choose the set with the fewest number of agents and break ties using a cost func-
tion. Each agent is weighted by the value of their capabilities so that the most valuable
agents are not in the selected set. The weights can be customized for each domain. For
the field exercises, the value of an agent was the sum of the value of its capabilities
where the value of its capability was one over the number of agents possessing the ca-
pability. Agents outside the selected set are released from that goal-constraint tuple in
the thread. TCRs enable STaC to dynamically manage the execution of the strategy.
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Once agents are assigned to goals, the next step is to compute the plans for achieving
the goals. These plans specify which tasks should be performed, and which agent should
perform them. STaC is agnostic to the methods used to solve these planning problems,
so we do not discuss them in detail. We used an MDP planner to construct policies
for performing repairs and a custom BDI planner for rescues with simple heuristics for
critically injured, which required pairs of agents to load patients into vehicles.

4 Evaluation

Our contribution is a strategy specification language and execution algorithms that en-
able humans to state a high-level strategy that our system can execute effectively in
dynamic and uncertain domains. We evaluate (1) the approach as a whole, (2) the strat-
egy language and (3) the execution algorithms individually.

Effectiveness of the STaC approach. STaC was evaluated in 3 field exercises with 3
teams: a baseline team coordinating using radios, a team assisted by STaC agents, and
a third team also assisted by software agents built by a different team using a different
approach. Each team received one week of training covering all aspects of the field
exercise: the rules, the physical procedures to simulate rescues and perform repairs, etc.
They toured the grounds to get familiar with the map and terrain, and conducted three
days of full practice scenarios. The teams using agents were trained on the software
and used it during the practice scenarios. The radio team was coached by a retired U.S.
Marines commander on effective techniques for managing the command center and
coordinating using radios.

Each scenario has 15 sites with over 100 repair and injury rescues that required over
400 actions: more than was achievable in the 90 minutes allotted. Disruptions such as
road blocks, vehicle breakdowns and agent injuries forced re-planning during execution.
The scenarios were significantly more complex than we have space to describe here.
The formal description of the field exercise, the scenario specifications and the strategies
that the STaC team used for each scenario are provided online4. Teams were given
scenario specifications only 24 hours before the start of each exercise.

In Figure 5, vertical bars labeled Radio and STaC show scores from the field exer-
cises. The horizontal bars show simulation results discussed later. The results for the
third software-agent team were not published but were lower than those of the radio
team. We outperformed the radio team in all three scenarios (by 26%, 26%, and 24%).
It is difficult to assess whether the scores are good in an absolute sense as calculating
an optimal solution, even if centralized, is infeasible for scenarios of such complexity.

The field exercise results provide compelling evidence for the effectiveness of the
STaC approach because (1) the radio team represents a reasonable baseline as they were
extensively trained and operated with technology often in use today in such scenarios,
and (2) the other agent-based team was unable to outperform the radio team in any
scenario.

4 http://www.isi.edu/∼maheswar/prima-2011/
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Fig. 5. Field Exercise Evaluation Results

Effectiveness of the STaC strategy specification language. The complexity of the
scenarios for the field exercise required sophisticated strategies to optimize perfor-
mance. A strategy we employed for one exercise first created three subteams for gas,
power and water to restore the “mains” for each service. This is a prerequisite for restor-
ing substations and making strategically important clinics operational5. One of the re-
maining agents traveled to perform only isolations and the other began early deadline
rescues. The agents then reformed into one large team to make the clinics operational.
They then repartitioned into gas, power, water teams that only performed high-value
repairs and a medical team that only rescued high-value critically injured. When the
deadline was approaching, they became two large teams that performed only injured
rescue. This required intricate orchestration to ensure that isolation, surveys, repairs,
rescues, and repair kit management which all needed different combinations of skills
were satisfied in the right sequence without causing excessive delays.

The goal of the first set of simulations was to assess the importance of the quality
of the strategies. In the simulations, we used the logs of the real exercises to compute
average values for the duration of all activities, and used the same outcomes and dis-
ruptive events that the evaluators had used in the field exercises. Our simulations of the
STaC field exercise strategies were within 4% of the real results, so we posit that it is
reasonable to expect a similar margin of error in the simulations of the other strategies.

