
A GENERAL APPROACH TO USING PROBLEM INSTANCE DATA FOR

MODEL REFINEMENT IN CONSTRAINT SATISFACTION PROBLEMS

by

Martin Michalowski

A Dissertation Presented to the
FACULTY OF THE GRADUATE SCHOOL

UNIVERSITY OF SOUTHERN CALIFORNIA
In Partial Fulfillment of the
Requirements for the Degree

DOCTOR OF PHILOSOPHY
(COMPUTER SCIENCE)

December 2008

Copyright 2008 Martin Michalowski



Dedication

To my wife Sarah, dad Wojtek, mom Margaret, and sister Maia,

for their infinite support, love and patience.

ii



Acknowledgements

I would like to thank my thesis advisor Dr. Craig Knoblock. His guidance throughout

my doctoral studies has been paramount in my maturation as a researcher. He has made

me a better researcher than I had hoped to become and has provided me with the tools

necessary to contribute to the research community. The hours he spent reading my drafts,

discussing my ideas, and providing insights into potential problems were invaluable. On

a personal level, I would like to thank Craig for being open, caring, and a good friend.

Thanks for making it fun to come to work every day.

I would also like to thank Berthe Choueiry. Her sabbatical at ISI made a very positive

contribution to my thesis. She helped propel my research forward when I felt it was

standing still and her ideas helped drive me in the right directions. Her enthusiasm for

research was contagious and helped motivate me to do better work. Her attention to

grammatical detail has made me a better writer.

I would like to thank both Cyrus Shahabi and John Wilson for being on my committee.

Their questions and comments helped improve this thesis. I would like to thank Yolanda

Gil for her contributions to my qual and for giving me the opportunity to contribute to the

research community and to the AI-Grads organization at ISI. Thank you Steve Minton

for helping me during my early years as a researcher and for his glowing recommendation

iii



letters. Thank you to Alma Nava for helping me with any and all issues I needed resolved

at ISI.

I also want to thank all of my colleagues in our research group at ISI. Thank you

Snehal Thakkar for helping me get through the early days and for being so easy to beat

at FIFA. Thank you Matt Michelson for understanding my humor. I had a lot of fun in

our offices and it was mostly due to your humor and plethora of random facts. Thank you

Wesley Kerr for being a great friend and a soccer fan (Polska!). Thank you Rattapoom

Tuchinda for rarely coming in and giving Matt and I more space in the office. Thank you

Aram Galstyan for all our soccer talks and for your friendship. Lastly, thank you José

Luis Ambite, Mark Carman, and the rest of the information integration group members.

I’d like to thank all of my friends in LA, namely Tom, Dan, Shawn and Walter. You

made life fun. Thank you Matt Sterbenz for being a great friend for many years, for

keeping me level headed throughout my prolonged academic career, and for making the

best skis out there. Thank you Randy Cordray for all the amazing ski trips and for being

a great friend. Thanks Ted, Bill, Rob, Doug, Dennis, Matt, and the rest of the Mammoth

crew for some of my best days in years.

I would like to also thank each member of my family. Thank you Wojtek for caring

about me more than any son could hope for. You are an amazing inspiration and the

best father and the best friend I could have hoped for. Thank you Margaret for being

the most caring and loving mother alive. If I could plant a flower in your garden for each

time you amazed me with your strength, courage, tenderness, and love, you would live

in the Amazon. Thank you Maia for being an amazing sister that has made me realize

iv



what true compassion is about. You are a bright and amazing woman who will achieve

anything you set your mind to.

Finally, thank you to my wife Sarah. The patience, love, and compassion you have

shown me goes beyond words. You bring joy to my life in countless ways and the love

we share is endless. I cherish all of the moments we spend together and I am lucky to

have shared so many amazing memories with you already. Our life’s journey will be an

amazing adventure but more importantly it will be one we share together.

This research is based upon work supported in part by the National Science Founda-

tion under award number IIS-0324955, and in part by the Air Force Office of Scientific

Research under grant number FA9550-07-1-0416.

The U.S. Government is authorized to reproduce and distribute reports for Gov-

ernmental purposes notwithstanding any copyright annotation thereon. The views and

conclusions contained herein are those of the author and should not be interpreted as

necessarily representing the official policies or endorsements, either expressed or implied,

of any of the above organizations or any person connected with them.

v



Table of Contents

Dedication ii

Acknowledgements iii

List Of Tables ix

List Of Figures xi

Abstract xiii

Chapter 1:Introduction 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Application Domains . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Motivating Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Building Identification (BID) Problem . . . . . . . . . . . . . . . . 4
1.2.2 Sudoku Puzzles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Contributions of the Research . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Chapter 2:Constraint-Inference Framework 13

2.1 Generic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Data Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Constraint Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Inference Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Inference Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6 General Framework Definition . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.7 End-to-End Model Generation Process . . . . . . . . . . . . . . . . . . . . 29
2.8 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Chapter 3:Selecting Constraints 35

3.1 Constraint Inference Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.1 Bucket Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.2 Evaluating Inference Rules . . . . . . . . . . . . . . . . . . . . . . 41
3.1.3 Determining Constraint Applicability . . . . . . . . . . . . . . . . 45

3.2 Augmenting Data Points Using Constraint Propagation . . . . . . . . . . 49

vi



Chapter 4:Using Support Vector Machines to Learn the Scope of Constraints 53

4.1 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Training a SVM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Assigning Data Points to a Scope . . . . . . . . . . . . . . . . . . . . . . . 65

Chapter 5:Instantiating a Constraint Model 69

5.1 Transitioning to an Instantiated Model . . . . . . . . . . . . . . . . . . . . 69

5.2 Constraint Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Constraint Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4 Instantiating a BID Problem Instance . . . . . . . . . . . . . . . . . . . . 80

Chapter 6:Experimental Evaluation 84

6.1 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1.1 BID Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.1.2 Sudoku Puzzles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3 Inferring Constraint Models . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3.1 BID Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3.2 Sudoku . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.4 Learning the Scope of Constraints using SVMs . . . . . . . . . . . . . . . 100

6.5 Augmenting Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.6 Automatic Model Inference . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.6.1 BID Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.6.2 Sudoku . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Chapter 7:Related Work 122

7.1 Constraint Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.2 Constraint Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.3 Learning Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.4 Geospatial Integration and Reasoning . . . . . . . . . . . . . . . . . . . . 129

Chapter 8:Discussion and Future Work 131

8.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.2 Application Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.2.1 Machine translation . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.2.2 Genealogical Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.4 Directions for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.4.1 Learning Inference Rules . . . . . . . . . . . . . . . . . . . . . . . . 136

8.4.2 Enhancing the Learning of a Constraint’s Scope . . . . . . . . . . 138

8.4.3 BID Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.4.4 Sudoku Puzzles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Bibliography 140

vii



Appendices 145

Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Constraint Inference Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A.1 BID Problem Inference Rules . . . . . . . . . . . . . . . . . . . . . . . . . 146
A.1.1 Odd on North rules . . . . . . . . . . . . . . . . . . . . . . . . . . 146
A.1.2 ¬Odd on North rules . . . . . . . . . . . . . . . . . . . . . . . . . . 146
A.1.3 Odd on East rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
A.1.4 ¬Odd on East rules . . . . . . . . . . . . . . . . . . . . . . . . . . 147
A.1.5 Increasing North rules . . . . . . . . . . . . . . . . . . . . . . . . . 148
A.1.6 Increasing South rules . . . . . . . . . . . . . . . . . . . . . . . . . 148
A.1.7 Increasing East rules . . . . . . . . . . . . . . . . . . . . . . . . . . 149
A.1.8 Increasing West rules . . . . . . . . . . . . . . . . . . . . . . . . . 149
A.1.9 K-Block Numbering rules . . . . . . . . . . . . . . . . . . . . . . . 149
A.1.10 San Francisco Block Numbering rules . . . . . . . . . . . . . . . . 150
A.1.11 C-Continuous Numbering rule . . . . . . . . . . . . . . . . . . . . 150
A.1.12 Marker Distance rule . . . . . . . . . . . . . . . . . . . . . . . . . 150

A.2 Sudoku Inference Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Constraint Model: XML Schema . . . . . . . . . . . . . . . . . . . . . . . 152
B.1 Layout XML file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
B.2 Phone-book XML file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
B.3 Grid XML file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
B.4 Landmark XML file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
B.5 Inferred Ranges XML file . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
B.6 Ascending/Descending Value XML file . . . . . . . . . . . . . . . . . . . . 159
B.7 Parity XML file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
B.8 Continuous Numbering XML file . . . . . . . . . . . . . . . . . . . . . . . 162
B.9 District Boundaries XML file . . . . . . . . . . . . . . . . . . . . . . . . . 163

viii



List Of Tables

2.1 Sample constraints stored in the BID problem constraint library. . . . . . . . . 20

2.2 Sample constraints stored in the Sudoku puzzle constraint library. . . . . . . . . 22

6.1 Homogeneous BID problem instances. . . . . . . . . . . . . . . . . . . . . 85

6.2 Non-homogenous BID problem instances. . . . . . . . . . . . . . . . . . . 87

6.3 BID problem instance results. . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4 Other cities: inferred constraints. . . . . . . . . . . . . . . . . . . . . . . . 93

6.5 Sudoku: accuracy and completeness of inferred constraints. . . . . . . . . 96

6.6 Bayes factor: strength of evidence. . . . . . . . . . . . . . . . . . . . . . . 98

6.7 Bayes factor for varying numbers of filled-in cells. . . . . . . . . . . . . . . 99

6.8 Sudoku: accuracy and completeness of model with a support level of 5. . . 100

6.9 Accuracy measures when applying SVMs to Sudoku puzzles. . . . . . . . . 105

6.10 Constraint Propagation: average number of new data points. . . . . . . . 107

6.11 Iterative Propagation: accuracy and completeness of inferred constraints. 108

6.12 Automated BID problem instance results. . . . . . . . . . . . . . . . . . . . . 112

6.13 BID problem case studies used to evaluate performance. . . . . . . . . . . 115

6.14 BID problem results for case studies without block-numbering constraints. 116

6.15 BID problem results for case studies with block-numbering constraints. . . 116

ix



6.16 Sudoku problem results with an inferred constraint model. . . . . . . . . . 119

x



List Of Figures

1.1 Data integration in the BID problem. . . . . . . . . . . . . . . . . . . . . 5

1.2 Variations of Sudoku puzzles. . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Sample BID gazetteer data points for El Segundo. . . . . . . . . . . . . . 17

2.2 Sample data points for a Sudoku puzzle. . . . . . . . . . . . . . . . . . . . 18

2.3 Three sample inference rules. . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Three sample Sudoku inference rules. . . . . . . . . . . . . . . . . . . . . . 26

2.5 General definition of the constraint-inference framework. . . . . . . . . . . 28

2.6 General architecture of the constraint-inference framwork. . . . . . . . . . 29

2.7 End-to-end inference process. . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.8 The area of El Segundo for which a model must be inferred. . . . . . . . . 31

2.9 Two example data points in El Segundo. . . . . . . . . . . . . . . . . . . . 32

2.10 The coverage of the applicable constraints in El Segundo. . . . . . . . . . 33

3.1 Constraint inference algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 The algorithm used to create buckets of data points. . . . . . . . . . . . . 38

3.3 Bucketing algorithm example. . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Subset of data points in El Segundo. . . . . . . . . . . . . . . . . . . . . . 40

3.5 The algorithm used to evaluate inference rules for a given bucket. . . . . . 43

xi



3.6 Sample BID problem inference rules providing support for Odd on North. 44

3.7 Example scenario where false support is provided for Block-numbering. . . 47

3.8 Iterative algorithm to find new data points. . . . . . . . . . . . . . . . . . 50

3.9 Before and after constraint propagation using SAC for a Sudoku puzzle. . 51

4.1 The scopes of the Increasing East and West constraints in El Segundo. . 54

4.2 The two scopes of the Parity constraints in Belgrade. . . . . . . . . . . . . 55

4.3 Separating hyperplanes learned by SVMs. . . . . . . . . . . . . . . . . . . 57

4.4 Sample input vectors for conflicting constraints used to train the SVM model. 60

4.5 Labels used to learn the SVM model in El Segundo. . . . . . . . . . . . . 63

4.6 New training examples generated in the BID problem. . . . . . . . . . . . 64

4.7 Assigning data points to a scope. . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.8 El Segundo data points with no support for either conflicting constraint. . 67

5.1 Algorithm used to propagate the set of applicable constraints. . . . . . . . 74

5.2 E/W street coverage of the Odd on North constraint before propagation. 76

5.3 E/W street coverage of the Odd on North constraint after propagation. . 77

5.4 Instantiated example of the Odd on North constraint. . . . . . . . . . . . 79

5.5 The process by which a constraint model is instantiated for the BID problem. 82

6.1 Results for finding contexts in El Segundo using SVMs. . . . . . . . . . . 102

6.2 Example Samurai Sudoku puzzle. . . . . . . . . . . . . . . . . . . . . . . . 104

xii



Abstract

The initial formulation, or model, of a problem greatly influences the efficiency of the

problem-solving process. Hence, modeling is critical in determining the performance of

the problem-solving process and the quality of the produced solution. Unfortunately,

modeling remains an art and has resisted automation. Additionally, slight variations in

the characteristics of a given problem instance make it difficult to represent one class of

problems using a unique model. Consequently, a robust approach to modeling is required.

My thesis presents an automated approach to modeling. I exploit information con-

tained in the input data in order to customize the constraint model of a given problem

instance. I apply my approach to the area of Constraint Programming, focusing on a class

of problems where a solution is guaranteed to exist for all problem instances. Specifically,

I enhance a generic constraint model of a Constraint Satisfaction Problem (CSP) by

adding new constraints to this model. These additional constraints are selected from a

library of constraints by testing features of the problem instance at hand. The resulting

constraint model is customized such that it best represents the problem instance given

the data provided as input.

The resulting framework is applicable to problems where instances are seeded with

some initial input data. The techniques present in the framework are generally defined so

xiii



they can be applied across domains. They cope with the uncertainty in the model refine-

ment process by handling noisy data and incorrect inferences, generating additional in-

formation as needed. Furthermore, the framework uses Support Vector Machines (SVMs)

to determine the scope of the inferred constraints and it automatically instantiates the

constraint model in a format supported by a specialized constraint solver.

I evaluate the effectiveness of my approach in two domains, Sudoku puzzles and the

building identification (BID) problem. I show how it can infer the most specific constraint

model given the available public information, scale to large problem instances, and use a

SVM model to efficiently determine constraint scopes. I also evaluate the effectiveness of

the framework for the BID problem in areas such as New Orleans and Belgrade where non-

homogenous problem structures co-exist and across different Sudoku puzzle variations,

demonstrating the resulting improvement when using an inferred model over a generic

one. Additionally, I evaluate the framework’s ability to augment the initial set of data

points with new ones when applying an iterative constraint-propagation algorithm, which

leads to more accurate constraint models.

xiv



Chapter 1

Introduction

In this chapter, I start by describing the problem being addressed by my thesis work and

I present two motivating examples. I provide a thesis statement and I generally describe

my proposed approach to automated modeling. Finally, I summarize the contributions

of my research and layout the remainder of this dissertation.

1.1 Problem Statement

Constraint Programming (CP) is an effective paradigm for modeling and solving com-

binatorial problems [45; 47; 51; 59]. A fundamental component of the problem-solving

process is the ability to accurately model the problem instance at hand. Modeling typi-

cally requires a significant effort from a domain expert and must be carried out for every

new problem encountered. Specific to CP, a domain expert must define the variables

and their domains along with the applicable constraints. In application domains that

exhibit numerous problem variations, the repetition of the model generation task places

a considerable burden on the domain expert.

1



The performance of problem solving and the accuracy of the results heavily depends on

the quality of the model. A ‘good’ constraint model consists of well chosen variables and

constraints that faithfully represent the characteristics of the problem domain, allowing

the solver to leverage the inherent structure of the problem. The novelty of the approach

presented in this dissertation lies in exploiting the input data of a given problem instance

for automatic model generation. Specifically, I show how to customize the generic model1

of a CSP by adding constraints that best represent a given instance.

1.1.1 Application Domains

Among the various problems that are modeled and solved using CP techniques, I distin-

guish as a special class those that are guaranteed to always have a solution and I focus my

investigations on this class of problems. Two examples of such problems are the Building

Identification (BID) problem [47] and puzzles such as Sudoku [59]. For the BID problem,

where all buildings on a map must be assigned addresses, a solution exists as witnessed

by the physical reality. In the case of Sudoku puzzles, they are “naturally” built to have

a solution. These problem classes contain variations across instances within a class that

require CSP models with different sets of constraints. When solving these problems, using

the same model for all instances may yield imprecise solutions because the model may

enforce constraints that incorrectly reduce the problem space while ignoring applicable

ones. Section 1.2 outlines the BID problem and Sudoku puzzles in more detail, providing

additional motivation.

1A generic or vanilla model is the model with the basic set of constraints that represent the general
characteristics of the problem.

2



Focusing on the class of problems where a solution is guaranteed to exist leads to the

new technologies presented in this dissertation. The nature of these problems allows me

to make assumptions that may not hold in other domains. After specializing a model for

a given problem instance, if a constraint solver returns no solution I know an incorrect

model for the instance was inferred. This knowledge signifies that backtracking over the

inferences is required to relax the model until a solution is produced. Even though we

may never know if we have inferred the most constrained model, any model that leads

to a solution correctly represents the problem with a varying degree of accuracy. As

such, inferred models can be seen as an improvement over generic models for all problem

instances.

The techniques presented in this dissertation are general and can be applied to other

domains. I note that they can be applied to any problem domain where commonali-

ties existing across all problem instances can be leveraged and where variations in the

instances makes it infeasible to generate and store all possible constraint models before-

hand. The nature of these problems is that a solution exists: the proof is the real world.

Additionally, the existence of a solution for all problem instances allows for the use of

relaxation techniques and constraint propagation to ensure that the inferred constraint

model is correct and as complete as possible.

Apart from the two problem domains studied and presented in Section 1.2, I also out-

line additional domains that can benefit from the application of the constraint-inference

techniques. These domains are discussed in more detail in Section 8.2 and include machine

translation and genealogical trees.

3



1.2 Motivating Examples

In this section, I present the BID problem and Sudoku puzzles in more detail. These two

problem domains serve as motivating examples for my work and they are used throughout

the thesis to provide examples and clarification of introduced concepts.

1.2.1 Building Identification (BID) Problem

Consider the problem of mapping postal addresses to buildings in satellite imagery using

publicly available information, which I defined as the BID problem in [47]. This problem

takes as input:

• A bounding box that defines the area of a satellite image

• Buildings identified in the image

• Vector information that specifies streets in the image

• A set of phone-book entries for the area.

This information is used to create a constraint model that is solved by a CSP solver that

returns a set of possible address assignments for each building. The model comprises

a set of constraints exploiting the geospatial characteristics of addressing in the world

and is assumed to apply globally. The integration of data sources in the BID problem is

illustrated in Figure 1.1.

The BID problem exhibits two main traits that make it especially difficult to solve

as a CSP. First, the nature of assigning addresses to buildings leads to the existence of

4



Figure 1.1: Data integration in the BID problem.

numerous constraint models representing all of the addressing strategies and variations

exhibited throughout the world. For example, consider the following addressing patterns:

1. “Block-numbering” occurs when numbers across city blocks increment by a fixed

value and is mainly seen in some cities in the US.

2. In Europe, buildings that surround squares are usually numbered consecutively and

in the clockwise direction.

5



3. In rural areas of Australia, the numbering system is based on tenths of kilometers.

As we can see, these patterns are not global but specific to different regions of the world

and may also differ between new and older districts within a given region. Therefore,

different models with different sets of constraints hold for different areas of the world.

Thus a model that most accurately and faithfully represents an area has to be built.

Building and storing models for every area in the world is a daunting task for a domain

expert and may be unrealistic in practice.

The second difficulty encountered in the BID problem is the heterogeneity of address-

ing within small geographic areas. For example, in El Segundo California, the address

numbers along east/west running streets are non-monotonic. Specifically, address num-

bers increase to the west direction for buildings west of Main Street and to the east when

buildings are east of Main Street. The ability to solve BID problems for El Segundo

relies on both the inference of constraints and the ability to determine the scope of these

constraints. That is, constraints must be instantiated over only the buildings to which

they are applicable (i.e., buildings east/west of Main Street) and the relevant set of build-

ings must be inferred automatically. Without this mechanism, constraint models would

contain conflicting constraints and would be unsolvable.