We designed a collection of simple strategies organized along two dimensions: the
number of clinics that would be made operational (0, 1 and 2), and the number of
independent subteams (1, 2 and 4). Each subteam had enough capabilities to achieve
the enabling isolation and survey goals. All repairs for clinics were done first, as both
the radio team and the STaC team did in the field exercises. Sites were ordered by total
expected utility from rescuing all injured and repairing all substations and assigned to

5 In each scenario, it was crucial to determine whether to restore any of two damaged clin-
ics. Each required commitment of many agents and capabilities, but once operational, injured
could be moved there rather than to the hospital which may be much further away.
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subteams in a round-robin manner from most to least valuable. Thus, each subteam had
a single thread. When a subteam traveled to a site, it would attempt all the goals for the
site, irrespective of utility, i.e., no constraints.

These simpler strategies performed worse than those used by the STaC team on the
field (vertical bars labelled STaC). The greater the use of STaC features, e.g., subteam-
ing and reformation (used after making clinics operational), the better the performance.
These simulations suggest that exploiting richer strategy structures is valuable.

Effectiveness of the STaC execution algorithms. Several of the simpler, simulated
strategies obtained scores that were better or comparable to the scores of the radio team.
We attribute these results to the effectiveness of the execution algorithms. The radio
team was not required to write down their strategies, however, informal conversations
with their team members revealed that their strategies were more sophisticated than
our simpler strategies. For example, in one scenario, they designated their least capable
agent as a warehouse runner who got repair parts and delivered them wherever they were
needed. The cases where the simpler strategies outperformed the radio team suggest that
the radio team was not able to effectively carry out their strategies. Their commanders
often had to handle multiple radio calls simultaneously and put agents on hold, wasting
valuable time, and sometimes made incorrect decisions sending agents to sites where
they were not needed. In the third scenario, which emphasized injury rescues, none of
the simple strategies would have outperformed the radio team. The simple strategies
had agents rescuing all injured at a site before going to a different site, and thus missed
the deadlines for many injured. It was important to round-robin multiple rescue teams
over sites to ensure saving the injured with urgent deadlines.

To evaluate the effect of the TCR agent-to-goal assignment algorithm, we also ran
simulations where we replaced the planners for repairs and rescues with dummy plan-
ners. In these simulations, the agent-to-goal assignments were done using the TCR
algorithms, but task assignments were done using simple algorithms. For repairs, we
randomly selected repair tasks. For injured, we rescued the injured with the most urgent
deadline and never considered waiting to have two agents simultaneously ready to load
the more valuable critically injured. The results show that in the first two exercises the
effect of the automated planner was relatively minor: the STaC strategies executed us-
ing the TCR algorithms (and dummy planners) would still have outperformed the radio
team. In the third exercise that emphasized rescues, the greedy rescue algorithm did
have a very detrimental effect.

5 Related Work

Real-world applications of the type addressed here are challenging because they must
work in dynamic and uncertain environments [11, 14, 18]. The requirements for a richer
model for actions and time are generally problematic for current planning frameworks
based on MDPs, POMDPs, SAT, CSP, planning graphs or state-space encodings [4].
The main obstacle is scale as it is currently infeasible for a fully automated system to
effectively reason about all the possible futures that may arise during execution. STaC
is an approach that enables partitioning these large problems into smaller subproblems
where these approaches can be used effectively.
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Mixed-initiative approaches, where humans and systems collaborate in the develop-
ment and management of solutions, are viable alternatives to tackle complex real world
problems [12, 1, 9, 18]. While mixed-initiative planning [5] is an established field, the
type of problems we address with STaC bring new challenges. These include agent
teams with heterogeneous and dynamic capabilities, tasks with uncertain durations and
outcomes, and most importantly, planning over incomplete reward structures. In these
problems, the goals that give reward to teams are not revealed a priori, but have to be
discovered during execution.

Several mixed-initiative planning systems have been developed where users and
software interact to construct and refine plans by adding and removing activities dur-
ing execution while minimizing changes to a reference plan or schedule [1, 9, 12]. In
the MAPGEN framework [1], humans control the construction of plans offline, while
automated planning and reasoning capabilities are used to actively enforce constraints
to generate safe plans for the Mars rovers. The output of the collaboration is a concrete
plan. In the STaC approach, the human planner provides a high-level plan (strategy)
that the system fleshes out during execution to produce concrete plans to satisfy the
particular goals that are revealed during execution.