1.2.2 Sudoku Puzzles

Another problem domain that falls within my studied class of CSPs is Sudoku puzzles.

Sudoku is a logic-based placement puzzle similar to a Latin Square. It has been shown

that solving basic Sudoku puzzles is NP-complete [65] and can be accomplished using CP

[59]. Interestingly, slight variations of the basic Sudoku puzzle are played throughout the

6



world (see Figure 1.2), where each variation adds to the constraints that define the basic

puzzle. For example, the diagonal Sudoku adds an ‘all-different’ constraint for each of the

diagonals; and the Samurai Sudoku combines five different puzzle variations in a quincunx

arrangement. A generic CSP model represents only weakly all these variations. Hence,

to solve a given Sudoku instance, an automated system must identify the constraints

applicable to a given instance and their scope.

Figure 1.2: Variations of Sudoku puzzles.

In practice, a user is given a Sudoku puzzle with a set of constraints that define it.

However, picture a scenario where we would like to develop an automated Sudoku solver

that can easily be expanded to support variations on the basic puzzle. Given any Sudoku

puzzle, the solver would model the puzzle given its filled-in cells and solve it accordingly.

Rather than storing models for all possible puzzle variations, the solver has access to a

set of constraints that may appear in some puzzle and this set of constraints is easily

expanded to support new variations. This problem scenario is a new approach to Sudoku

7



and serves as a vehicle to illustrate the ideas behind my work. Although the BID problem

is more complex in nature, its issues can be quite naturally mapped to the Sudoku puzzle

scenario described above. Additionally, Sudoku puzzles are designed so that a solution

exists for every instance and thus fall into the identified class of solvable CSPs.

As the two example problem domains show, a constraint inference engine needs to infer

a set of applicable constraints and their scope for problem instances that vary within a

given problem class. The methodology I present in this dissertation possesses this ability,

and I show how the framework handles the aforementioned cases.

1.3 Thesis Statement

I describe a novel approach to model refinement in Constraint Satisfaction Problems

(CSPs) that augments the basic model of a given problem instance by exploiting input

data to infer additional applicable constraints and their scope, allowing for the automatic

generation of a constraint model specialized for the given instance.

1.4 Proposed Approach

The proposed inference framework augments a basic model of a given problem instance

with additional constraints inferred from data points defined by the instance’s input data.

This framework consists of three major building blocks:

• the data points

• a library of constraints

8



• inference rules

The data points are defined by a set of domain-specific features and used to test the

inference rules. The inference rules provide support for the specific constraints contained

in the constraint library. The testing of these rules results in a set of applicable constraints

that best represent the problem instance given the input information.

Input Data: The input data is comprised data points (variable-value pairs), rep-

resented as variables whose values are obtained from the problem description or public

online sources when available. The data points constitute a partial solution that can be

used to determine the set of applicable constraints. The relationship between the variable-

value pairs contains information which I exploit to determine the set of constraints that

make up the constraint model for the given problem instance. In domains such as the BID

problem, additional input data from sources such as vector data can be used to reduce

the domains of variables in the model (i.e., limiting the set of potential streets for a given

building), leading to a more specific and accurate instantiation of the constraint model.

Constraint Library: The library of constraints consists of a set of domain-expert

defined constraints. These constraints capture characteristics of the problem domain

that have occurred in some problem instance but do not necessarily apply across all

instances. Rather than generating constraint models for all foreseeable problem instances

in a given domain, the framework only requires the definition of constraints that may

apply to some instances. I believe that the task of populating the constraint library

once is more tractable than the generation of all constraint models. Furthermore, to

handle previously unseen characteristics I simply add new constraints to the library, a

9



more desirable alternative to going through all constraint models and updating them as

needed.

Inference Rules: The framework evaluates a set of inference rules to provide sup-

port, both positive and negative, to the constraints in the library. An inference rule is

a logical expression that, when asserted, provides positive support for the corresponding

constraint in the library. Conversely, negative support can also be provided. Addition-

ally, multiple inference rules can provide support for one constraint, strengthening the

framework’s confidence in its inferences. Finally, the constraint inference engine uses the

data points and the set of inference rules to infer the applicability of the constraints in

the library based on their respective levels of support.

The selection of constraints entails a three-step process. First, the inference rules are

evaluated and constraints are provided with both positive and negative supports. Based

on each constraint’s support level, the constraints are divided into one of three categories:

applicable, non-applicable, or unknown. Finally, before generating a specialized model for

the given problem instance, the framework must determine the scope of the constraints.

Support Vector Machines (SVMs) are used to learn scopes, supporting overlapping and

distinct scopes. The use of SVMs provides a means for dealing with the heterogeneity

found within problem instances (examples of which are shown in Section 1.2). Given a

set of inferred constraints and their scope, a constraint model is instantiated over the

problem variables and this model is passed to a specialized constraint solver.

10



1.5 Contributions of the Research

The key contribution of the research is a novel approach to Constraint Satisfaction Prob-

lem (CSP) model refinement. The resulting framework includes the following contribu-

tions:

• A general framework for automatic model generation that supports varying problem

instances within a problem class.

• The inference of a constraint model based on the problem instance at hand.

• The ability to deal with noisy data and incorrect inferences using an iterative prop-

agation algorithm and support levels.

• The use of Support Vector Machines to automatically learn the scope of applicable

constraints.

1.6 Dissertation Outline

The remainder of this proposal is organized as follows. Chapter 2 provides background

information and defines the general framework. Chapter 3 describes the algorithm used

to select the applicable constraints for a given problem instance. Chapter 4 introduces

a Support Vector Machine based approach that automatically learns the scopes of the

inferred constraints. Chapter 5 outlines the process by which the inferred constraint model

is instantiated and passed to a specialized constraint solver. Chapter 6 evaluates the

general framework when applied to the BID problem and Sudoku puzzles, and provides

empirical results for individual components that improve the overall inference process.

11



Chapter 7 reviews work related to this research. Finally, Chapter 8 presents a summary

of my contributions and provides directions for future work.

12



Chapter 2

Constraint-Inference Framework

In this chapter, I introduce the constraint-inference framework. I motivate the frame-

work’s key components by outlining their purpose, providing each concept’s definition

along with a concrete example from both application domains (the BID problem and Su-

doku puzzles). I show how a generic CSP model is used to represent the characteristics

defining a particular class. I introduce data points as a representation of the information

contained within a problem instance. I describe a constraint library as a repository of

characteristics known to exist for some but not all instances of a problem domain. Finally,

I present inference rules as a means to map the data points to constraints in the library

and outline the inference engine that evaluates the set of inference rules. I conclude this

chapter by generally defining the constraint-inference framework and the process used to

infer constraint models and by introducing a case study used as a running example for

the later chapters of this thesis.

13



The definition of the constraint-inference frameworks lays the groundwork for the

techniques used to infer instance specific models. The case study presents the BID prob-

lem for El Segundo California and helps ground and motivate the techniques presented

in subsequent chapters.

2.1 Generic Model

As introduced in Section 1.1, the class of problems studied in this work is grounded in

the real world. As such, all instances are solvable and a set of common characteristics

exist for all problem instances. The guaranteed solvability of an instance leads to new

techniques used to infer a constraint model and these techniques are detailed in later

chapters. The representation of the common characteristics of a problem domain is the

first step in defining the constraint-inference framework. It is achieved through the use

of a generic model, which defines the universally applicable characteristics of a problem

domain.

The generic model is composed of a set of generic constraints that apply to all in-

stances for a problem class. This set of constraints represents the core characteristics that

define a given problem domain. When the generic model is used to model any problem

instance within a particular domain, it is guaranteed that solving this model will generate

a solution. However, because a generic model tends to be under-constrained, this model

is inefficient to solve and the resulting solutions can be imprecise. As such, this generic

model is refined with newly inferred constraints that best represent the instance given

the information contained in the problem.

14



Specifically, the generic model is comprised of the intersection of all constraint mod-

els for a problem class. Intuitively, the commonalities found across problem instances

within a given problem class define this class. A generic model’s role is to capture these

commonalities and leverage them in various ways. One assumption being made for all

constraints in the framework (including the ones in the generic model) is that they are

monotonic. This means a constraint can only reduce the domain of a variable and it

cannot re-introduce new values when it is asserted. One of the advantages of maintain-

ing monotonicity is that the generic model can also be used to augment the information

contained within a problem definition through the use of constraint propagation (see

Section 3.2).

Example constraints that make up the generic model for the BID problem are: all

known addresses have to be assigned to a building, corner buildings are only assigned

to one street, and all buildings must be assigned an address. The full set of generic

constraints was determined by globally surveying addressing characteristics and noting

the ones that applied throughout the world. For Sudoku puzzles, example generic con-

straints are: all numbers along a row and along a column must be different. Again, these

constraints characterize all of the puzzle instances considered in this work.

2.2 Data Points

Once the framework is able to represent the general characteristics that govern a particular

problem domain, the challenge lies in finding characteristics specific to a given problem

instance. Once found, these characteristics are used to refine the generic model such that

15



it best represents the problem instance. To extract information specific to an instance,

the framework must represent the initial specifications of an instance along with any

additional information that may be available. This ability is captured in the framework

through the use of data points.

Generally speaking, data points are elements of the input data, such as information

that instantiates some of the CSP variables of the generic model. These data points

are described using a set of domain-specific features defined by a domain expert. These

features represent characteristics specific to the problem domain. A collection of feature

values describes a single data point and provides the framework with instance-specific

information used to infer the characteristics governing the instance.

The availability of public online data sources, such as gazetteers for the BID problem

domain, allows the framework to represent data points using a rich set of features. The

feature values can be automatically extracted from online information and in turn the data

points provide enough information to infer the representative characteristics of a given

problem instance. For the BID problem, data points comprise buildings with known

addresses obtained from online gazetteers. These data points are landmark buildings

defined by the following features: ID, Address Number, Street Name and Orientation,

Side of Street, Latitude, Longitude, Block Number, and Street Ordering. Vector data

sources and online phone books provide information that can be used to automatically

assign values to the features of all data points and to reduce the domains of variables in

the constraint model. Figure 2.1 provides an example set of data points for El Segundo

California.

16



Figure 2.1: Sample BID gazetteer data points for El Segundo.

17



When additional information is neither available nor applicable, as in Sudoku puzzles,

the data points represent all of the information provided by the problem specification.

Specifically, data points in the Sudoku domain represent the cells filled with numbers

in the initial puzzle definition. These data points are defined by the features: Filled-in

Number, Row, Column, Region, and Cell Color. The values for each data points’ feature

can be derived from the problem definition. As an example, all filled-in cells on the first

row have a value of 1 assigned to the Row feature. A sample Sudoku puzzle is presented

in Figure 2.2 where the data points represent all the cells that contain a number.

Figure 2.2: Sample data points for a Sudoku puzzle.

The framework uses the relationships between instance-specific data points to infer

the applicable characteristics of the instance. This processes involves the selection of

constraints from a constraint library (described in Section 2.3) using inference rules (out-

lined in Section 2.4) to exploit the identified relationships. The approach used to select

the applicable constraints is described in Chapter 3.

18



2.3 Constraint Library

Having established a representation for the common characteristics of a problem domain

(the generic model) and for the information specific to the instance (the data points),

the framework needs to represent and store relationships that might exist for any given

problem instance. With the goal of refining a generic constraint model and to be consistent

with the representation of this generic model, each specialized characteristic is defined as

a constraint. All of these constraints are stored in a constraint library and made available

to the framework.

Specifically, a constraint library is used as a repository of problem characteristics

that do not apply in all problem instances. A problem characteristic, identified by a

domain expert and not universally applicable to all problem instances, is represented as

an individual constraint and stored in the library. Subsequently, the automatic inference

of a constraint model involves the selection (from this library) and the instantiation of

applicable constraints for a given problem instance. The selection process is outlined in

Chapter 3 and Chapter 5 describes the instantiation of the applicable constraints.

An alternate approach to housing individual constraints in a library is to store pre-

constructed sets of constraints where a set defines one problem instance type for a given

problem class. Using this approach, all pre-determined problem instance types would

be represented by some set of constraints. However, treating the library as a “bag of

constraints”, as done in the inference framework, is more robust in its ability to han-

dle variations across problem instances. Specifically, storing the constraints individually

19



rather than in sets allows the framework to support problem instance types that may not

have been pre-determined by the domain expert.

For example, if a new variation of Sudoku uses a previously unseen combination

of the existing Sudoku constraints, the framework would be able to support this new

variation without any modification. The only scenario that would require an update to

the constraint library would be when a new constraint within a supported problem class

is identified. Once identified, this new constraint would be added to the library and all

subsequent problem instances that exhibit the characteristics captured by this constraint

could then be correctly modeled. This view of the constraint library is similar to the

Local-As-View approach to data integration [28; 43].

Table 2.1: Sample constraints stored in the BID problem constraint library.

Name Description

Addresses on the same side of a E/W running street have the
Odd on North

same parity

Addresses increase monotonically to the North along a N/S
Increasing North

running street

K-Block Numbering Address increment by a factor of k across street blocks

Table 2.1 specifies some of the constraints found in the BID problem constraint library.

The full set of constraints can be found in Appendix A.1. As an example, Odd on North is

a unary constraint that specifies the side on which odd numbers lie for East/West running

streets. For example, if the constraint Odd on North is asserted in an instantiated model,

all buildings that are placed on the north side of E/W running streets must be assigned

an odd value. The notion of addresses on one side of a street having the same parity

is a common addressing characteristic that applies to most of the cities in the world.

20



However, in surveying addressing schemas throughout the world, I found that the side

on which addresses are even/odd varies drastically. Additionally, parts of some cities,

such as London, England, contain addresses with a mixed parity on the same side of the

street and do not abide by this constraint. The variation of the parity in addresses is

demonstrated in the experimental results presented in Chapter 6.

The Increasing North constraint is a binary constraint that specifies the direction in

which addresses get bigger along a North/South running street. Much like the Odd on

North constraint, the direction in which addresses increase varies greatly depending on

the area of interest. As such, constraints representing the directions in which addresses

increase for North/South and East/West running streets are stored in the constraint

library. Furthermore, the direction in which addresses increase also varies within a given

city, further complicating the inference process. This phenomenon is handled by learning

the scope of inferred constraints and the process by which this is done is detailed in

Chapter 4.

The K-Block numbering is a binary constraint that limits the allowable values of two

corner buildings across a city block. This constraint specifics the increment value K

by which addresses increase across street blocks. This is a common characteristic for

North American cities but its applicability is rare in other parts of the world, as shown

in Chapter 6. The applicability of the three above-mentioned constraints is not universal

and as such they are part of the constraint library. For the BID problem, the constraint

library represents a collection of addressing schemas that we know to exist somewhere

but not everywhere in the world.

21



Table 2.2: Sample constraints stored in the Sudoku puzzle constraint library.

Name Description

AllDiff Diagonal All numbers for cells along a diagonal must be different

All numbers for cells in the given color must be in
Color Small

the range {1. . .4}

All numbers for cells in the given color must be greater then or
Magic

equal to the number of colored cells

Table 2.2 specifies some of the constraints found in the Sudoku puzzle constraint

library. The full set of constraints can be seen in Appendix A.2. As outlined in Section 1.2,

variations of the basic Sudoku puzzles are played throughout the world. The role of the

constraint library in the Sudoku puzzle domain is to capture the various characteristics

that are added to the basic Sudoku puzzle when creating these variants. For example,

the AllDiff Diagonal constraint is non-binary and ensures that numbers on the diagonals

are all different. This characteristic is derived from Diagonal Sudoku puzzles and it also

occurs in some color-based puzzles and in Magic Sudoku variations.

Similarly, Color Small is a unary constraint that captures a characteristic found in

Big/Small Sudoku puzzles and limits the domain of cells for a given color to the range [1,4].

Finally the Magic unary constraint limits the domain of cells for the given color to the

number of cells of that same color in the particular region. Again, this constraint is derived

from a variation of Sudoku called Magic Sudoku. In capturing the defining characteristics

of Sudoku puzzles that build on the basic one, the constraint library allows the inference

framework to be the foundation for a generic Sudoku puzzle solver. For a generic Sudoku

solver to function, it must contend with both puzzles of varying constraints and with

combinations of constraints it may not have seen previously. The latter presents a strong

22



case for treating the constraint library as a “bag of constraints” versus storing constraint

models for all known puzzle types.

2.4 Inference Rules

The main function of the constraint-inference framework is the selection of applicable

constraints for a given problem instance from the constraint library. Two difficulties

need to be addressed before this process can take place. First, certain properties must

hold in the problem instance for specific constraints to be applicable. Testing for these

properties is imperative to determining the applicability of constraints. Second, the data

points are defined by a set of features and as such reside in the feature space. On the

other hand, the constraints in the library are defined over the constraint variables that

make up a constraint model and exist in the variable space. These are two separate spaces

and a mapping from one to the other must be established. To handle both issues, the

framework uses inference rules to represent relationships between data points and maps

these relationships to constraints in the variable space.

The inference rules in the framework are predefined by a domain expert, similar to the

use of expert modules in Proverb [45], and the rule language supports any programmable

predicate expressions. The rules are separated from the constraints in the library and act

as a link between the constraints and the features defining the data points. These logical

expressions represent a relationship that must hold between the feature values of two

or more data points if a given characteristic appears in the particular problem instance.

This characteristic is represented by a unique constraint in the constraint library.

23



More specifically, the difference between rules and constraints is as follows: A con-

straint’s scope is over a subset of the variables in the model. Therefore, a constraint is

satisfied given a particular set of variable-value pairs (i.e., assignments of values to vari-

ables). On the other hand, each inference rule maps a logic expression x to a constraint

c in the constraint library where each logic expression is defined over the features of the

data points. Therefore, the inference rules act as a mapping of the features defining the

data points to supports for constraints in the constraint library.

When a logical expression x (an inference rule) is asserted, a positive support is

registered for the corresponding constraint c, otherwise c receives negative support. The

inference framework supports mapping multiple rules, i.e. different logic expressions, to

a single constraint. In Chapter 6, I show how this ability leads to higher confidence

when inferring constraints. However, more general rules may lead to noisy supports for

a constraint. Section 3.1.2 explains the process by which the framework deals with this

noise.

If B1 and B2 are on E/W-running street ∧
( addr(B1) and addr(B2) are odd ∧ B1, B2 are on N side of street )
Then increment positive support of constraint ‘Odd on North’
Else increment negative support of constraint ‘Odd on North’

If B1 and B2 are on the same street ∧
( modulo k(addr(B1)) − modulo k(addr(B2)) = blockNum(B1) − blockNum(B2) )
Then increment positive support of constraint ‘K-Block Numbering’ where k=10
Else increment negative support of constraint ‘K-Block Numbering’ where k=10

If B1, B2 are on E/W-running street ∧
( addr(B1)>addr(B2) ∧ latitude(B1)>latitude(B2) )
Then increment positive support of constraint ‘Increasing North’
Else increment negative support of constraint ‘Increasing North’

Figure 2.3: Three sample inference rules.

24



Figure 2.3 shows three sample rules in the BID problem domain for the constraints

shown in Table 2.1. The first rule provides support for the “Odd on North” constraint

that limits odd numbers to the North side of East/West running streets. The second

rule provides support for the “K-Block Numbering” constraint where k=10, specifying

the increment by which addresses across streets increase. Finally, the last rule provides

support for the “Increasing North” constraint that ensures addresses increase to the North

direction on North/South running streets. These rules represent a very small subset of

the rules used in the BID problem domain. Appendix A.1 presents the full set of rules

that map to all of the constraints in the BID problem constraint library.

Figure 2.4 shows three sample rules in the Sudoku puzzle domain for the constraints

shown in Table 2.2. The first rule provides support for the “All-Diff Diagonal” constraint

that ensures all numbers on the diagonals are different. The second rule provides support

for the “Color Small” constraint that ensures all numbers for a given color are in [1,4].

Finally, the last rule ensures that the number in a colored cell is less than or equal to

the numbered of colored cells in the given region (a characteristic of the Magic Sudoku

puzzle). These rules represent a subset of the rules used for Sudoku puzzles. Appendix A.2

presents the full set of inference rules introduced by the Sudoku puzzle domain.

2.5 Inference Engine

The data points, inference rules, and the constraint library provide the framework with

components that can be used together to infer the characteristics of a particular problem

instance. However, a mechanism to evaluate the rules and select the constraints from the

25



If P1, P2 are cells on the same diagonal ∧ ( Number(P1)! =Number(P2) )
Then increment positive support of constraint “All-Diff Diagonal”
Else increment negative support of constraint “All-Diff Diagonal”

If P1, P2 are cells with the same color ∧ ( Number(P1)< 5 ∧ Number(P2)< 5 )
Then increment positive support of constraint “Color Small”
Else increment negative support of constraint “Color Small”

If P1, P2 are cells on a colored cell ∧
( Number(P1) <= #ColorsInRegion ∧ Number(P2) <= #ColorsInRegion )

Then increment positive support of constraint “Magic”
Else increment negative support of constraint “Magic”

Figure 2.4: Three sample Sudoku inference rules.

library needs to be defined. The inference engine serves this purpose in the framework.

As described below, its goal is to be general and its use domain independent.

As in a classical Expert System architecture, the inference engine is separated from

the rules so that the inference framework can be applied across problem domains. The

inference engine’s responsibility lies in testing the inference rules. These tests determine

which constraints should be selected from the library of constraints and the scope of

the applicable constraints. The constraint-selection process (see Chapter 3) and the

determination of scopes (see Chapter 4) are presented in detail in subsequent chapters.

The inference engine is central in taking the knowledge represented in the data points,

the constraint library, and in the inference rules and combining it to produce the most

representative constraint model for a specific problem instance. Furthermore, the infor-

mation contained in the problem definition may be insufficient or sparse. For example,

in the BID problem there may be a small number of data points available for the ge-

ographic area of interest or in a Sudoku puzzle few cells are initially filled in. For the

26



framework to be effective as a whole, it must contend with this lack of information. As

such, the inference engine implements an iterative approach for constraint propagation

(see Section 3.2) that augments the set of initial data points.

Additionally, when dealing with input data, the framework needs to be flexible enough

to handle noise coming from the online data sources (when applicable) and noise intro-

duced by the generation of incorrect supports from the data points. Towards this end,

the inference engine uses support levels to deal with noise. A support level is a general

formalism used to represent the framework’s belief in the applicability of a constraint in

the constraint library and it is formally defined in Section 3.1.2.

To be applicable in a large-scale application, the framework must efficiently and auto-

matically generate constraint models. A bucketing approach (see Section 3.1.1) is used to

separate the data points and improves the performance of the process. To automate the

process, the inference engine uses generalized machine learning techniques to learn the

scopes of the constraints (see Chapter 4). Finally, the engine uses a new XML schema

to represent the generated constraint model that is passed onto a constraint solver (see

Chapter 5).

2.6 General Framework Definition

Figure 2.5 informally defines the general inference framework. The generic representation

of the concepts presented in this chapter allows the framework to be applied across various

problem domains. When the framework is applied to a particular domain, a domain

expert defines the features of the data points, inference rules and the constraints for

27



that domain. Even though the effort exerted by the domain expert is non-trivial, it

pales in comparison to the effort required to manually defining constraint models for all

foreseeable problem instances. An initial “setup” step is the only requirement of the

expert and, when combined with the automated generation of constraint models by the

framework, represents a significant reduction in the onus placed on the expert.

Given:

• a generic CSP model of a particular class of problems containing a set of generic
constraints CG applicable to all problem instances within the class,

• a set of data points {Di}, where each data point Di is described by a set of domain-
expert defined features, and

• a library with a set of constraints CL that may apply to a given instance but do
not apply to all instances of this class,

a Constraint-Inference Framework is a set of rules {Rm} along with an algorithm (i.e.,
inference engine) that operates on these rules. The rules map the features of Di to the
constraints {CL} of the library, indicating which constraints govern a problem instance.

Figure 2.5: General definition of the constraint-inference framework.

This definition aims to cover all of the requirements of CSPs (variables, domains, and

constraints) and the algorithms used within the framework leverage existing techniques

to limit the involvement of a domain expert. Using a generic CSP model allows for the

use of constraint propagation to augment the input information for a problem instance.

The combination of data points and a constraint library makes the automatic generation

of constraint models for given problem instances feasible. More importantly, the general

definition provided in Figure 2.5 allows for the automatic generation of constraint models

across problem domains. Subsequent chapters describe algorithms that use the frame-

work’s components to select the applicable constraints (Chapter 3), find the scopes of

28



the inferred constraints (Chapter 4), and instantiate the constraint model (Chapter 5).

Figure 2.6 illustrates the components of the general framework.

Figure 2.6: General architecture of the constraint-inference framwork.

2.7 End-to-End Model Generation Process

In this section, I outline the end-to-end process that uses the framework presented in this

chapter to refine constraint models. This process is domain-independent and defines the

general procedures used by the constraint-inference framework to generate a specialized

model for a given problem instance. Each component in this process is presented in detail

in subsequent chapters and the case study presented in Section 2.8 is used to clarify each

concept. Additionally, examples from Sudoku puzzles help maintain the generality of this

process.

29



Figure 2.7 illustrates the end-to-end model generation process. Generally speaking,

the process of constructing instance-specific constraint models begins by taking data

specific to the instance and inferring the set of applicable constraints. The constraint-

inference process is outlined in detail in Chapter 3. The Finding Scope component is

responsible for determining the scope of the applicable constraints by learning Support

Vector Machine (SVM) models for the instance, the details of which are presented in

Chapter 4. Finally, the inferred constraints along with their scopes are passed to a model

creation component which instantiates a model of the problem instance. This instantiated

model is then passed to a CSP solver that solves it. The process behind the instantiation

of the inferred model is described in Chapter 5.

Figure 2.7: End-to-end inference process.

2.8 Case Study

In this section, I describe a specific instance of the BID problem for El Segundo California.

I provide examples of data points used in this area and I define the set of addressing

30



characteristics that govern the city. I also outline the non-homogeneity of the area and

I explain how the framework must contend with this irregularity. This specific problem

instance is used in the following chapters of the thesis to clarify the process by which the

inference framework refines representative constraint models.

To better illustrate the model generation process, consider the application of the

inference framework to solving the BID problem for the city of El Segundo California,

as shown in Figure 2.8. To extract information specific to this problem instance, the

framework uses the coordinates that define the area’s bounding box to retrieve the relevant

vector data and phone-book entries. The vector data allows the framework to determine

the set of potential street assignments for any given building, and the phone book provides

a list of known addresses in the area. The data points for the area are obtained from

an online gazetteer, which provides a small set of buildings identified by both an address

and their latitude and longitude coordinates.

Figure 2.8: The area of El Segundo for which a model must be inferred.

31



The data points are defined using the features: address number, street name and

orientation, side of street, block number, street ordering and latitude and longitude co-

ordinates. The feature values for these points are either provided by the gazetteer or

deduced from the vector data. Two example data points, representing the First Baptist

Church and the Saint Anthony’s School, are shown in Figure 2.9. The goal of the con-

straint inference framework is to infer the defining addressing constraints for this area

from the full set of data points.

〈Name | AddressNum | StreetType | StreetName | StreetSide | Latitude | Longitude〉

First Baptist Church | 591 | EW | E Palm Ave | N | 33.925291 | -118.4100763
Saint Anthony’s School | 233 | NS | Lomita St | W | 33.9183466 | -118.4084094

Figure 2.9: Two example data points in El Segundo.

The set of applicable constraints for El Segundo is illustrated in Figure 2.10. These

constraints are characterized as either being applicable to the entire city or only applying

to a geographical subsection. As shown in Figure 2.10, the “globally” applicable con-

straints are as follows: odd numbers are on the West side of North/South running streets

and on the North side of East/West running streets. Secondly, the block numbering ad-

dressing scheme is present, enforcing that the addresses of buildings across city blocks

increment by 100. Lastly, when traveling in the northern direction along North/South

running streets, the addresses of buildings increase. Again, these constraints apply to all

areas of El Segundo.

Two additional addressing constraints govern this area. The addresses of buildings

get bigger when you travel to the West along East/West running streets. However,

this constraint only applies to buildings that are located to the West of Main Street.

32



Figure 2.10: The coverage of the applicable constraints in El Segundo.

For all buildings located East of Main Street, the addresses increase when you travel

East along East/West running streets. Therefore, the set of buildings to which either

of these constraints apply is defined by a building’s geographic location relative to the

North/South running Main Street. These subsets of buildings define the scope of these

two constraints and are highlighted in Figure 2.10.

The constraint inference framework must infer the applicable addressing constraints

(along with their scopes) that represent the addressing characteristics described above.

Specifically, the framework uses buildings with known addresses (data points), such as

those found in the USGS gazetteer and shown in Figure 2.9, to establish the relationships

that occur between the buildings. For example, it discovers that when comparing two

33



address on the North side of East/West running they are both odd. The discovery of

such relationships signifies that the Odd on North constraint applies to this area and the

framework infers its applicability over all buildings on East/West running streets. This

process continues until all of the applicable addressing constraints and their respective

scopes are inferred, and a constraint model corresponding to the addressing characteristics

illustrated in Figure 2.10 is constructed.

The variables in the constraint model represent the buildings in the area. Each build-

ing has a corresponding variable to which a value (an address) must be assigned. The

domain of these variables is determined using the vector data and a building’s position

on the map. Finally, the constraints correspond to the set of applicable constraints in-

ferred by the framework. These constraints are instantiated such that they cover the

buildings within each constraint’s scope. For example, the Increasing West constraint is

instantiated over all buildings on East/West running streets west of Main Street, such

as W Pine Avenue, but not over any buildings to the east of Main Street, such as those

on E Imperial Avenue. Similarly, the Odd on North constraint is instantiated over all

buildings along East/West running streets in the area. Once the instantiated model is

generated, it can be passed to the CSP solver so that addresses are assigned to buildings

and a viable solution(s) is produced.

34



Chapter 3

Selecting Constraints

In this chapter, I introduce the algorithm used to select the applicable constraints for

a given problem instance. Each component of this algorithm is motivated and detailed.

The BID problem instance presented in Section 2.8 is used help ground the techniques

used and further examples from the Sudoku puzzle domain are used to demonstrate the

generality of these techniques but are presented in less detail. The chapter concludes by

outlining how constraint propagation can be used to augment the input information of a

problem instance.

3.1 Constraint Inference Algorithm

In this section I describe the algorithm used to select the applicable constraints from

the constraint library for a given problem instance. I begin by presenting the algorithm

in its entirety and outlining the flow of execution. Subsequent subsections delve deeper

into the function of each component of the algorithm, providing detailed examples for

clarification. The BID problem in the El Segundo area serves as the primary example

and Sudoku puzzles provide a secondary example used to highlight the generality of the

35



techniques. I conclude the section by presenting an optional algorithm that can be used

to augment the input information in certain domains.

Constraint-Inference(D, finalSet)

1 finalSet ← {}
2 constraints ← constraintLibrary
3 buckets ← CreateBuckets(D)
4 for i ← 0 to size[buckets]
5 do B ← buckets[i]
6 constraints ← EvaluateRules(B)
7 for i ← 0 to size[constraints]
8 do C ← constraints[i]
9 if posSupport(C) > negSupport(C)

10 then finalSet ← finalSet
⋃

C

Figure 3.1: Constraint inference algorithm.

Figure 3.1 presents the algorithm used to infer the applicable constraints. The algo-

rithm begins with a library of constraints relevant to the problem domain, an empty set

of inferred constraints and a set of data points. The CreateBuckets procedure, out-

lined in Section 3.1.1, divides the data points into buckets based on their feature values,

resulting in a more efficient execution of the framework for instances that contain a large

set of data points. Once the data points have been divided, the framework is ready to

find the relationships that exist between the points.

These relationships are extracted by the EvaluateRules procedure, analyzed in

Section 3.1.2. This procedure evaluates the relevant inference rules using data points

in each bucket to provide supports for the constraints in the library. The framework

determines the applicability of constraints by studying the positive and negative supports

generated for each constraint. Section 3.1.3 details the procedure used to make this

determination. The algorithm returns the set of constraints it has classified as applicable.

36



The execution of this algorithm is domain independent. It assumes a set of data

points is available and a domain expert has previously populated the constraint library

and defined inference rules that map to these constraints. The data points are provided

by an online source such as a gazetteer in the case of the BID problem for El Segundo or

they are created from the initial problem definition such as the filled-in cells of a Sudoku

puzzle. However, none of the procedures use techniques that are only applicable in a

certain domain and as such make the algorithm applicable to all problem domains within

the class of solvable CSPs.

3.1.1 Bucket Creation

The ability to infer applicable constraints for a given problem instance largely depends

on how well the framework can identify relationships between data points and map these

relationships to constraints in the library. However, only certain pairs of data points

provide useful information about characteristics that hold for the problem instance. Take

the BID problem in El Segundo as an example. Two buildings along the East/West

running streets W Imperial Avenue and W Pine Avenue, when compared to each other, do

not provide support for the direction in which addresses increase along the North/South

running Sierra Street.

One approach to evaluating the inference rules is to do a pairwise comparison of all

the data points. For instances where the number of data points is relatively small, this

is an acceptable approach. However, to improve the robustness and applicability of the

inference framework, the comparison of data points should be efficient and scale to large

sets of points. The general technique used in the framework is to divide the full set of data

37



points into “relevant” subsets where the comparison of data points within each subset

provides pertinent information that can be used to generate support for constraints.

Create-Buckets(D)

1 buckets ← {}
2 for each point d ∈ D
3 do
4 for each featureV alue of d
5 do
6 if ∃b ∈ buckets where b is defined by featureV alue
7 then b ← d
8 else
9 create bucket newB defined by featureV alue

10 buckets ← newB
11 newB ← d
12 for each bucket b ∈ buckets
13 do
14 if |b| = 1
15 then remove b from buckets
16 return buckets

Figure 3.2: The algorithm used to create buckets of data points.

I developed a bucketing algorithm (represented as CreateBuckets in Figure 3.1) to

divide the data points into meaningful subsets. This algorithm is presented in Figure 3.2

and works as follows. The framework looks at the feature values for each data point.

Given a feature-value pair, for example street = E Grand Ave, it checks if a bucket

defined by this feature-value pair exists in the set of previously created buckets. If such a

bucket exists, then the given data point is added to it. Otherwise a new bucket, defined

by the feature-value pair, is created and the data point is added to this new bucket. The

algorithm continues until it has analyzed all of the data points. Finally, it then removes

all buckets with only one data point in them from the set of constructed buckets and

38



returns this reduced set. The rational behind this removal is that data point comparisons

are binary and as such buckets with a single point are not useful.

This algorithm is similar in nature to the bucket approach used for data integration

[41]. The policy used to create the buckets is outlined above and supports any trans-

formation on a feature value. However, the current implementation of the framework

only contains rules that require a feature value of two points to be the same and as such

all buckets contain data points with a common feature value. In the BID problem, this

means that buckets are created so they contain data points that are on the same street

(i.e., E Grand Avenue), the same side of the street (i.e., South side), or some other com-

mon feature value (for a full set of rules, please see Appendix A.1). The bucket creation

policy is linear in the set of all possible feature values.

Figure 3.3: Bucketing algorithm example.

A more concrete example of the CreateBuckets algorithm is illustrated in Fig-

ure 3.3 and works as follows: As previously stated, the data points are placed into buckets

that correspond to unique feature values, and a single data point may appear in multiple

buckets. For example, consider two data points p1 and p2 defined by features (a,b) where

p1(a, b)=(1,2) and p2(a, b)=(1,3). In this case, three buckets are created: (a=1)={p1,p2},

(b=2)={p1}, and (b=3)={p2}.

39



Church of Christ | 717 | EW | E Grand Ave | N | 33.9197355 | -118.4081317
Kingdom Hall | 608 | EW | E Grand Ave | S | 33.91918 | -118.4097984

Imperial School | 540 | EW | E Imperial Ave | S | 33.9302909 | -118.4106319

Figure 3.4: Subset of data points in El Segundo.

More specifically, consider the subset of data points for El Segundo seen in Figure 3.4.

Some example buckets created by the CreateBuckets procedure would be: a bucket

with all points on E Grand Ave would contain the Church of Christ and the Kingdom

Hall points, a bucket for all East/West running streets (EW feature value) would contain

all three points, and a bucket for points on the North side of a street (N feature value)

would contain only the Church of Christ data point. Obviously when applied to the full

set of data points for El Segundo, the number and the size of buckets would increase.

To improve the efficiency of the selection algorithm, the inference rules are evaluated

on every combination of data points within a bucket to provide support for a given

constraint (the algorithmic details for rule evaluation are presented in Section 3.1.2).

This approach eliminates a pair-wise comparison of all data points, rather limiting the

comparison to only data points within a bucket. The reduction in the number of data

point comparisons dramatically improves the algorithm’s runtime, although this reduction

would be less drastic given less restrictive buckets, such as those defined using the ≤ or

≥ operators.

Without this approach, the time complexity of data point comparison is O(k2n) where

k is the number of inference rules and n is the number of data points. However, the

bucketing algorithm described in this section greatly reduces the chances of reaching

this worst case scenario as it is highly unlikely all data points would be placed in each

40



bucket. In practice, each bucket rarely contains more then 75% of the data points and

on average contains roughly 50% of the points. Additionally, the creation of buckets is

a linear process in the number of feature values. The benefits of this approach are best

seen in the evaluation of the inference framework on the El Segundo region with 1650

gazetteer points (see Section 6.3.1) where 69 relevant buckets are created from ∼1720

feature values.

Applying the bucketing technique in the Sudoku puzzle domain also tackles the prob-

lem where not all data-point comparisons provide useful information for each constraint

in the library. For example, two points not on the same row do not provide any insight

into whether the AllDiff Row constraint (enforcing that all numbers in a row are differ-

ent) is applicable to a particular puzzle. Therefore, buckets are created such that each

one contains all the data points in the same row, the same column, and based on some

other common feature values. Subsequently, only buckets containing data points in the

same row would be used to generate support for a All-Diff Row constraint. The creation

of buckets for Sudoku puzzles and all problem domains to which the constraint-inference

framework is applied is accomplished using the general bucket-creation algorithm de-

scribed above.

3.1.2 Evaluating Inference Rules

The ability to correctly infer constraints relies on the extraction of support for constraints

from the input data. This support is generated by evaluating the set of inference rules

using a given bucket’s data points. This support, expressed as a support level, is used to

determine the applicability of the constraints in the library. In this section, I describe

41



how inference rules are evaluated and the techniques used to produce the highest possible

levels of support. Section 3.1.3 defines the term ‘support level’ and describes the process

by which constraints are deemed applicable.

As described in Section 2.4, the role of an inference rule is to provide support for a

particular constraint in the library. The rule is a logical expression over the features of

the data points. Because the features describing the data points do not map directly

to variables in the constraint model, the inference rules act as a bridge between the

relationships present in the feature space and the constraints in the constraint space.

Each rule represents a condition that must be asserted for a particular characteristic

(constraint) to hold in a given problem instance.

The process by which supports are generated is as follows. Once buckets have been

created and filled, the data points within each bucket are used to evaluate the inference

rules (EvaluateRules in Figure 3.1). This algorithm is outlined in Figure 3.5 and

works as follows. First, all of the relevant inference rules are selected for a given bucket.

A relevant inference rule is one that has an equality requirement involving the feature

defining the given bucket. In the BID problem for El Segundo, this means that the bucket

defined by the feature streetType and the value E/W (i.e., the bucket containing all data

points that lie on an East/West running street) is used to evaluate the rules that provide

support for the Odd on North constraint in the constraint library. These rules all require

that two data points being compared be on the same streetType. The Odd on North

constraint limits odd numbers to the North side of E/W running streets and, as such, a

precondition for all inference rules that map to this constraint requires data points to be

42



on an East/West running street. Therefore, it makes sense to generate support for this

constraint by only comparing data points from the E/W running streets bucket.