O-Plan is a knowledge-based mixed-initiative framework, which uses an agenda of
outstanding (goal) issues to incrementally refine and repair plans by tightening con-
straints [16]. In O-Plan, a task assigner or commander specifies the set of tasks to con-
sider; and a planning agent, using multiple classes of constraints, restricts the range
of plans generated for the tasks specified [17]. An O-Plan-style planner could be used
for dynamic problems by allowing the human planner to select goals as they are re-
vealed and work with the automated planner to construct plans to achieve them. This
approach involves human planners during execution, giving them more control than
human planners have in the STaC approach. This approach could be effective in less
dynamic situations where a human-in-the-loop planner does not become a bottleneck
and where human input into the agent to task assignment is worthwhile. In our field
exercises, a human planning during execution would have become a bottleneck. In the
STaC approach, the role of human planners during execution is to oversee the execution
of the strategy, assess its effectiveness and adjust the strategy accordingly. Our current
system enables human planners to oversee the execution of the strategy giving comman-
ders full situational awareness. In future work we plan to enable dynamically adjusting
the strategy and distributing it to the agents during execution.

STaC can be seen as a particular form of control-knowledge that leverages the struc-
ture of domains. Work on using domain control-knowledge to solve complex planning
problems has been extensively documented [13, 2, 16], and has been shown to convert
intractable planning problems into a tractable ones [2, 13]. Two planning systems that
consider human intuition for problem solving are SHOP2 [13] and TLPLAN [2]. While
SHOP2’s search space consists only of those nodes that are reachable, TLPLAN uses
its formulas to tell which part of the search space should be avoided. Similarly, STaC
strategies can be viewed as a type of control knowledge that specifies constraints on the
goals that should be attempted, the order for attempting them and the resources that can
be used to fulfill them. One key difference is that STaC strategies allow expressing this
control knowledge over goals that have not yet been discovered.
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Systems like DEFACTO [15] study the role of adjustable autonomy to improve
human/agent collaboration for disaster management. While adjustable autonomy is not
the focus of our work, STaC enables human planners to delegate significant control
to the system by imposing fewer constraints on strategies, or to exert more control
by imposing additional constraints. It would be interesting to explore a DEFACTO-
style approach to adjustable autonomy in STaC whereby humans would be consulted
on agent-to-goal assignments in specific contexts (e.g., when the decision is critical and
human planners have time to intervene).

6 Conclusions and Future Work

STaC is an approach to address multi-agent planning problems in dynamic environ-
ments where most goals are revealed during execution, where uncertainty in the dura-
tion and outcome of actions plays a significant role, and where unexpected events can
cause large disruptions to existing plans. The key insight of our approach is to (1) give
human planners a rich language to control the assignment of agents to goals (strategy
language), (2) allow the system to assign agents to goals during execution, tuning the
assignment to the evolving execution state (TCR algorithms), and (3) use off-the-shelf
planners to select and plan the tasks to achieve these goals. Evaluations in 3 realistic
field exercises showed that STaC is a promising approach. The STaC strategy language
enabled us to encode sophisticated strategies. Additional evaluations using simulations
of the field exercises showed that the TCR algorithms provided significant benefit.
These simulations showed how in 2 of the exercises, simple strategies executed us-
ing the TCR algorithms produced better scores than more sophisticated strategies used
by the radio team, but executed without the help of our algorithms. The evaluations also
showed how the STaC approach effectively partitioned the large and complex planning
problems to create small subproblems that traditional planning technology (MDP and
BDI) could address effectively. The STaC system outperformed an extensively-trained
team coordinating with radios and a traditional command-center organization, and an
agent-assisted team using a different approach.

The evaluations suggest that the following enhancements would be valuable. First,
our agent-to-goal assignment algorithms are based on the capability requirements of
the current goals without consideration of capability requirements of future goals in
the strategy. This local optimization may lead to situations where agents with impor-
tant capabilities for future goals are inappropriately assigned to the current goals. Fast
algorithms to reason more globally are desirable. Second, strategies are easy to under-
stand from a local point of view, i.e., each strategy thread is easy to understand, but the
evolution of a strategy is hard to predict. In the field exercises, we used detailed simu-
lations of strategies and visualizations to understand their evolution and to judge their
effectiveness. Each simulation ran for 20 minutes, so it was only possible to run a small
number of simulations before an operation. It is infeasible to run simulations of this sort
during execution to evaluate potential revisions to a strategy. Less detailed and signifi-
cantly faster simulations coupled with strategy analysis algorithms would enable rapid
evaluation of alternative strategy adjustments under different dynamic evolutions. This
would help human planners evaluate and enact strategy adjustments during execution.
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