EvaluateRules(B)

1 supportedConstraints ← {}
2 for each rule r ∈ inferenceRules
3 do
4 if r contains an equality condition for the feature defining B
5 then for all pairs of points pp ∈ B
6 if pp satisfies r
7 then increase positive support for consMappedTo(r, c)
8 else increase negative support for consMappedTo(r, c)
9 supportConstraints ← c

10 return supportedConstraints

Figure 3.5: The algorithm used to evaluate inference rules for a given bucket.

Given a particular bucket and a set of relevant inference rules, the framework generates

support for a subset of the constraints in the library. As previously stated, each inference

rule maps a logic expression x to a constraint c in the constraint library, and multiple

rules, i.e. different logic expressions, can map to a single constraint. When an expression

x is asserted, a positive support is registered for the corresponding constraint c, else c

receives negative support. Because only relevant data points are used to evaluate the

rules, non-assertion of a rule implies negative support for the corresponding constraint.

For example, if two buildings on an East/West running street are on the North side

and both have an odd address, the Odd on North rules are asserted and these two points

provide positive support for the Odd on North constraint. On the other hand, if the two

data points have even addresses the ‘else’ clause of the rules is executed and negative

support is provided for the Odd on North constraint. The algorithm finishes by returning

43



a set of constraints along with their supports (positive, negative, or a mix of the two) as

generated by the points in the given bucket.

To generate a comprehensive set of supports, the framework must maintain a large

set of inference rules. In allowing any number of inference rules to support a given

constraint, rules ranging from highly specific to general can be used by the framework.

By increasing the number of rules, we are also increasing the number of supports generated

per constraint. To maximize the number of supports provided, I generated an exhaustive

set of rules for each constraint in the library by finding all possible scenarios where data

points could support a given constraint. The full rule sets for both the BID problem and

Sudoku puzzles are presented in Appendix A.

If B1 and B2 are on E/W-running street ∧
( addr(B1) and addr(B2) are odd ∧ B1, B2 are on N side of street )
Then increment positive support of constraint ‘Odd on North’
Else increment negative support of constraint ‘Odd on North’

If B1 and B2 are on E/W-running street ∧
( B1 and B2 are on the same street ∧ addr(B1) and addr(B2) are even
∧ B1, B2 are on S side of street )

Then increment positive support of constraint ‘Odd on North’
Else increment negative support of constraint ‘Odd on North’

If B1 and B2 are on E/W-running street ∧
( addr(B1) is odd ∧ addr(B2) is even ∧ B1, is on N side of street )
Then increment positive support of constraint ‘Odd on North’
Else increment negative support of constraint ‘Odd on North’

If B1 and B2 are on E/W-running street ∧
( addr(B1) is even ∧ addr(B2) is odd ∧ B1, is on S side of street )
Then increment positive support of constraint ‘Odd on North’
Else increment negative support of constraint ‘Odd on North’

Figure 3.6: Sample BID problem inference rules providing support for Odd on North.

44



Figure 3.6 shows four sample rules in the BID problem domain. All of these rules

provide support for the Odd on North constraint and we can see that the specificity of

these rules varies. For example, the first rule is more general then the second in that it

compares two points on a E/W running street while the second rule only compares these

points if they are also on the same street. The additional support generated by the larger

set of inference rules increases the confidence in the results of the inference mechanism.

However, as I discuss in the following section, the generality of some rules can lead

to incorrect positive support for certain constraints. Therefore when determining the

applicability of constraints, the framework needs to contend with false positive supports.

3.1.3 Determining Constraint Applicability

After comparing all data points within each bucket, the inference engine has a set of

supports, both positive and negative, for constraints in the library. Constraints with

no supports may exist, and are discussed later in this section. Before the applicable

set of constraints can be determined, we need to establish a metric that quantifies the

applicability of these constraints. The metric used by the framework is support level.

A constraint’s support level is a single number corresponding to a function of its

positive and negative supports. A support level of 1 implies that all of the supports for

the given constraint are positive, −1 implies they are all negative and 0 means there is

an equal distribution of both. This metric allows the framework to describe the ratio of

the positive to negative constraints as a single number that can be used to establish the

applicability of the constraint. Note that the range of support levels is not restricted to

{-1,0,1} but may take any rational number in the range [−1,1]. Because multiple rules

45



can provide a positive or negative support to a given constraint, we can use any ratio of

positive to negative support to determine the applicability of the constraint.

After evaluating the rules, each constraint is classified as applicable, non-applicable

or unknown based on their support level. The set of inferred constraints (finalSet in

Figure 3.1) is composed of all constraints classified as applicable (even those with negative

support) and constraints with no support are classified as unknown. My initial work

with support levels required a constraint to have a support level of 1 to be classified

as applicable. While this stringent requirement helped establish the feasibility of the

framework, it is not practical due to noise encountered in the problem.

The noise that the inference framework must contend with manifests itself in two

forms: (1) noise generated by the data points themselves, and (2) noisy supports generated

by the evaluation of the rules. In cases where the framework uses publicly available online

sources to gather data points, there is no guarantee that all the points are accurate. In

the BID problem, there are many online sources that provide point data. However, not

all sources are maintained by institutions such as the government and most sources do

not adhere to a 100% accuracy standard. For example, buildings with incorrect addresses

or latitude and longitude coordinates are not uncommon in data sources that cover areas

with new construction. Specific to El Segundo, Recreation Park, which spans two city

blocks, is identified with a single address in the gazetteer. The data points with incorrect

feature values, when included in the input information, may lead to noisy supports for

certain constraints.

Furthermore, as I have shown in Section 3.1.2 and as seen in Appendix A, within

a set of inference rules that provide support for a particular constraint, some rules are

46



more general than others. This generality can lead to false positive supports for a given

constraint. Take for example two rules that provide support for the Block Numbering

constraint in the BID problem. This constraint specifies that the addresses across city

blocks must increment by some fixed factor (in El Segundo, the 100-block numbering

constraint is enforced). If one rule requires the data points being compared must lie

on the same street and the other more general rule does not, the more general rule can

provide positive support for this constraint when in fact it does not apply to the area.

This scenario is depicted in Figure 3.7 where the comparison of Building 2 and Building

4 leads to a false positive support for the Block Numbering constraint.

Figure 3.7: Example scenario where false support is provided for Block-numbering.

Relaxing the requirement that an applicable constraint have a support level of 1 (all

support must be positive) is the approach used in the framework. Specifically, a support

level of greater than 0, meaning there is a higher ratio of positive to negative support,

classifies a constraint as applicable. Such an approach contends with both forms of

noise while still maintaining the accuracy of the framework when inferring the applicable

constraints for a given problem instance. This claim is validated by the experimental

47



results shown in Section 6.3.1. As previously mentioned, any support level can be used

to classify constraints and this ratio can be adjusted as required by the problem domain.

To avoid classifying constraints as unknown, the framework generates as many sup-

ports as possible. This is done by defining as complete of a set of inference rules as

possible for each constraint (see Section 3.1.2). However, if the input information is very

sparse, it may be impossible to generate supports for all constraints. In these cases,

the framework does not add the constraints with no support to the inferred constraint

model. The contention being made is that it is better to return an under-constrained

model that leads to a solution(s) rather than inferring an overly-constrained model that

is not solvable and requires backtracking.

After determining the applicability of the constraints, we are left with a set of con-

straints that apply somewhere within the problem instance. We refer to the variables

over which constraints apply as a constraint’s scope. Determining the scope of the appli-

cable constraints is an important step in model generation because without it we would

be unable to solve BID problem instances such as those in El Segundo where address

numbers do not increase monotonically (see Section 2.8). The need to find a constraint’s

scope is not specific to the BID problem and it also arises in additional domains such as

Sudoku. Chapter 4 describes the process by which the scope of all applicable constraints

is learned.

48



3.2 Augmenting Data Points Using Constraint Propagation

Data-point distribution within a problem instance affects the inference capabilities of the

framework. No matter how exhaustive the set of inference rules and how encompassing

the set of constraints in the library, without sufficient information in the input data an

accurate model of a problem instance is very difficult to infer. One possible solution to

the lack of input information is to augment the set of data points. This can be achieved

by propagating the constraints in the generic model to induce new data points. Because

the constraints in the generic model are monotonic and apply to all problem instances,

applying them to the initial set of data points can derive new information not explicit in

the problem definition.

The procedure described in this section is an optional component in the constraint-

selection process. When a problem instance contains a small number of variables, such

as a 9×9 Sudoku puzzle, the number of newly inferred data points can be significant.

However, when assigning addresses to buildings in an area such as El Segundo that

contains over 1650 buildings, the benefits of this procedure are greatly reduced. The

procedure works well for instances where the initial data points represent a substantial

percentage of the variables in the constraint model or when constraints are tight, as seen

in the Sudoku puzzle domain. Therefore, the evaluation of the constraint propagation

approach is only carried out on Sudoku puzzles to show its effectiveness for such domains

(see Section 6.5).

The intuition behind this approach lies in leveraging the implicit relationships between

variables in the constraint model to reduce their domains to a single value. A data point,

49



Inference-Propagation(C, F )

1 c ← C, f ←data points in F
2 propStrategies ← propagation methods with varying strength
3 while propStrategies 6= {}
4 do
5 s ← pop(propStrategies)
6 newF ← Propagate-Constraints(c, f, s)
7 if newF 6= {}
8 then f ← f

⋃

newF
9 else return f

10 return f

Figure 3.8: Iterative algorithm to find new data points.

as defined in Section 2.2, corresponds to a variable-value pair where the variable has a

single value in its domain. To implement the idea of data point augmentation, I use the

iterative propagation algorithm shown in Figure 3.8. The algorithm takes as input the

problem model for the given instance, made up of the generic constraints C and the initial

features F (data points) of the problem. It then propagates the generic constraints over

the current set of data points (Propagate-Constraints in Figure 3.8) using different

constraint propagation methods that vary in their strength of propagation, to infer new

data points. If a variable’s domain is reduced to a single value, this variable represents a

newly inferred data point and is added to the set of returned data points. The algorithm

ends when the process reaches quiescence.

It should be noted that this algorithm may require backtracking during the iterative

process. If a new data point inference leads to the annihilation of another variable’s do-

main (the domain is reduced to the empty set), then backtracking is required to eliminate

the erroneously inferred data point. This phenomenon occurs when there is noise in the

50



initial problem definition, sometimes occurring when inaccurate data points are obtained

from an online source. Therefore, this algorithm must keep track of which data points

were added at each time step. An alternate solution to avoid backtracking is to validate

the input information before beginning the propagation procedure.

To keep this procedure tractable, the propagation strategies need to be quick and

relatively inexpensive. Therefore, I use the following sequence of propagation methods:

Arc-Consistency (AC) [46], followed by Generalized Arc-Consistency (GAC) [49], ending

with Singleton Arc-Consistency (SAC) [18]. Formally, a variable xi is arc-consistent (AC)

with another variable xj if, for every value a in the domain of xi there exists a value b

in the domain of xj such that (a,b) satisfies the binary constraint between xi and xj . A

problem is arc consistent if every variable is arc consistent with any other one. GAC takes

propagation a step further and supports non-binary constraints while SAC is strongest

of the three by fixing a single value a to a particular variable xi and determining if the

problem is arc-consistent given this assignment.

Figure 3.9: Before and after constraint propagation using SAC for a Sudoku puzzle.

51



These algorithms are widely used in the CP community and provide a quick yet effec-

tive method to propagate the generic constraints. Stronger propagation schemes could be

used but the goal of the constraint propagation algorithm is to be a quick preprocessing

step before the inference of constraints begins. As previously mentioned, as the number

of variables grows and the data points no longer represent a significant percentage of

these variables, the benefit of this procedure diminishes. Stronger propagation schemes

may help in these cases but the overhead imposed by these schemes is substantial.

As an example, consider the Sudoku puzzle shown on the left in Figure 3.9. This is a

basic Sudoku puzzle whose characteristics do not include an all-different constraint on the

diagonals. However, looking at the problem definition, we would infer the applicability of

the all-different constraint on the diagonals since the filled-in cells provide only positive

support for this constraint. The puzzle shown on the right in Figure 3.9 is the original

puzzle after applying the propagation algorithm described in this section using SAC. New

data points (shown in blue) are inferred and interestingly there are three cells filled-in

with the number 1 on the diagonals. These points provide negative support for the

all-different diagonal constraint and this example shows that a richer set of data points

improves the inference ability of the framework. In fact, in the Sudoku puzzle domain

any negative support for a constraints classifies the constraint as non-applicable.

52



Chapter 4

Using Support Vector Machines to Learn the Scope of

Constraints

The heterogeneity of constraints within a given problem instance requires both the in-

ference of applicable constraints and the determination of an inferred constraint’s scope.

Take the BID problem in El Segundo as an example. In the constraint model for this area,

there are two constraints present that enforce the direction in which addresses increase

for East/West running streets. As illustrated in Figure 4.1, addresses to the west of Main

Street increase to the West and addresses to the East of Main Street increase to the East.

These are contradictory constraints and when applied to all buildings in the area, result

in an unsolvable constraint model.

This problem is not unique to El Segundo but occurs in other areas for the BID

problem. Consider the part of Belgrade Serbia shown in Figure 4.2, where the odd

addresses are on the west side of the street and elsewhere in the area they are on the

east side of the street. In Figure 4.2, one scope covers buildings within the circle and

the second all other buildings. Again, these are conflicting constraints and when applied

universally in the area, lead to an inconsistent and unsolvable constraint model. This

53



Figure 4.1: The scopes of the Increasing East and West constraints in El Segundo.

example reiterates the claim that the set of variables over which each constraint applies

(defined as its scope) must be inferred along with the set of applicable constraints.

Determining if any set of two constraints apply over distinct sets of variables in a

problem instance is a nontrivial task. One approach to this problem is to use semantic

information specific to a problem domain. In El Segundo, addresses along East/West

running streets change the direction in which they are increasing when the directional

of a street changes (e.g., West Imperial Avenue becoming East Imperial Avenue). This

information can be exploited when determining the scope of constraints but, obviously,

it is domain-specific and requires interaction with a domain expert. Additionally, this

information is instance-specific as it cannot be used for the area of Belgrade presented in

54



Figure 4.2: The two scopes of the Parity constraints in Belgrade.

Figure 4.2. The generality of the constraint-inference framework depends on an effective

and domain-independent method for finding constraint scope, one that maintains a high

level of automation and can be applied to any problem instance.

55



In this chapter, I present a new domain-independent approach that uses Support

Vector Machines (SVMs) [64] to automatically learn the scopes of conflicting constraints

such as those seen in El Segundo. In the end-to-end constraint inference process seen

in Figure 2.7, this approach corresponds to the Finding Scopes component. I begin this

chapter by providing an overview of SVMs and describing the algorithm used by the

inference framework in Section 4.1. Section 4.2 outlines the method used to train the

SVM models for a given problem instance. Finally, Section 4.3 explains how scopes are

determined given the learned SVM models. To maintain continuity in this chapter, I will

illustrate the concepts using the BID problem example for El Segundo but as previously

demonstrated (see Figure 4.2) and as introduced in the evaluation section (see Chapter 6),

conflicting constraints exist in domains such as Sudoku puzzles and others.

4.1 Support Vector Machines

SVMs are a set of methods for supervised machine learning used for classification. They

map input vectors to a higher dimensional space where a maximal separating hyperplane

is constructed and where the attributes of each input vector are part of the feature space.

Given a set of training examples (input vectors), a set of support vectors (the SVM

model) is learned and used to classify new vectors into one of two classes. This process

defines the linear version of binary SVMs. The main advantage of using SVMs over

other classifiers is that they minimize the empirical classification error and maximize the

margin. The theory behind this method of classification is that a larger margin leads to

56



a better (lower) generalization error of the classifier. Figure 4.3 graphically represents a

learned separating hyperplane with two parallel hyperplanes that maximize the margin.

Figure 4.3: Separating hyperplanes learned by SVMs.

Non-linear versions of SVMs can be created by replacing the distance function used to

create the hyperplanes with a non-linear kernel function. The non-linear kernel performs

a non-linear transformation on the input space to a higher dimensional feature space.

Subsequently, the hyperplanes learned in this higher dimensional space are non-linear

in the original input space. Commonly used kernels are: polynomial, radial, gaussian,

57



and sigmoid. In this dissertation, I apply the linear and radial kernels to the process of

learning the scope of constraints. Section 6.4 discusses the advantages of each kernel.

As with any classification task, the choice of which learning method to use is dictated

by the nature of problems being solved. For the BID problem, I chose SVMs over other

machine learning methods (e.g., neural networks and vector spaces) because they best

handle the geospatial features of the problem. My intention is to represent the spatial

characteristics of the problem (i.e., the location of buildings) in the variable space. SVM’s

ability to learn class boundaries with separating hyperplanes accomplishes this goal. This

ability is also required when finding the scope of constraints for Samurai Sudoku puzzles

(see Figure 1.2) and is present in the class of CSPs I study in my research.

I use support vectors to approximate the boundaries of the scopes I am trying to learn

and I use predefined sets of conflicting constraints as class labels. The algorithm works

as follows: Given a set of inferred constraints, the framework must determine if a conflict

exists between them. To help the framework find conflicts, a domain expert provides a

set of conflicting constraint types when defining the constraints in the library. I require

the user to define this set of conflicting constraints because automatically identifying

conflicting constraints is exponential in the number of constraints in the constraint library.

Additionally, automatically determining if pairs of constraints are conflicting is a non-

trivial task and considering non-binary pairs of constraints (discussed as future work in

Section 8.4.2) makes the problem even more complex. Therefore, I reduce the initial

complexity of the framework by using a predefined set of binary pairs of conflicting

constraints.

58



After the applicable constraints for a given problem instance are inferred, the frame-

work uses the set of conflicting constraints to check if any inferred constraints conflict. If

a conflict exists, scopes for the conflicting constraints must be learned. An SVM model

is learned for each pair of conflicting constraints and these constraints act as class labels

when training the model. After learning the models, variables in the constraint model

are partitioned into the scope of one of the two constraints for all conflicting pairs. Con-

straints with no conflicts are part of the “global” scope and apply to all the instance’s

variables.

4.2 Training a SVM Model

As mentioned previously, a set of conflicting constraints defined by a domain expert is

used to determine if the variable space of a problem instance must be divided for two

or more constraints. For the BID problem and specifically in El Segundo, addresses

increasing to the east and addresses increasing to the west are examples of conflicting

constraints. If after the inference process, the set of applicable constraints contains two

or more conflicting constraints, we must find the scope for these conflicting constraints.

Finding these scopes begins by training a SVM model for all sets of conflicting constraints.

The feature space of the SVM model is defined by the features of the data points.

Therefore, an input vector represents one data point where the attributes of the vector

are the features that define the data points and the values of these attributes are the

corresponding feature values. Figure 4.4 shows four example feature-vectors used to train

the SVM model for the conflicting constraints in El Segundo. It should be noted that

59



Sample BID problem data points
〈addressNumber, streetType, streetName, sideOfStreet, latitude, longitude〉

〈 1007, EW, E Grand Ave, N, 33.9200581, -118.4054531 〉
〈 1104, EW, E Mariposa Ave, S, 34.9678123, -118.3971454 〉
〈 223, EW, W Franklin Ave, N, 33.9180688, -118.4181319 〉
〈 311, EW, W Oak Ave, N, 34.9859451, -118.4387412 〉

Input vector representation of the above data points
〈addressNumber, streetType, streetName, sideOfStreet, latitude, longitude〉

Label 1 : 〈 1007, 1, 1, 2, 33.9200581, -118.4054531 〉
Label 1 : 〈 1104, 1, 2, 1, 34.9678123, -118.3971454 〉
Label 2 : 〈 223, 1, 3, 2, 33.9180688, -118.4181319 〉
Label 2 : 〈 311, 1, 4, 2, 34.9859451, -118.4387412 〉

Figure 4.4: Sample input vectors for conflicting constraints used to train the SVM model.

an input vector can only contain numbers as attribute values. Therefore, a number is

assigned to every unique string and all strings are replaced by the corresponding number.

Each input vector used to train the SVM model must be associated with one of two

class labels. In this work I only focus on pairs of conflicting constraints. However, the use

of multi-class SVM [16] would enable support of non-binary sets of conflicting constraints

and I discuss such an approach as possible future work in Section 8.4. In learning scopes

per pair of conflicting constraints, multiple SVM models are learned and as such multiple

sets of training examples are used for learning. The method by which these training

examples are generated is described below.

Consider an inference rule ri that provides support for a constraint c. Rule ri is

evaluated using two data points dx and dy. If ri is asserted this signifies that the points

dx and dy provide positive support for the constraint c. When evaluating inference rules,

the framework maintains the set of data points Dci
that provided positive support for each

constraint. After all inference rules have been evaluated, a set of applicable constraints

60



AC is inferred and the framework determines if any (ci,cj) pair of conflicting constraints

exist in AC. If (ci,cj) ∈ AC then Dci
is used as training examples for one class label

and Dcj
provides examples for the other class label. Learning of the SVM models is done

through the use of the SV M light package1 [34; 36; 50], a general purpose tool for learning

SVM models.

The separating hyperplanes are learned by applying the linear basis kernel function

to the training data. The results reported in Section 6.4 show that the linear kernel

outperforms the radial one, which produces a higher-dimensional space that non-linearizes

the original input space. I use the learned SVM model to classify data points with no

supports for either constraint, assigning data points to the scope of either constraint label.

This process is detailed in the Section 4.3.

Scopes are learned per pair p in the set PC of all pairs of conflicting constraints, where

the set of conflicting constraints ConflictCons = {c|∀p ∈ PC c ∈ p}. As such, for two

conflicting constraints ci and cj , the scopes Sci
and Scj

are distinct and non-overlapping

such that variable v ∈ Sci
∨ Scj

∧ ¬ ∈ (Sci
∧ Sci

). As such, the scope of any constraint c

where ∀p ∈ PC c ∈ p will be limited to a subset of the problem variables, while the scope

of any constraint globalC where ∄p ∈ PC such that globalC ∈ p will be defined over all

problem variables. This approach also allows for overlapping scopes for two constraints ci

and ck that do not conflict, specifically if ∄p ∈ PC such that ci ∧ ck ∈ p. Once the scope

has been learned, the corresponding constraint is instantiated over the subset of variables

in its respective scope, further specializing the inferred constraint model. Chapter 5

provides additional details about the instantiation process.

1svmlight.joachims.org

61



Specific to the BID problem, an SVM model is learned to determine the scope of the

Increasing East and Increasing West constraints in El Segundo, and the scope of the Odd

on East and Odd on West constraints in Belgrade. To generate the training examples

for the SVM in El Segundo, the framework uses all of the buildings (data points) that

provide positive support for the Increasing East constraint as examples for the class

label a, and conversely all buildings that provide positive support for the conflicting

constraint Increasing West as examples of class ¬a. This set of labeled examples is

shown in Figure 4.5 and the full set of training examples a ∪ ¬a is used to learn a SVM

model. A similar process is carried out to generate the training examples in Belgrade,

using buildings that provide support for either parity constraint as class labels.

Given this learned model, the framework can now take a building for which it does

not know which of the two constraints applies to it and classify it as belonging to the

scope of one of the two conflicting constraints. The intuition is that the model will

faithfully separate the buildings into the areas East and West of Main Street and each

building will be added to the scope of the correct addressing constraint (Increasing East

for buildings East of Main Street and Increasing West for buildings West of Main Street).

As previously shown in Figure 4.1, the area labeled as 1 in this figure would correspond

to the learned scope for the Increasing West constraint and the area labeled as 2 to the

scope for the Increasing East constraint.

The accuracy of the learned SVM model relies heavily on the training examples.

Therefore, the framework tries to augment the set of examples and this process is best

explained with an example. The general technique used to create new training examples

utilizes the bucketing of data points concept as described in Section 3.1.1. If all data

62



Figure 4.5: Labels used to learn the SVM model in El Segundo.

points within a bucket b provide positive support for only constraint ci in the pair (ci,cj)

of conflicting constraints, b can be used to generate additional examples for the class

corresponding to ci. These new examples are generated by creating input vectors where

the feature value defining the bucket is fixed and the other attribute values are set using

the known values of each attribute.

For example, consider a bucket containing two data points {d1 = (1,2), d2 = (1,3)}

where data points are defined by attributes attr1 and attr2 such that dx = (attr1,attr2)

and the bucket is defined by the proposition attr1 = 1. If both d1 and d2 provide positive

support for only constraint ci and {2,. . . ,50} is the set of known values for attribute

63



attr2, the framework generates two new examples dn1 = (1,40) and dn2 = (1,50) and

these examples are used to augment the set of examples for the class label corresponding

to ci. This technique, when applied to the BID problem and Sudoku puzzles, has yet to

produce noisy training data.

More specifically, consider the BID problem where the data points along the street W

Imperial Avenue all provide positive support for the Increasing West constraint. Because

the framework assumes that addressing characteristics hold for a street segment, it can

augment the set of training examples by generating additional “temporary” data points

along W Imperial Avenue. The new data points used for training the SVM are generated

by using the bucket containing only data points on W Imperial Ave and the range of

longitude values known for that street segment. This process provides additional examples

for the Increasing West class label by using a larger sample of points along W Imperial

Ave and it can be repeated for all streets that provide positive support for the Increasing

West constraint. This technique is illustrated in Figure 4.6.

Figure 4.6: New training examples generated in the BID problem.

In the Sudoku domain, if a bucket containing points in a given row provides positive

support for one of two conflicting constraints ci, the set of training examples for ci can

be augmented by creating additional data points that are on that row. Even though

64



these new points do not have a filled-in number, they are defined by a location (row and

column) and region and this information is useful when learning the SVM model. Hence,

they help provide a better distribution of training examples along the row and lead to a

more accurate learned model.

4.3 Assigning Data Points to a Scope

Given a learned SVM model for each pair of conflicting constraints, the framework is

ready to classify data points into one of two classes corresponding to the scopes of the

conflicting constraints. The data points that need to be classified are those that do not

provide any positive support for either constraint in a pair of conflicting constraints.

Using the same definition as that of the input vectors, the set of unclassified data points

is converted to vectors and classified by the SVM model. The entire process is illustrated

in Figure 4.7.

Figure 4.7: Assigning data points to a scope.

65



Intuitively, the SVM model represents the entire feature space of the problem instance,

and the separating hyperplanes correspond to the boundaries of the scopes for the two

conflicting constraints. Therefore, when the model is applied to unclassified points, these

points are positioned somewhere in this feature space. Their location in the feature space

falls into one of two scopes and the points are classified as belonging to one of these

scopes. This classification is used when a constraint model is instantiated for the given

problem instance (see Chapter 5).

The process of assigning data points to a scope is performed for all sets of conflicting

constraints. Because multiple conflicts may exist within a problem instance, multiple

SVM models are learned and used to classify the points. This classification is accom-

plished using an iterative process that terminates once all data points have been classi-

fied for all inferred constraints. As I previously described, constraints with no associated

conflict apply to the “global” scope which covers all of the variables in the problem space.

Furthermore, constraints apply to all variables within a scope, allowing the framework to

propagate constraints to variables for which it cannot find any support (see Chapter 5).

Take El Segundo as an example and specifically the conflicting constraints Increasing

East and Increasing West. Section 4.2 described the process by which the SVM model

for these conflicting constraints is learned. Now consider the example set of data points

shown in Figure 4.8. These data points are all on East/West running streets and they

provide no support for either conflicting constraints. As such, they need to be classified

as part of either the Increasing East or Increasing West’s scope. Intuitively this means

the framework will use the learned SVM model to determine which points are East and

which points are West of Main Street. The correct classification of these points would

66



〈Name | AddressNum | StreetType | StreetName | StreetSide | Latitude | Longitude〉

Imperial School | 540 | EW | E Imperial Ave | S | 33.9302909 | -118.4106319
First Baptist Church | 591 | EW | E Palm Ave | N | 33.925291 | -118.4100763

El Segundo Library | 111 | EW | W Mariposa Ave | N | 33.9180688 | -118.4204327

Figure 4.8: El Segundo data points with no support for either conflicting constraint.

be Imperial School and First Baptist Church as part of the Increasing East class and El

Segundo Library as part of the Increasing West class.

I present a method to learning scopes that is domain independent and applicable to

application domains where conflicting constraints apply and ‘govern’ different portions

of a given model. The only assumption I make is that the user specifies beforehand

67



what constraints are conflicting and thus cannot have the same scopes. The experimental

results shown in Section 6.4 demonstrate the effect data points have on the framework’s

ability to learn scopes and they also show the accuracy with which it can learn scopes

for a collection of BID problem instances and for the Samurai Sudoku puzzle. In this

puzzle, the boundaries of a scope are defined by each one of the five puzzles that make

up a Samurai Sudoku. The SVM learning method learns these boundaries automatically

using the method described in this chapter.

After determining the scope for all inferred constraints for a problem instance, the

framework has a set of inferred constraints along with their scopes, and input informa-

tion from the problem instance definition and external data sources. It completes the

model generation process by instantiating the constraint model using instance-specific

information and passes the instantiated model to a custom constraint solver [6; 7]. The

instantiation of the constraint model is described in Chapter 5.

68



Chapter 5

Instantiating a Constraint Model

In this chapter I discuss how to instantiate a constraint model given a set of inferred

constraints and their scopes. In the end-to-end constraint inference process seen in Fig-

ure 2.7, this approach corresponds to the Model Creation component. This process is the

last step in the generation of a specialized constraint model for a given problem instance.

Instantiating the model allows the framework to pass it onto a constraint solver that

finds a solution(s) for the problem instance. Section 5.1 describes the difference between

a set of inferred constraints and an instantiated model, and outlines the transition that

needs to take place from one to the other. Section 5.2 explains how the applicability

of constraints is propagated through the problem instance. Section 5.3 presents the for-

mat in which instantiated constraints are represented. Finally, Section 5.4 provides the

algorithm used to instantiate the final constraint model.

5.1 Transitioning to an Instantiated Model

The approach to inferring applicable constraints for a given problem instance, as described

in this dissertation, uses information specific to the instance by way of data points.

69



These data points represent constraint variables whose values are known and these points

correspond to a partial solution to the instance. However, the end goal of the framework

is to generate as complete of a model of the problem instance as possible, which in-turn

leads to a better solution than one generated when solving a sparse or generic model. In

a constraint model, the completeness is defined by how constrained the variables in this

model are and how likely it is that a single solution is produced when solving the model.

To generate a complete constraint model, one needs to consider what makes up a

Constraint Satisfaction Problem (CSP). A CSP is represented by a tuple P = (X, D,

C) where X = {X1,. . . ,Xn} is a finite set of variables, each associated with a domain

of discrete values D = {D1,. . . ,Dn}, and a set of constraints C = {C1,. . . ,Cn}. Each

constraint Ci is expressed by a relation Ri on some subset of variable values Ri ⊆ Di1 ×

. . .×Dik and denotes the tuples that satisfy Ci [19]. A solution to a CSP is an assignment

of domain values to variables in such a way that no constraints are violated.

In the context of the constraint-inference framework presented in this dissertation,

the inferred model of a problem instance is represented by the tuple Pinf = (Xinf , Dinf ,

C) where Xinf ⊂ X is a subset of the variables in the problem instance (the set of

data points), each variable is associated with a domain where Dinf ⊂ D and finally the

relations Rinf ⊂ Ri for a constraint Ci. The instantiation of a constraint specifies the

subset of variables over which Ri is defined. Because the inference framework only uses

the data points to make inferences, when the inferred constraints are instantiated by

the framework this is done over a subset of the variables in the problem instance. The

problem then lies in transforming Pinf such that it as closely as possible approximates

the best model P of the given problem instance.

70



Consider the BID problem for El Segundo where the data points used by the frame-

work are obtained from an online gazetteer. On average, a gazetteer provides between

30 and 40 data points for an area the size of El Segundo. However, this city contains

roughly 1700 buildings and a solution to the BID problem is an assignment of addresses

to all buildings. These buildings are represented as variables in the CSP model and the

data points (buildings with known addresses) represent a small fraction of the entire area.

As this example shows, a model instantiated over only the buildings representing data

points greatly under-represents the actual instance we are trying to solve and needs to

be augmented to become more complete.

The transition from an inferred model to an instantiated one is a two-step process.

First, the set of variables needs to be expanded to include a set representative of the entire

problem instance. In the BID problem this means representing all buildings in the area of

interest with a variable, adding to the subset of variables Xinf (data points) used to infer

the applicable constraints. Second, once the framework has a full set of variables, the

relation Ri needs to be defined over the larger set of variables for each inferred constraint

Ci. An example for the BID problem is instantiating the Odd on North constraint over

the variables representing all buildings in the area and not just over the subset of buildings

represented as data points. Optionally, if online sources provide additional information

about a problem instance, they can be used to reduce some of the variable domains for

the instance.

The full set of variables is obtained from the problem description. This description

specifies what needs to be assigned a value. For example, in the BID problem the set of

variables is generated by extracting the buildings in the area of interest from a satellite

71



image. Building identification is a separate research topic and I am assuming that I have

a tool at my disposal which can be used to identify the buildings in an image [44]. This

set of buildings represents all buildings in the area and it subsumes the set of variables

represented by data points and used to infer the applicable constraints. Similarly in

Sudoku puzzles the full set of variables represents all 81 cells of a 9x9 puzzle, augmenting

the subset of variables (filled-in cells) used to infer the applicable constraints. Section 5.2

outlines the process that instantiates the constraints in more detail.

5.2 Constraint Propagation

In this section I describe how inferred constraints are instantiated over the largest possible

set of variables using a propagation method. This process leads to an instantiated model

of the problem. The representation of this model is described in Sections 5.3 and 5.4.

The goal in generating the instantiated model is to make it highly-constrained by having

the framework instantiate each constraint over a maximal set of variables. In the case of

globally applicable constraints, this set is equal to the total number of variables in the

final solution.

One possible instantiation policy is to instantiate constraints using only the variables

that correspond to the data points in the input data. For example, an instantiated

model for a BID problem instance would instantiate an inferred constraint ci over only

the variables (buildings) that provide positive support for ci. This scenario corresponds

to the scenario described in Section 5.1 where the instantiated problem model would

correspond to Pinf . Such a model would likely be very under-constrained unless all of

72



the variables are present as data points. Solving an under-constrained model tends to

generate imprecise solutions and the goal is to provide accurate solutions.

The approach used by the framework involves propagating the inferred constraints to

variables not represented as data points. When inferring the applicability of constraints,

the framework only considers known variable-value pairs (data points). As such, a set

K of variables with no known values exists. The values for these variables cannot be

determined from the problem description nor from any available online data-source and

in turn these variables provide no insight into the defining characteristics of the given

problem instance. Specifically, the set K in the BID problem represents the buildings that

no gazetteer or other online source could provide an address and geographical coordinates

for, or K represents the set of cells in a Sudoku puzzle that are not initially filled-in.

Because they provide no valuable information to the inference process, the variables

in K are not considered when determining the applicability of constraints for the inferred

problem model Pinf and the applicable constraints in Pinf are never instantiated over

any variable v ∈ K. The problem lies in how to extend the applicable constraints to the

variables in K and hence the goal of the framework is to include the variables in K when

instantiating an applicable constraint ci. The prevailing assumption being made is that

a constraint, if applicable to some subset of data points, also applies to variables of the

same type. Variables of the same type have similar feature values as the data points that

support the given constraint.

Specifically, in the BID problem this thinking leads to the instantiation of constraints

over all buildings (variables) that are on the same street, on the same side of the street,

or some other common feature. Take the Odd on North constraint as an example. This

73



constraint, when applicable, ensures that the addresses of all buildings along the North

side of East/West running streets are odd. If the inference framework infers the appli-

cability of the Odd on North constraint for the given problem instance, the framework

should instantiate this constraint over all variables representing buildings along the North

side of East/West-running streets.

The algorithm used to propagate the inferred constraints is presented in Figure 5.1.

It begins by using the scope of a constraint to find the relevant set of variables over which

the constraint is instantiated. Every inferred constraint has a corresponding scope that

defines the set of data points over which the constraint applies. In the case of conflicting

constraints in the inferred set, the set of data points (variables) to which each conflicting

constraint applies is a subset of all the data points. On the other hand, constraints within

the global scope (having no conflicting opposite) apply to all instance variables.

Scope-Augmentation(C, DP )

1 vars ← full set of variables for the instance
2 dataPoints ← DP
3 for v ∈ vars ∧ ∋ dataPoints
4 do
5 determine all potential feature values of v
6 for each applicable ci ∈ C
7 do
8 SRi ← data points in scope of ci

9 for all dpi ∈ SRi

10 do
11 comChars ← common characteristics of all dpi

12 for v ∈ vars ∧ ∋ dataPoints
13 do
14 if comChars ⊂ featuresValues(v)
15 then scope of ci ← v

Figure 5.1: Algorithm used to propagate the set of applicable constraints.

74



The set of relevant data points SRi for each inferred constraint ci is composed of all

data points that are within the scope of ci. The framework finds variables that are not

represented by any data point and are similar to the applicable data points based on

the similarity in their feature values. First, the framework uses the input information to

determine the possible feature values of the variables that are not represented as data

points in the problem definition. The reason these aren’t definite values is we do not

have the exact variable-value pairs for all variables in the system (this would correspond

to a full solution). For example in the BID problem, a corner building that was not

represented by any data point may lie along one of two streets, which one we cannot be

sure of. Therefore, the street-feature value for this variable would be one of two possible

values.

With possible feature values for all variables, the framework looks at the set of data

points SRi for each constraint ci and finds common characteristics between them. This

is similar in nature to the bucketing approach described in Section 3.1.1. Once it has

determined the commonalities of the points, it can select the remainder of the variables

that are most similar to the data points in SRi. Consider the Odd on North constraint in

the BID problem. The commonality among data points within the scope of this constraint

is that they are all on the North side of East/West running streets. Therefore, the

framework finds all instance variables (buildings) that are on the North side of East/West

running streets and stipulates that the Odd on North constraint must apply to these

variables as well.

Figure 5.2 shows the set of streets over which the Odd on North constraint is instanti-

ated before the propagation algorithm is run. We can see that it only covers a small subset

75



Figure 5.2: E/W street coverage of the Odd on North constraint before propagation.

of the East/West running streets in El Segundo and leads to a rather under-constrained

model. Figure 5.3 shows the new set of streets covered by the Odd on North constraint

for the same area. As we can see, the coverage is more complete and the model better

represents the addressing characteristic in this area.

After propagating the constraints, the framework can instantiate a more specific con-

straint model. There is however the possibility that the model becomes over-constrained

by incorrectly adding a variable v to the set of variables over which constraint ci is instan-

tiated. Incorrectly adding a building along the South side of East/West running street to

the set of variables over which the Odd on North constraint is instantiated is an example

in the BID problem. This scenario generally leads to an unsolvable constraint problem

76



Figure 5.3: E/W street coverage of the Odd on North constraint after propagation.

model. As such, the framework needs to have a recourse by which it can relax the model.

The inference framework supports varying levels of relaxation.

First, the generated problem model can be relaxed by completely eliminating the

propagation of constraints. The resulting model is the most general given the framework’s

inferences and corresponds to Pinf in Section 5.1. Second, the framework can selectively

roll back the propagation on a per constraint basis. This iterative process relaxes the

model until a solvable instantiation is found. In general, this later approach leads to a

more constrained problem model when compared to the former however both facilities

exist as options in the framework. By focusing on CSPs that are guaranteed solvable, the

generation of no solution implies the inference of an incorrect problem model.

77



Finally, a less complete model can result from an inability to infer all applicable

constraints, the worst case being the inability to infer any information specific to the

given instance. This worst case has yet to be encountered in my studies of multiple

instances across both the BID problem and Sudoku puzzle domains. As the results in

Section 6.6 show, any solution produced by solving an inferred model still represents a

significant improvement over ones obtained when solving a generic model.

5.3 Constraint Schema

Given the richer constraint problem model generated using the process described in Sec-

tion 5.2, the framework is ready to represent this model. This representation uses an

XML scheme in the XCSP format1 which I developed for all constraint classes in the BID

problem domain. As future work, I will develop a similar schema for Sudoku puzzles (see

Section 8.4). The purpose of defining the schema using the XCSP format is two-fold.

First, this is the standardized format used to represent CSP problem instances. The

steering committee of the international CSP solver competitions has decided to adopt the

XCSP format as the de facto format that all competitive solvers must support. Therefore

by generating problem instances using this standard, I will make a large set of problem

instances available to the research community. The availability of these instances will

push researchers towards non-traditional CSP problems and help drive the research in

new directions. As was the case with my initial introduction of the BID problem [47],

1www.cril.univ-artois.fr/CPAI08/XCSP2 1.pdf

78



a different class of problems helps foster a different perspective with which to approach

research problems.

Second, the use of a standard representation allows the framework to be more easily

integrated into a large-scale application. Inevitably new advances in the fields of search

and constraint programming will be discovered and incorporated into modern solvers.

The current iteration of the BID problem-solving application I have developed uses our

customized solver [6; 7] to assign addresses to buildings. By representing instantiated

constraint problem models using a standardized format, I can plug new solvers into the

application to test their scalability and efficiency in solving the BID problem. This ability

to “plug and play” solvers increases the sustainability of the BID problem application.

It also enhances the ability to create an online application that can be used by people

throughout the world. Such an application is specifically discussed as future work in

Section 8.4.

<inference districtid="54">

<parity>

<street streetname="W Grand Ave" value="N" />

<street streetname="Binder Pl" value="false" />

<street streetname="W Imperial Ave" value="N" />

</parity>

</inference>

Figure 5.4: Instantiated example of the Odd on North constraint.

One XML file is used per instantiation of an inferred constraint and Figure 5.4 shows

an example XML file representing the instantiated version of the Odd on North constraint.

Two items of interest should be noted in this representation. First, the separation of

constraints into individual files makes the relaxation of models easier. For example, if

79



the Odd on North is incorrectly inferred as applicable, to relax the model the XML file

shown in Figure 5.4 would simply need to be removed. Additionally, when adding a new

constraint to the library the only step required of a domain expert is the definition of

an XCSP schema. Given this new schema, constraint models can be augmented with

the addition of one XML file representative of the new constraint rather than altering all

existing XML files for a given problem instance.

The second advantage of such a representation is the ability to easily backtrack over

the propagation of a constraint across instance variables as described in Section 5.2. In

Figure 5.4, the street Binder Pl is assigned the value false. This stipulates that the Odd

on North constraint should not be instantiated over any buildings (variables) along this

street. If the framework generates an unsolvable problem model due to the incorrect

propagation of the Odd on North constraint across some street, a more subtle relaxation

than the one described above can be accomplished. Assigning the value false to the street

where an incorrect inference was propagated allows the framework to backtrack over the

incorrect propagation rather than removing the entire Odd on North constraint from the

problem model.

The entire set of XCSP schemas for the BID problem, with instantiated examples of

each, can be found in Appendix B.

5.4 Instantiating a BID Problem Instance

An instantiated constraint model best represents the problem instance at hand given its

input information. The definition of the variables and their domains, and the instantiation

80



of the constraints provides a solver with the information required to generate a solution(s).

This solution consists of an assignment of values to the variables such that no constraints

are violated. As mentioned in Section 5.2, the specificity of a constraint model greatly

influences the precision of the solution. Below I outline how all of the gathered and

inferred information is used to generate the XML files described in Section 5.3 for the

BID problem.

The first step uses the input information to determine the layout of the problem. The

satellite imagery is used to find the buildings (variables) in the instance. The vector data,

which represents the street network, is used to determine the domain of the street variable

for each building. The domain is determined by locating all of the possible streets every

building can be on. In general the domain size is one, however for corner buildings the

size can reach up to four.

Phone entries from online phonebooks are used to populate the domains of variables

potentially on a particular street. For example, when instantiating the problem model of

an area with the set {1,2,3,4,5,6} of known addresses for a given street, layout constraints

are instantiated assuring that these addresses are part of the final solution. The details on

how domain ranges are represented are beyond the scope of this dissertation and I point

the reader to our work in Bayer et al. [7] for more details.. Finally, data points represent

landmark points for which we know the address. Therefore, a landmark constraint is

instantiated for each data point, forcing the solver to assign the specific address to the

corresponding variable.

81



Figure 5.5: The process by which a constraint model is instantiated for the BID problem.

Having defined the layout of the problem, the framework instantiates the inferred

constraints. This process is illustrated in Figure 5.5 and involves propagating the con-

straints as described in Section 5.2. Once the inferred constraints have been propagated

to all relevant instance variables, the framework generates an XML file for each inferred

constraint according to the XML schema described in Section 5.3. Because constraints

are inferred based on the input information, each constraint model is unique and rep-

resents the given problem instance. It is possible that a single area of interest may be

modeled with differing constraint models. If the data sources used to provide the data

82



points are different, or if different vector-data sources provide the road information, the

inferred constraints and the instantiated model may vary.

After constructing a constraint problem model representing the given problem in-

stance, the generated XML files provide a vehicle by which the framework connects

the model-generation process to the model-solving component. Our current solver [7]

used in the BID problem domain is a specialized solver implemented as a backtrack-

search solver in Java. This solver uses backtrack search (BT) with nFC3, a look-ahead

strategy for non-binary CSPs [9], and conflict-directed back-jumping [54]. It takes the

XML files as input, generates the corresponding internal representation of the prob-

lem model, and solves this model. The solver and its model-solving methodologies are

beyond the scope of this dissertation and I point the reader to our previous work [6;

7] for additional details.

83



Chapter 6

Experimental Evaluation

This chapter provides an experimental evaluation of the concepts introduced throughout

this dissertation. Section 6.1 introduces the data sets used in the BID problem and

Sudoku puzzle domains to perform the evaluation of inference-framework. Section 6.2

outlines the experimental setup for all experiments. Section 6.3 evaluates a basic version

of the inference framework for the BID problem and Sudoku puzzle domains. These results

demonstrate the framework’s ability to infer basic models where no conflicting constraints

exist. Section 6.4 evaluates the use of Support Vector Machines (SVMs) for learning the

scope of constraints. Section 6.5 shows the added benefit of augmenting the initial set of

data points using constraint propagation for Sudoku puzzles. Finally, Section 6.6 presents

the best models inferred by the framework, and shows the performance improvement of

a solver when using an inferred model over a generic one.

6.1 Data Sets

In this section, I introduce the data sets used to evaluate the constraint-inference frame-

work. All of the problem instances are grounded in the real world and each instance has

84



one unique solution. Each set of instances has a unique feature(s) that distinguishes it

from the others and helps highlight some ability within the framework.

6.1.1 BID Problem

For the BID problem, problem instances span different areas throughout the world. I

varied the set of landmark data-points (defined in Section 2.2) for areas by using dif-

ferent public data sources. Each source provided a different set of data points varying

in number and distribution within the area of interest. Choosing different data sources

helps demonstrate the effect that data-point distribution has on the framework’s inference

capabilities. Other data sources could have been used but the chosen ones were easily

accessible and provided varying types of buildings.

Table 6.1: Homogeneous BID problem instances.

Area Data points ∼Total Buildings Known Addresses

1. (a) El Segundo 38 820 4.6%
1. (b) El Segundo 660 820 80.5%
1. (c) El Segundo 12 860 1.4%

2. Downtown LA 7 45 15.6%

3. San Francisco 16 90 17.8%

4. Boulder 7 160 4.4%

5. New Orleans 21 110 19.1%

6. Belgrade, Serbia 85 98 86.7%

The first set of instances, shown in Table 6.1, report the area of interest, the number

of data points in the area, the approximate total number of buildings, and the percentage

of known addresses for the area. These instances cover different areas that have no

conflicting constraints in the set of defining addressing characteristics. Therefore, there is

no need to learn the scope of any defining constraint as they all apply to every building in

85



the instance. However, each area has a unique layout of buildings and varying addressing

characteristics. The first two El Segundo instances cover the area west of Main Street

while the third covers the area east of Main Street. For instance 1(a), the 38 points

are manually chosen from the LA assessor website. In instance 1(b), the roughly 660

data points are obtained from an online geocoder service. Lastly, the 12 data points for

instance 1(c) are obtained from the USGS gazetteer.

The Downtown LA instance covers a 10 block radius in downtown Los Angeles CA

and the data points are obtained from a hotels data-source found by querying Google for

csv files with addresses and latitude and longitude coordinates. The San Francisco area

covers a 21 block radius of San Francisco CA and the data points are churches and schools

obtained from the publicly available USGS gazetteer. The Boulder instance covers a rural

part of Boulder CO and again the data points are obtained from the USGS gazetteer and

are composed of schools in the area. The New Orleans instance covers a central area of

downtown New Orleans LA and uses 21 USGS gazetteer points. Finally, the Belgrade

instances covers a 16 block area in Belgrade Serbia and uses data points from an online

government planning website.

The second set of instances, shown in Table 6.2, extends some of those in Table 6.1

creating new instances that are more complex in nature, namely requiring the framework

to determine the scope of conflicting constraints. This new set expands instances 1(b)

(instance 7(b)) and (c) (instance 7(c)) to include both the areas East and West of Main

Street. Instance 7(b) now uses roughly 1650 data points obtained from a geocoder service

while 7(c) uses 20 points from the USGS gazetteer. A constraint model of each instance

86



now contains the conflicting constraints Increasing East and Increasing West for which

scopes must be learned.

Table 6.2: Non-homogenous BID problem instances.

Area Data points ∼Total Buildings Known Addresses

7. (a) El Segundo 38 1680 2.3%
7. (b) El Segundo 1650 1680 98.2%
7. (c) El Segundo 20 1680 1.2%

8. Downtown LA 7 45 15.6%

9. San Francisco 16 90 17.8%

10. Boulder 7 160 4.4%

11. New Orleans 66 230 28.7%

12. Belgrade, Serbia 88 101 87.1%

13. Jakarta Indonesia 20 145 13.8%

Instances 8, 9, and 10 remain the same (correspond to instances 2, 3, and 4 in Ta-

ble 6.1), while the New Orleans instance (11) covers a larger area of downtown New

Orleans, LA and the 66 data points are again obtained from the USGS gazetteer. A

fan-like layout of buildings is seen in this area and this leads to a set of conflicting con-

straints for which scopes need to be learned. The Belgrade instance (12) covers an area

around the former Chinese embassy building in Belgrade, Serbia and the 88 data points

are obtained from an online government planning website. In this area, the side of the

street on which odd numbers lie is inconsistent and the scope for the Odd on East and

Odd on West constraints needs to be learned. Finally, the Jakarta instance (13) is in-

cluded which covers a large portion of downtown Jakarta, Indonesia and uses 20 hotel

data-points culled from an online Indonesian hotel website. This area has two sets of con-

flicting constraints, both the increasing and parity constraints, and represents the area

with the most complex addressing characteristics.

87



6.1.2 Sudoku Puzzles

The Sudoku puzzle instances used to evaluate the framework included the basic puzzle

along with four variations: geometry puzzles where the nine regions of the puzzle are

of irregular shapes, diagonal puzzles where additional AllDiff constraints apply to both

diagonals, odd/even puzzles where numbers in colored cells have same parity, and magic

puzzles where each number inside a polyomino must be no larger than the number of blue

cells in the region, along with the two diagonal constraints. Each puzzle was chosen for

its distinct set of defining constraints and for its unique cell characteristics such as the

coloring exhibited by some of the puzzle types.

The constraint library for this domain consists of the “defining” Sudoku constraints

along with all the additional constraints introduced by each puzzle variation. Data points

correspond to filled-in cells as defined in Section 2.2 and are obtained from the initial

problem description. All puzzles are 9x9 in size and each puzzle contains nine regions. It

should be noted that there was no need to learn scopes for these puzzles. The nature of

Sudoku puzzles stipulates that no conflicting constraints can apply within a single puzzle.

However, the need to find scopes arises when considering Samurai Sudoku puzzles. These

puzzles are discussed in further detail in Section 6.4.

I conducted three sets of experiments for each puzzle type, testing the framework on

100 puzzle instances for each puzzle difficulty level.1 The difficulty of a puzzle generally

defines the number and distribution of the cells initially filled-in and as such affects the

1Randomly sampled from www.menneske.no/sudoku/eng and www.printsudoku.com/index-en.html

88



set of data points used by the framework to infer the constraint model of the puzzle

instance.

6.2 Experimental Setup

All of the experiments were run on a MacBook Pro running a Core Duo 2 processor at

2.4GHz with 2GB of RAM. The framework is written in Java and run through the Eclipse

IDE. Data points for each instance are stored in individual files and adhere to a format

created by me. The time to solve each instance was within 45 seconds and on average

less than three seconds. The Tiger Lines vector data used in the BID problem was stored

in a SQL database and covered the entire United States. For areas outside of the US, I

manually constructed the vector data based on the formating used to represent the Tiger

Lines data.

6.3 Inferring Constraint Models

In this section, I evaluate the framework’s ability to infer constraint models for a variety

of problem instances within the BID problem and Sudoku puzzle domains. The results

show that when the basic set of inference components are applied to instances that do

not exhibit any irregular properties, the framework can effectively infer models for these

instances. Properties such as the non-monotonicty of addressing in El Segundo for the

BID problem and puzzles with a sparse set of filled-in cells in Sudoku puzzles are consid-

ered irregular. These results serve as a baseline and are used to motivate and show the

89



improvements introduced by the learning of scopes and the augmentation of the initial

set of data points.

To validate the claims made above, I test a version of the framework that implements

the general concepts introduced in Chapter 2 and uses the constraint selection algorithm

presented in Chapter 3. This version of the framework does not use SVMs to learn

the scopes of constraints nor does it propagate basic constraints to augment the input

information. Instead, it only uses the initial set of data points to make its inferences.

Motivated by the results obtained when applying this basic framework to the two problem

domains, Sections 6.4 and 6.5 validate the framework’s ability in using SVMs to learn the

scope of constraints and in applying constraint propagation to augment the initial set of

data points. Section 6.6 shows the improvements in the inferred models obtained from

the inclusion of these techniques in the basic framework and the ability to solve more

complex BID problem instances.

The evaluation of the basic framework is divided into sections corresponding to the

two problem domains discussed throughout the dissertation. The BID problem instances

are selected based on two main criteria: the differing addressing characteristics that define

each area and the varying online sources that provide data points specific to the areas.

The Sudoku puzzles represent a wide range of puzzles, varying in the sets of constraints

that define each puzzle type and in the distribution of filled-in cells for each puzzle. The

results in both domains validate the framework’s ability to infer models and motivate the

additional techniques presented in this dissertation.

90



6.3.1 BID Problem

For the BID problem domain, I evaluated the framework on the problem instances de-

scribed in Table 6.1 of Section 6.1.1. The hypothesis for these experiments is that given

an area in which no conflicting constraints exist, the framework can infer the most rep-

resentative model given the data points available for the area. As the obtained results

show, the framework is able to infer a correct model of the area and is only limited by

the distribution of the data points within an area.

The results summarized in Tables 6.3 and 6.4 show the accuracy with which the

framework could infer the constraint model for a given area. In these tables, Area spec-

ifies the area from Table 6.1, Odd on North/East corresponds to the parity constraints

for E/W and N/S running streets, Block corresponds to the block numbering constraint

discussed previously, Increasing North and East are the constraints that dictate the direc-

tion in which addresses increase for N/S and E/W running streets, and Acc. and Comp.

correspond to the accuracy and completeness of the inferred model calculated over the

variables in the problem instance. For example, if a problem has four building variables

(two on the North/South and two on the East/West running streets) and all five con-

straints are inferred correctly but one variable is incorrectly placed in the scope of the

Increasing North constraint, the completeness would be 100% and the accuracy would be

11/12 = 91.67%. Accuracy correlates with the correctness of the model over the entire

set of variables while completeness represents the tightness of this model.

The results for the three sets of experiments in El Segundo are reported in Table 6.3.

The first experiment (1. (a) in Table 6.3) served as a sanity check and the results conform

91



Table 6.3: BID problem instance results.

Odd On Block Increasing Increasing
Area

North/East k = 100 North East
Acc. Comp.

1. (a) X X X X 100.00% 100.00%

1. (b) X X X X 100.00% 100.00%

1. (c) X X × X 100.00% 89.90%

X correctly inferred × not inferred N/A not applicable

to the ground truth. In this area, the accuracy and completeness of the inferred model

were both 100%, meaning all of the applicable constraints were correctly inferred. The

second trial (1. (b) in Table 6.3) used roughly 660 points generated by a geocoder web-

service. This set of data points corresponds to roughly 80% of all buildings West of

Main Street. This experiment tested the scalability of the framework and required no

more than 10 seconds to run (but well over an hour without the bucketing mentioned in

Section 3.1.1). Additionally, all of the applicable constraints where correctly inferred.

Finally, I utilized 12 gazetteer points from the USGS gazetteer that lay within El

Segundo and had an address associated with them (area 1. (c) in Table 6.3). Using

these data points, the framework was able to correctly infer all but one of the other

applicable constraints, failing to infer the direction in which addresses increased along

North/South running streets East of Main Street. This inability lead to the lower level

of completeness for the model (89.9%) and was caused by a lack of diversity in the data

points. Specifically, only one of the data points East of Main Street lay on a North/South

running street. This experiment helps illustrate the effect data point distribution has on

the accuracy of the results. To further explore the effect of landmark point distributions

92



for different areas, I ran the inference engine on other parts of the world. The results of

these trials are shown in Table 6.4.

Table 6.4: Other cities: inferred constraints.

Odd On Block Increasing Increasing
Area

North/East k = 100 North East
Acc. Comp.

2. X X X × 100.00% 87.50%

3. X X X X 100.00% 100.00%

4. X N/A × X 100.00% 76.45%

5. X × X × 100.00% 64.92%

6. X N/A X X 100.00% 100.00%

X correctly inferred × not inferred N/A not applicable

For downtown LA (area 2 in Table 6.4), seven landmark points where derived from an

online source of hotels, each with an address and latitude and longitude coordinates. All

of the constraints in the library are applicable to this area and no conflicting constraints

are present. The framework was able to correctly determine all but one of the applicable

constraints, resulting in a lower level of completeness. Indeed, there was not enough

information in the data points to determine in which direction addresses increased along

East/West running streets. However, the remainder of the applicable constraints were

correctly inferred, leading to the perfect measure of accuracy.

Next I considered subareas of San Francisco CA and Boulder CO (areas 3 and 4 in Ta-

ble 6.4). Using 16 and seven points respectively from the USGS gazetteer, the framework

was able to correctly identify all applicable constraints in San Francisco but it was unable

to infer one of the applicable constraints in Boulder. There wasn’t enough information in

the data to determine in which direction addresses increased along North/South running

streets in Boulder, leading to a lower level of completeness. Again this was caused by

93



an insufficient number of data points on North/South running streets. Yet, even with

relatively small sets of data points the framework was able to infer accurate and almost

fully complete constraint models.

In New Orleans LA (area 5 in Table 6.4), the framework was able to infer the parity

constraints and the direction in which addresses get bigger for North/South running

streets. However, the distribution of the data points was such that it was unable to infer

the applicability of the block numbering constraint and the direction in which addresses

increased for East/West running streets, causing a drop in completeness. This drop can

also be attributed to the lack of data points in this instance. Creating an area with

no conflicting constraints greatly reduced the number of data points available to the

framework. For Belgrade (area 6 in Table 6.4), 85 points from a government planning

website were used to infer the applicable constraints. The framework was able to correctly

infer all applicable constraints.

The results obtained when applying the basic framework to the areas presented in this

section lead to the following observation. Given a set of data points that provide enough

information about an area, the framework is able to correctly infer the set of applicable

constraints. This claim is validated by the results obtained in El Segundo (instances

1. (a) and (b)), in San Francisco (instance 3) and in Belgrade (instance 5) and provides

evidence for the hypothesis stated at the start of this section.

These experiments also highlight the importance of data point distribution over the

problem instance. I estimate that, with a perfect distribution of data points, the minimum

number needed to correctly identify all of the constraints currently considered is 4×n,

where n is the number of scopes defining the problem. In the case of no conflicting

94



constraints n = 1 and when the number of conflicting constraint pairs p > 0, n =

2p. Essentially, the framework requires two points for each street type (North/South or

East/West running). While this minimal set of points allows the framework to infer the

set of applicable constraints, it remains vulnerable to noise.

To handle the disparity in the distribution of data points, additional online sources can

be used to boost the data points used to infer the applicability of constraints. Specifically,

if the set of gazetteers points used in El Segundo (instance 1. (c) in Table 6.3) was

augmented with new data points along East/West running streets from the LA county

assessor website, the complete model of the area would be inferred. Similarly restaurants

from an online restaurant source for downtown LA and additional homes from a real-

estate website in Boulder would allow the framework to infer the correct model for these

areas, leading to a 100% level of accuracy and completeness.

These results help establish the feasibility of the basic components used in the frame-

work. The next step is to solve more complex areas, namely those that contain conflicting

constraints. The experiments carried out in Section 6.6.1 show how the framework is able

to handle more complex cases.

6.3.2 Sudoku

The goal of applying the basic framework to the Sudoku puzzle domain is to demonstrate

its ability to infer correct models for puzzles of varying type with a well-distributed set

of filled-in cells. The hypothesis being made is that if the initial filled-in cells of a puzzle

are placed in locations where the relationship between these cells leads to support for all

constraints in the library, then a representative model of a puzzle can be inferred. These

95



results serve as a validation of the generality of the framework as the same basic method-

ologies applied to the BID problem in Section 6.3.1 are applied to these Sudoku puzzles.

Additionally, these results serve as a baseline used to demonstrate the improvement in

model quality after augmenting the initial set of data points with new points through the

propagation of the basic constraint model.

The results summarized in Table 6.5 solve the instances presented in Section 6.1.2

and represent the completeness and accuracy values for each inferred model as an average

over the 100 puzzle instances for each difficulty level. Recall is defined as the ratio of the

number of correct constraints inferred to the total number of constraints representing the

puzzle type, and accuracy is defined as the ratio of the number of correct constraints to

the total number of constraints inferred. |Cnew| corresponds to the number of constraint

types that define each puzzle variation.

Table 6.5: Sudoku: accuracy and completeness of inferred constraints.

Easy Medium Hard
|Cnew| Comp. Acc. Comp. Acc. Comp. Acc.

Basic 3 1.0 0.88 1.0 0.87 1.0 0.87

Geometry 3 1.0 0.86 1.0 0.88 1.0 0.88

Diagonal 4 0.86 1.0 0.86 1.0 0.85 1.0

Even/Odd 4 1.0 0.93 1.0 0.94 1.0 0.95

Magic 5 (not categorized): Completeness: 0.81, Accuracy: 1.0

In general, the framework was able to correctly infer all of the constraints. The

basic and geometry puzzles are nearly the same puzzle except that geometry puzzles have

irregular regions, hence the results are very similar for both puzzle types. For both of

these puzzles, the framework was able to infer the three core constraints (as reflected by

96



the perfect completeness), but it incorrectly inferred the existence of a diagonal constraint

in some puzzle instances, causing a drop in overall accuracy. This incorrect inference of

the diagonal constraint is caused by a lack of information in the data points. Specifically,

the data points in these puzzles were laid out in such a way that roughly 86% of the

puzzles did not have two filled-in cells with the same number along either diagonal.

This same incorrect inference caused the drop in accuracy for the even/odd puzzle.

For this puzzle variety, the framework was able to correctly infer the applicability of all

four of the defining constraints, leading to the perfect level of completeness. However,

as seen in the basic and geometry puzzles, the data point distribution was such that

incorrect inferences of the diagonal constraint were also made. However, the accuracy

values for the even/odd puzzle were higher than those for the basic and geometry puzzles

by about 7%. This discrepancy can be attributed to a better overall distribution of the

data points leading to more negative support provided for the diagonal constraint.

The diagonal and magic puzzles were cases where all inferred constraints were correct

(perfect accuracy), but the filled-in cell distribution was such that the framework was

unable to infer a diagonal constraint (an applicable constraint) for all the puzzle instances

which resulted in a drop in completeness. In fact, only 10% of all magic puzzle instances

contained enough data points to infer this constraint. In general, the models inferred by

the framework for these two puzzles types were correct but not complete.

These results show that given a well-distributed set of data points, the basic framework

can infer a representative model of the puzzle. For puzzles such as diagonal and magic that

are more constrained, the framework infers a correct puzzle that is incomplete (missing

inferences) resulting in lower levels of completeness but perfect accuracy. Conversely,

97



for puzzles such as basic and geometry which are less constrained, the framework infers

complete but less precise models, resulting in perfect completeness but lower levels of

accuracy. Both issues can be addressed by augmenting the set of data points to improve

the coverage of the points used to infer the models.

Augmenting the set of data points motivates the constraint-propagation technique de-

scribed in Section 3.2. While the basic framework can infer precise models given the set of

initial filled-in cells, its inference ability is enhanced when presented with additional data

points. This claim is verified by the results presented and analyzed in Section 6.5. I also

show that given the right circumstances, constraint propagation leads to the generation

of 5 or more data points for each constraint type, satisfying the required number of cells

leading to a strong inference as stipulated by the calculated Bayes factors of n presented

below.

Table 6.6: Bayes factor: strength of evidence.

K Strength of Evidence

< 1.0 Negative (supports M2)

1 < K < 3 Barely worth mentioning

3 < K < 10 Substantial

10 < K < 30 Strong

30 < K < 100 Very Strong

> 100 Decisive

An additional approach to handling incorrect inferences of constraints is to adjust

the support level required for constraints to be classified as applicable. To approximate

the number of data points that need to provide support per constraint to confidently

infer the applicability of any constraint, I calculate the Bayes factor2 K for the set of

2en.wikipedia.org/wiki/Bayes factor

98



cells c = {1, . . . , 9}. Bays factor specifies which model Mi is more strongly supported

by the data given two models M1 and M2 and is defined as K =
p(x|M1)

p(x|M2)
. For Sudoku

puzzles, M1 corresponds to the likelihood of seeing two numbers that are the same given n

filled-in cells and is defined as M1 =
1

(

9

n

) . p(x|M1) represents the probability that seeing

n filled-in cells leads to positive support for a given constraint. M2 corresponds to the

likelihood of seeing no numbers that are the same given n filled-in cells and is defined as

M2 =
1

9n −
(

9

n

) . p(x|M2) represents the probability that seeing n filled-in cells leads to

negative support for a given constraint. Table 6.6 relates the Bayes factor to the strength

of evidence for a model Mi.

Table 6.7: Bayes factor for varying numbers of filled-in cells.

n Bayes factor

1 0

2 0.125

3 0.446

4 1.169

5 2.905

6 7.787

7 25.361

8 117.625

9 1066.627

Table 6.7 presents the Bayes factor for the set of n (the number of filled-in cells for

a constraint). We can summarize the results as saying that if n ∈ {5, 6} we have strong

evidence that we have seen two numbers that are the same and if n > 6 we have very strong

evidence of seeing two numbers that are the same. Therefore, we can conclude that using

5 or more filled-in cells per constraint in the library to test the applicability of a given

99



constraint allows us to make a strong inference of the given constraint’s applicability.

Obviously the more filled-in cells available the stronger the inference.

Table 6.8: Sudoku: accuracy and completeness of model with a support level of 5.

Easy Medium Hard
|Cnew| Comp. Acc. Comp. Acc. Comp. Acc.

Basic 3 1.0 1.0 0.99 1.0 1.0 1.0

Geometry 3 1.0 1.0 0.99 1.0 1.0 1.0

Diagonal 4 0.69 1.0 0.64 1.0 0.69 1.0

Even/Odd 4 0.19 1.0 0.19 1.0 0.17 1.0

Magic 5 (not categorized): Completeness: 0.41, Accuracy: 1.0

Given the Bayes factor analysis performed above, I changed the inference framework to

require a support level of 5 or above for applicable constraints and I re-ran the experiments

presented in Table 6.5 and the results of these experiments are shown in Table 6.8. As

these results show, the basic and geometry puzzles are much improved where all models

are correct and only 2 out of 600 models are not complete. Additionally, the even/odd

puzzle is modeled correctly (perfect accuracy) but the models are much more incomplete.

For the diagonal and magic puzzles, the inferred models remain correct but become more

incomplete. We can conclude that the higher support levels leads to more precise models

at the expense of completeness. However, depending on the application which is driven

by our framework this a preferred result and I discuss this further in Section 6.6.2.

6.4 Learning the Scope of Constraints using SVMs

The results reported in Section 6.3.1 showed that the framework can infer models for

instances that are homogeneous and contain no conflicting constraints. However, we

100



would like to solve more complex instances and the accuracy of an inferred model for

such instances will rely on the framework’s ability to determine the scope of conflicting

constraints. Given enough data points and pertinent semantic information, the framework

can effectively determine these scopes. However, semantic information is both problem

instance specific and not always easy to define. Therefore the approach used to learn a

constraint’s scope needs to be both domain-independent and applicable to all variations

of instances within the domain.

In this section, I evaluate the framework’s ability to learn the scope of constraints

using Support Vector Machines (SVMs), as described in Chapter 4. My hypothesis is

that given a set of relatively well-distributed data points, an accurate SVM model for

the scope of two conflicting constraints can be learned. Such an approach doesn’t use

domain-specific information and can be applied across problem domains. Being domain

independent, the automation of constraint model generation is enhanced with the use of

SVMs. I show how the distribution of data points in the problem instance affects the

SVM’s ability to correctly classify points into one of two scopes for a pair of conflicting

constraints and I show that a linear kernel outperforms a radial one for both problem

domains.

Figure 6.1 presents the results obtained when using SVMs to find scopes for the

Increasing East and Increasing West constraints for the El Segundo BID problem instance

2(b) in Table 6.2, chosen for its largest set of data points (∼1650 geocoded data points).

The x-axis represents the percentage of the points used to train the model (randomly

sampled) and the y-axis represents the percentage for the different evaluation metrics

when classifying the remaining points (test cases). Please note the different scales used

101



Figure 6.1: Results for finding contexts in El Segundo using SVMs.

for each y-axis. The graphs report measures of precision (number correct out of all labels),

recall (number of correct labels out of all points), f-measure (the harmonic mean of the

102



precision and recall), and accuracy (the internal metric used by SV M light). I report

results obtained when using the radial and linear kernel functions.

As Figure 6.1 shows, using a linear kernel function and the procedure outlined in

Chapter 4, the framework obtains 100% accuracy in labeling unknown data points when

using only 4% or roughly 66 points to train the model. Obviously the results depend

on the distribution of the points used to learn the SVM model. However, as additional

experimental results show (see Section 6.6.1), this approach results in a high level of accu-

racy even when using a smaller set of data points. The linear kernel greatly outperforms

the radial one because streets tend to be linear. Therefore the boundaries (hyperplanes)

learned by the linear kernel more closely represent the street boundaries seen in the

real-world. In contrast, the radial kernel uses non-linear approximations to learn the

boundaries and as such leads to less accurate results. I do not report the times needed to

train the SVM model as they are minimal (less then two seconds) for the small training

sets.

An additional benefit of this approach is that the framework can use the learned

scopes to classify data points that provide no support for a constraint. For example, in

the BID problem the SVM model learns scope using the street attribute, allowing the

framework to instantiate the correct constraints for streets with no supports for a given

constraint. As seen by the results reported in Section 6.6.1, this refinement allows the

framework to learn accurate constraint models for complex areas not supported by the

basic framework.

This SVM-based approach is also applicable to Sudoku puzzles. Samurai Sudoku

puzzles, as seen in Figure 6.2, have five Sudoku puzzles joined in a quincunx arrangement.

103



Figure 6.2: Example Samurai Sudoku puzzle.

For this puzzle variation, constraints apply within the scope of a single puzzle and these

scopes overlap for a subset of the cells contained within the center puzzle. I manually

created 10 Samurai-shaped puzzles to test the SVM learning algorithm in the Sudoku

puzzle domain. Each puzzle was created using the template puzzle shown in Figure 6.2.

In each instance, the distribution of points used for training and testing varied. Because

104



the goal of these experiments was to test the ability to determine the scope and not the

overall ability to infer an accurate model, cells used for training and testing were filled-in

with random numbers (i.e., the generated puzzle is not well-defined).

To generate results for these puzzles, the framework uses the cell locations in one of

the five puzzles over which some constraint ci applies (such as some of the cells along the

two diagonals in the top left-hand puzzle in Figure 6.2) as training examples for class

labels a. Different cells over which a different constraint ¬ci applies, such as some of

the shaded cells in the bottom left-hand puzzle in Figure 6.2, provide training examples

for class label ¬a. On average, 13 data points were used to train each class label. The

classification task is defined as taking those cells that are part of the scope of either ci

or ¬ci but were not used to train the SVM model and classifying them as either part of

class a (the scope of ci) or class ¬a (part of the scope of ¬ci).

Table 6.9: Accuracy measures when applying SVMs to Sudoku puzzles.

Accuracy Precision Recall F-Measure

Linear Kernel 97.64% 100.00% 94.52% 97.18%

Radial Kernel 82.73% 100.00% 67.56% 80.64%

The results presented in Table 6.9 report the average accuracy, precision, recall, and

f-measure of the classifications (across the 10 puzzles) as made by the SV M light package.

They show that an SVM-based approach can accurately learn the scope of conflicting

constraints for the 10 Sudoku puzzles. These results align with those presented for the

BID problem in Figure 6.1 and demonstrate the feasibility of using SVMs in the Sudoku

puzzle domain. Furthermore, the positive results in both domains help establish the

generality of the approach. The reduced accuracy encountered when using the radial

105



kernel is again attributed to the SVMs representation of the problem in the feature space.

To identify the location of cells in their respective puzzles, I use a grid to generate the

cell location. For example the cell in the top most corner of the top left-hand puzzle in

Figure 6.2 is at the location (1,1) while the bottom most corner of the bottom right-hand

puzzle is at the location (21,21). The separations between puzzles are defined as the

linear boundaries of the puzzles themselves and a linear kernel better approximates these

than the radial one.

6.5 Augmenting Input Data

As the results presented in Section 6.3 show, the input information, and specifically the

data points, have a significant impact on the accuracy of the inferred constraint model.

In Section 3.2, I presented an iterative algorithm that propagates the generic constraints

of a problem class to augment the initial set of data points. The aim of the algorithm is

to provide the framework with additional information that it can use to infer constraints

applicable in a given problem instance.

As previously stated (see Section 3.2 for a thorough explanation), the benefits of this

approach are more readily observed in Sudoku puzzles and as such I evaluate this algo-

rithm on the Sudoku puzzle instances described in Section 6.1.2. My aim is to show that

the newly inferred data points increase the number of cells that support each constraint

towards a number providing evidence of strong inference (see Bayes factor analysis in

Section 6.3.2) and they lead to the inference of more representative constraint models.

106



Table 6.10: Constraint Propagation: average number of new data points.

Easy
Initial AC GAC SAC All

Basic 27 30 64 78 81

Geometry 28 32 51 78 81

Diagonal 22 22 25 23 25

Even/Odd 15 16 16 16 16

Medium
Initial AC GAC SAC All

Basic 27 30 74 76 81

Geometry 27 30 71 76 80

Diagonal 22 22 25 23 25

Even/Odd 15 15 15 15 15

Hard
Initial AC GAC SAC All

Basic 28 32 47 79 80

Geometry 27 31 45 79 80

Diagonal 22 22 26 23 26

Even/Odd 15 15 15 15 15

Uncategorized
Initial AC GAC SAC All

Magic 9 9 9 9 9

The results showing the number of newly inferred data points using constraint prop-

agation are summarized in Table 6.10. In these tables, the Initial column corresponds

to the initial number of data points in the problem model, and the remaining numbers

correspond to the number of data points after propagation using Arc-Consistency (AC ),

Generalized Arc-Consistency (GAC ), Singleton Arc-Consistency (SAC ), and all three

techniques combined (All). Importantly, the constraints propagated are the generic Su-

doku constraints (All-diff row, column). All reported numbers correspond to averages

across the instances for a given puzzle type and difficulty level.

107



As these results show, GAC and SAC provide more new data points than AC and as a

whole the combination of all three methods provides the most newly inferred data points.

Furthermore, the basic and geometry puzzle types greatly benefit from the propagation

of the constraints yet the others do not. This is caused by the initial distribution of data

points within the puzzles and is most evident in the magic puzzle type where only one

filled-in cell initially occupies a region. To further evaluate the constraint propagation

method, the new sets of data points need to be used to infer the constraint model for all

puzzle instances.

Table 6.11: Iterative Propagation: accuracy and completeness of inferred constraints.

Easy Medium Hard
|CG| |Cnew| Comp. Acc. Comp. Acc. Comp. Acc.

Basic 2 3 1.0 0.99 1.0 1.0 1.0 0.99

Geometry 2 3 1.0 1.0 1.0 1.0 1.0 0.99

Diagonal 2 4 0.89 1.0 0.89 1.0 0.88 1.0

Even/Odd 2 4 1.0 0.93 1.0 0.94 1.0 0.94

Magic 2 5 (not categorized): Completeness: 0.81, Accuracy: 1.0

The results shown in Table 6.11 are obtained by augmenting the basic framework

used in Section 6.3.2 with the richer set of data points reported in Table 6.10. When

compared to the original results presented in Table 6.5, the accuracy of the constraint

model was improved for puzzle variations where a significant number of new data points

were inferred. Specifically, the basic and geometry puzzles saw a significant jump in

accuracy values because the new data points eliminated most of the erroneously inferred

diagonal constraints while still maintaining their prefect level of completeness.

108



Interestingly, a small number of new data points in the diagonal puzzle helped improve

the completeness by providing enough information to enable the inference of the diagonal

constraint in additional instances. Not surprisingly, the even/odd and magic puzzle

variations saw no significant change in their respective models because the propagation

of constraints led to very few new data points. A drop in accuracy for the hard even/odd

puzzles is caused by the incorrect inference of the diagonal constraint for some problem

instances. This incorrect inference is due to the newly inferred data points providing

weak support for this constraint.

To quantify the improvement seen when using a richer set of data points, consider

the average number of cells that provide support for the applicable constraints in each

puzzle type. The basic and geometry puzzles saw an average increase from 3.11 to 8.87

in the number of cells that provide support. This improvement supports the increase in

the number of precise models from an average of 87% to 99% (the average accuracy value

of these models). The number of cells providing support correlates with a very strong

support of evidence in the Bayes factor analysis (see Section 6.3.2) for the likelihood

of seeing two numbers that are the same which helps produce more negative support

for instances where the diagonal constraint does not apply. The diagonal puzzles saw

an average increase from 2.44 to 2.89 which contributed to the small increase in the

completeness (completeness value) of the inferred models. This is due to the likeliness of

not seeing two numbers that are the same for the diagonal constraint and thus inferring

its applicability. Finally, the even/odd and magic puzzles saw no increase in average

number of cells that provide support and as such saw no improvement in the quality of

the inferred model.

109



As the results in Table 6.11 show, when the number of new data points generated by

constraint propagation is significant enough to increase the number of cells that provide

support for a given constraint, the framework can generate very accurate models of the

given instances. However, puzzle variations that are highly constrained (i.e., even/odd,

magic) require propagation of more than just generic constraints. A possible solution is

to propagate the set of currently inferred constraints at each iteration of the algorithm.

With such an approach, the set of propagated constraints is larger and the reduction of

domain values potentially greater. Theoretically, this would lead to more data points

than the method used in the framework but it would still need to contend with cases

where incorrect inferences are made.

6.6 Automatic Model Inference

In this section, I augment the basic framework with the SVM based approach to learning

the scope of constraints and with the constraint propagation approach to generating new

data points. I present results that show the framework’s overall ability to infer represen-

tative models of the problem instance at hand and I show the improvement in solving

performance introduced by the inferred models versus generic ones. The experiments in

this section are conducted in both the BID problem and Sudoku puzzle domains and the

constraint models are automatically generated. These results represent the best inferred

models given the input information.

110



6.6.1 BID Problem

The goal of the experiments in the BID problem domain was to show that the inclusion of

additional inference rules and the use of the SVM based approach to learning constraints

results in precise models learned for various areas throughout the world. The inclusion

of these components allows the framework to solve the more complex set of instances

presented in Table 6.2 in Section 6.1.1. I also select an interesting part of El Segundo and

demonstrate the effect solving an inferred model has on the performance of the solver

and on the quality of the solution produced when compared to solving a generic model

of the area.

To evaluate the overall performance of the model generation process, the framework

solved the previously introduced instances defined in Table 6.2 and produced the results

reported in Table 6.12. In this table, Area specifies the area from Table 6.2, Odd on

North/East corresponds to the parity constraints for E/W and N/S running streets,

Block corresponds to the block numbering constraint, Increasing North and East are

the constraints that dictate the direction in which addresses increase for N/S and E/W

running streets, and Acc. and Comp. correspond to the accuracy and completeness of

the inferred model calculated over the variables in the problem instance.

The framework’s ability to learn scopes allows it to infer models for non-homogenous

areas, specifically those found in El Segundo (instances 7(b) and (c)), New Orleans (in-

stance 11), Belgrade (instance 12) and Jakarta (instance 13). In El Segundo, the frame-

work is able to infer accurate models for the entire city where the conflicting constraints

111



Table 6.12: Automated BID problem instance results.

Odd On Block Increasing Increasing
Area

North/East k = 100 North East
Acc. Comp.

7. (a) X X X X 100.00% 100.00%

7. (b) X X
Scope 1: X Scope 1: X

98.99% 100.00%
Scope 2: X Scope 2: X

7. (c) X X
Scope 1: X Scope 1: X

98.73% 89.90%
Scope 2: X Scope 2: ×

8. X X X × 100.00% 87.50%

9. X X X X 100.00% 100.00%

10. X N/A × X 100.00% 76.45%

11. X X
Scope 1: X Scope 1: X

97.67% 100.00%
Scope 2: X Scope 2: X

12.
Scope 1: X

N/A X X 100.00% 100.00%
Scope 2: X

13. X N/A X X 100.00% 100.00%

X correctly inferred × not inferred N/A not applicable

Increasing East and Increasing West co-exist. In New Orleans, N/S running streets be-

come E/W running due to the fan-like configuration of the city. These streets maintain

the addressing characteristics of a N/S even though they become E/W running and the

framework’s ability to learn scopes for the Increasing East/North constraints means it

can generate a consistent model for the area. This model represents a much larger and

more complex area when compared to the one inferred by the basic framework.

In Belgrade, the odd addresses are on the east and north sides of North/South and

East/West running streets respectively. However, one street in the area has odd addresses

on the west side of the street. Learning scopes for the constraints Odd on East and its

opposite Odd on West means the framework can generate a complete constraint model for

Belgrade. This is witnessed by the framework’s ability to infer the applicability of both

constraints resulting in a completeness measure of 100%. Additionally, the framework is

112



able to precisely identify the scope of each respective constraint maintaining a 100% level

of accuracy. The previous model learned for this area excluded the street to which the

conflicting Odd on West applied.

For Jakarta, the framework is able to infer a complete constraint model for the area,

a task that is impossible using the basic version of the framework. The inconsistencies of

the Odd on North/East and the Increasing North/East constraints throughout the city

make the constraint model a difficult one to infer. However, the techniques used in the

framework presented in this section allowed it to infer a model with 100% accuracy and

completeness while the basic framework would do no better than returning the generic

constraint model for the area

The inferred models are slightly off for the three instances with imperfect levels of

accuracy. For problem instance 7(b), all constraints are inferred correctly except for

the Increasing East constraint for a single street on the boundary of two scopes. This

is caused by an incorrect classification by the SVM model and the same error occurs

for instances 7(c) and 11. To contend with incorrect SVM classification, the framework

implements a relaxation of the constraint model when no solution can be found. This

relaxation uses backtracking where the classification of constraints for streets with no

labels is reverted back to unknown and it is available as an optional component in the

framework. Because I am dealing with CSPs that are guaranteed solvable, the generation

of no solution signifies the inference of an incorrect model. A relaxation of the model may

yield a less accurate final solution than one obtained from the tightest model possible.

However, as the results presented below show, a solution still represents a significant

improvement over ones obtained when solving a generic model.

113



Additionally, instances 7(c), 8, and 10 are represented by models with imperfect levels

of completeness. As was the case with the models generated by the basic framework in

Section 6.3.1, this loss in completeness is caused by an inability to correctly infer all

applicable constraints due to the lack of information in the data points. Although these

models are not as tight as they could be, they are still very precise and much tighter than a

generic model for the area. As stated previously, the lack of information can be alleviated

by the use of additional online sources which would provide more data points. This set of

new points would provide support for the misclassified constraints and a complete model

of the area would be generated.

To evaluate the performance gains of using an inferred constraint model over a generic

one, I choose the area of El Segundo represented as area 1. (a) throughout the experiments

in this chapter. The inferred model represents the complete model for this area and it

was generated by the framework using 38 data points found in an online assessor site.

Both the inferred and generic models are solved using our customized solver [7]. I validate

the claims of improved solution quality and solving efficiency by applying the model to

several different regions of this area which vary in size and in phone book completeness.

Table 6.13 describes the properties of the regions on which I ran these experiments.

The completeness of the phone book indicates what percentage of the buildings on the

map have a corresponding address in the phone book. I created the complete phone books

using property-tax data, and the incomplete phone books using real-world phone books.

The number of building-address combinations is the number of possible combinations of

buildings and phone-book addresses. Note that this number is smaller when the phone

book is incomplete than when it is complete.

114



Table 6.13: BID problem case studies used to evaluate performance.

Case study Phone-book Number of. . .
completeness bldgs blocks building-address

combinations

NSeg125-c 100.0% 4160
NSeg125-i 45.6%

125 4
1857

NSeg206-c 100.0% 10009
NSeg206-i 50.5%

206 7
4879

SSeg131-c 100.0% 3833
SSeg131-i 60.3%

131 8
2375

SSeg178-c 100.0% 4852
SSeg178-i 65.6%

178 12
2477

The experimental results are summarized in Tables 6.14 and 6.15, and divided into two

categories: (1) the problem model without the block-numbering constraint, and (2) the

problem model with the block-numbering constraint. As our previous work [7] showed,

without the block-numbering constraint (called the grid constraint) the BID problem can

be solved in polynomial time using a matching algorithm. The existence of the block-

numbering constraint forces the BID problem solver to use the backtrack search CSP

algorithm. Therefore, to carry out a fair comparison with previous results, I demonstrate

the improvement introduced by the inference framework for both the matching and search

algorithms.

To further demonstrate the effect inferred constraints have on the solving process, for

each algorithm I present results obtained when the Odd on North/East and Increasing

North/East constraints (denoted by orient. constraints in Tables 6.14 and 6.15) are in-

cluded and when they are unknown. Runtime reports the runtime, in seconds, required

to solve the problem, Domain size reports the geometric mean of the domain size for a

115



building, Runtime reduction and Domain reduction report the factor by which the average

domain size and runtime were reduced when using the inferred model.

Table 6.14: BID problem results for case studies without block-numbering constraints.

Matching-Based Solver

W/o orient. constraints W/ orienr. constraints
Runtime Domain Runtime Domain Runtime Domain

(sec) size (sec) size reduction reduction

NSeg125-c 90.87 1.95 5.13 1.0 17.71x 1.95x

NSeg125-i 41.25 6.84 2.42 4.68 17.05x 1.46x

NSeg206-c 393.04 2.70 22.28 1.39 17.64x 1.94x

NSeg206-i 192.98 8.75 11.08 5.83 17.42x 1.50x

SSeg131-c 152.29 3.52 9.78 1.90 15.57x 1.85x

SSeg131-i 46.62 13.05 3.04 4.06 15.33x 3.21x

SSeg178-c 379.96 3.59 19.25 1.93 19.74x 1.86x

SSeg178-i 79.24 8.68 5.05 3.41 15.69x 2.55x

Average 17.02x 2.04x

Table 6.15: BID problem results for case studies with block-numbering constraints.

CSP Search Solver

W/o orient. constraints W/ orient. constraints
Runtime Domain Runtime Domain Runtime Domain

(sec) size (sec) size reduction reduction

NSeg125-c 22397.08 1.22 1962.53 1.0 11.41x 1.22x

NSeg125-i 22929.49 6.11 3987.73 4.18 5.75x 1.46x

NSeg206-c 198169.43 1.21 10786.33 1.0 18.37x 1.21x

NSeg206-i 232035.89 7.91 12900.36 4.99 17.99x 1.59x

SSeg131-c 173565.78 1.56 125011.65 1.41 1.39x 1.11x

SSeg131-i 75332.35 12.56 17169.84 3.92 4.39x 3.20x

SSeg178-c 523100.80 1.41 284342.89 1.31 1.84x 1.08x

SSeg178-i 334240.61 8.24 62646.91 3.23 5.34x 2.55x

Average 8.31x 1.68x

116



As the results show, the use of a customized constraint model greatly improves the

performance of the solver. The results for the matching algorithm presented in Table 6.14

show on average a factor of 17 improvement in runtime and a factor of two improvement

in domain reduction. As we previously noted [7], every building has the correct label in

its domain resulting in a perfect recall measure for the solution. Therefore a factor of two

domain reduction results in a large increase in the solution’s precision.

For the CSP search algorithm results presented in Table 6.15, the domain reduction

is less than that of the matching algorithm results, although there is still a reduction

of an average factor of 1.68. This is due to the fact that the search algorithm includes

the block-numbering constraint which further constrains the problem and produces small

final domain sizes. However, there still exists a significant improvement in the runtime

when the inferred constraints are included in the model. On average, there is a factor

of 8.31 improvement in runtime, with some scenarios seeing a reduction by a factor as

large as 18.37. The performance results for both algorithms show that an inferred model

greatly improves the performance of the solver and the quality of the solution.

As the results in this section demonstrate, the framework’s ability to automatically

infer a representative model of an area along with the improvements introduced when

solving the inferred model make the framework a preferred alternative to the process of

manually writing models for each problem instance. Even though a domain expert must

define the constraints in the library, the inference rules that map to these constraints

and the set of conflicting constraints, this is a one-off process whose information can be

leveraged across instances. Once the framework has been “set up” to handle the BID

problem domain, it can generate hundreds or thousands of constraint models representing

117



instances across varying areas of the world. The effort required of a domain expert to

manually create equivalent models would be overwhelming.

Although the framework doesn’t always generate complete models of the areas, the

techniques in place to handle errors are robust enough to produce useful solutions even

though better ones may exist. Any generated solution is better than one produced when

solving a generic model of the problem and the time saved by automatically generating

the models makes the inference framework a viable alternative to manual modeling of the

BID problem. It is also possible that the inference framework generates an inaccurate

constraint model (represented by lower levels of accuracy in my experimental results).

In such cases, the model needs to be relaxed so a valid solution(s) will be found. This

inaccuracy and subsequent relaxation affect the precision of the produced solution. An

accurate but less complete model will result in a smaller domain reduction but as the

results in Tables 6.14 and 6.15 show, the precision of the solution is still much greater

when compared to the solution generated by solving a generic model.

6.6.2 Sudoku

The performance evaluation of the framework in the Sudoku puzzle domains serves the

purpose of enforcing the generality and the domain-independence of the framework. The

evaluation demonstrates a Sudoku solver’s ability in solving problem instances represented

using the inferred constraint model generated by the framework. These results validate

the use of the framework for automatically modeling certain puzzle types and they show

that this framework can be used as a foundation upon which a generalized Sudoku puzzle

solver can be built.

118



To evaluate the performance of solving the inferred model for Sudoku puzzles, I applied

the framework to the set of puzzle instances presented in Section 6.3.2. Additionally, the

set of data points for each puzzle was augmented by applying the iterative propagation

algorithm discussed in Section 3.2 and evaluated in Section 6.5. The experimental results

are presented in Table 6.16. These results report the percentage of problem instances for

each puzzle type and difficulty level that could be solved using the inferred constraint

model along with the percentage of the solved puzzle instances that returned a single

solution. This second metric is important in that I assume all of the puzzle instances are

well formed, meaning they have a single solution. This assumption falls out of the class

of solvable CSPs that I consider in my research.

Table 6.16: Sudoku problem results with an inferred constraint model.

Easy Medium Hard
% solved % one sol. % solved % one sol. % solved % one sol.

Basic 99% 100% 100% 100% 99% 100%

Geometry 100% 100% 100% 100% 99% 100%

Diagonal 100% 57% 100% 56% 100% 53%

Even/Odd 69% 100% 74% 100% 76% 100%

Magic (¬ categorized): % solved: 100% % one sol.: 10%

As these results show, the basic and geometry puzzles are almost all solved, except

for two puzzle instances that were represented with an over-constrained model. These

two puzzles can be dealt with using a backtracking approach or by increasing the support

level required to classify a constraint as applicable (see Section 6.3.2). Specifically, the

inferred constraints could be relaxed based on their levels of support until a solution is

produced. However, as the results show for these two puzzle types, this approach would

119



rarely need to be taken. A similar approach could be taken with even/odd puzzles where

a lower percentage of solved instances is caused by the incorrect inference of the diagonal

constraint. Even though the relaxed models may not lead to a well-formed solution,

depending on the use of the application this solution could still be useful.

For the diagonal and magic puzzles, I was able to solve all puzzle instances but a sig-

nificant number of inferred models were under-constrained, leading to a lower percentage

of instances with only one solution. This results from a lack of information in the data

points used to infer the model. In general, a precise model is preferred over a complete

one, especially when creating a tutor application such as the one described below.

The results presented in Table 6.16 show that the framework performs well enough in

this domain to make it a viable backbone for a Sudoku-based application. For example if

the framework and solver are applied to a Sudoku tutor application where the application

teaches a user how to play Sudoku, filling cells with both unique values and sets of

reduced possible values would serve the purpose of helping a user master the art of

solving Sudoku puzzles of varying difficulty and type. Additionally, the ability to generate

representative models of Sudoku puzzles, as demonstrated in this chapter, enforces the

general applicability of the techniques used in the inference framework.

A possible solution to the problem of under-constrained models is to develop an appli-

cation that uses an interactive process by which the generation and solving of a model is

done with help from a user. Given the under-constrained model of the puzzle, the solver

would reduce the domains of the cells as best it could and produce the possible values for

all cells where singleton domains represent variable-value assignments. The application

could then ask the user to assign values to cells containing multiple possible values based

120



on the partially generated solution. Given these new data points, the application would

refine its inferred model and the process would continue until the solver produces a single

solution.

121



Chapter 7

Related Work

My inference framework is related to work in several areas. It builds upon research on

constraint programming and problem modeling. Within the modeling research area, there

is relevant work in learning constraint networks, qualitative reasoning, and compositional

modeling. Furthermore, the problem of building identification can be related to some

existing geospatial-specific research. The related work analysis in this chapter is divided

into these topics.

7.1 Constraint Programming

Puzzles have historically been an interesting domain for constraint programming (CP).

Lauriere puzzles [40] were used to find new constraint solving paradigms. These paradigms

have been applied to puzzles such as n-queens [31; 51], the five houses puzzle [4], the

progressive party problem [60], and the social golfer problem [32]. This previous work

validated the use of CP as an effective paradigm for modeling and solving combinatorial

problems.

122



The Proverb system [45] served as motivation for the work presented in this dis-

sertation. Proverb uses a probabilistic CSP approach to solving crossword puzzles.

Clue-value pairs infer themes in crossword puzzles by passing them onto sets of expert

modules. These clue-value pairs are analogous to the data points, and the expert modules

are similar to the inference rules in my framework. Additionally, work on refining floor

plans with small changes to eliminate violated design constraints [48] uses a constraint-

refinement approach to solving a combinatorial problem. This work, along with Proverb

and the work on the BID problem and Sudoku presented in this dissertation further val-

idate the modeling of combinatorial problems as CSPs.

I identified the BID problem as an interesting new domain for CSPs [47]. My initial

findings showed how the BID problem can be solved as a CSP and I built upon this

work by developing the full constraint-inference framework. As I have shown, this frame-

work improves the robustness of the building-identification system and makes an online

application that identifies buildings throughout the world a more realistic endeavor. Fur-

thermore, the role of a domain expert is significantly reduced when compared to the

initial approach.

Sudoku puzzles have also been modeled as a CSP [21; 59]. The work done by Simonis

[59] shows how different known and ad-hoc propagation techniques affect the ability to

solve basic Sudoku puzzles of varying difficulty. Combining my inference framework with

the propagation schemes defined in their work would allow Simonis [59] to expand the set

of Sudoku puzzles solved from only the 3x3 basic version to variations such as the ones

discussed in this dissertation. Additionally, non-repetitive paths and cycles in graphs have

123



been used to generate algorithms that create and solve Sudoku puzzles more efficiently

[21].

Filtering techniques are very useful in reducing variable domains and making search

more tractable. Filtering techniques check for local consistency within the constraint

network using constraint-propagation methods. Some of the most widely used filtering

techniques include arc-consistency (AC) [46], generalized arc-consistency (GAC) [49], and

singleton arc-consistency (SAC) [18]. AC is a method that works on binary constraints

and one variable’s value is said to be arc-consistent if there exists a support for this

value in the second variable. GAC is an extension of AC that operates on non-binary

constraints. SAC is a more thorough consistency check where a value is assigned to

one variable and this value is propagated throughout the constraint network checking

for inconsistencies. As I describe in Section 3.2, I use these filtering techniques in my

iterative propagation algorithm to infer more information (such as the instantiation of

additional variables) about a given problem instance.

Finally, in concurrent CP [57] some constraints are implications whose right-hand

side is added to the constraint store only when the left-hand side is entailed. Languages

such as Mozart/Oz [56; 58; 61] and Java1 support concurrent CP. The methodology

behind concurrent CP is similar in nature to my inference framework where inference

rules provide support for constraints in the constraint library. However, using support

levels to determine the applicability of constraints is more robust than the binary decision

used in concurrent CP.

1java.sun.com

124



7.2 Constraint Modeling

There has also been work on using contextualized constraints [13; 24; 29; 30; 39]. Modeling

contextualized constraints in grid workflows [24; 30] provides graph-based methods for

expressing constraints and shows how multiple graphs (each corresponding to a context)

can be combined to create one constraint workflow. This work is different from learning

the scope of constraints in my framework in that previous work provides a means to

model and merge known contexts (and the constraints within each context) while my

work tries to identify different scopes (analogous to context in previous work) within a

problem instance for all inferred constraints.

Context constraints [13; 29; 39] are used to deal with the state explosion problem in

compositional reachability analysis (CRA). This work focuses in the software engineering

domain and combines both derived and user-defined context constraints to build reach-

ability graphs. Again it is more focused on deriving constraints and applying them to

known contexts. The main goal of the CRA research is to create interface processes for

software verification, rather than solving constraint satisfaction problem. However, the

definition and application of contexts in a different research area provide insights into

concepts that need to be considered when creating a generalized approach to learning

scopes in my framework.

Work on learning soft constraints [37] tries to induce local preference functions for

temporal constraints using global preference as defined by an expert given a set of full

solutions. A key difference between our work and theirs is that we learn the scope of

constraints from data points that represent variable-value assignments for only a subset

125



of the variables in the model (a partial solution). However, the idea of learning local

preferences given global ones is interesting and provides us with helpful insight when

considering our learning problem. Additionally, by learning the scope of constraints our

framework “specializes” constraints and in a sense, converts them to soft constraints with

a preference to local applicability (only within the learned scope).

Work on qualitative reasoning (QR) [62] and compositional modeling (CM) [22; 42;

52] focuses on using a behavioral model of a system to predict what should be observed

from this system. Subias et al. [62] propose an approach to generate a qualitative model

from the data clusters corresponding to classified data. Their approach uses historical

data samples as landmarks for qualitative model generation, similar to the use of data

points in my framework. The key idea behind compositional modeling is to store model

fragments in a library and when building a model given a scenario, which includes a set

of assumptions and a set of initial conditions, selecting the appropriate fragments and

composing them using constraints that link the output of a fragment to the input of

another.

Conceptually, these two approaches are similar. Data points in my framework are

similar to the initial conditions specified in the scenario in Compositional Modeling and

the library of model fragments is akin to my library of constraints. The difference lies in

the approach to model generation. CM creates a brand new model for the given situation

while my inference framework specializes a basic model to represent the given problem

instance.

Research studying uncertain CSPs [23] is also relevant to my work. My approach to

inferring models also takes a previsional approach to finding an accurate model. However,

126



their assumption that the applicability of constraints is independent does not hold for

conflicting constraints. Also, as with all probabilistic CSPs the elicitation of probabilities

is a very hard problem. Additionally, these probabilities are assumed to be uniform across

all instances, which does not hold in my domains. For example, it is impractical to say

the Parity constraint applies with 70% probability throughout the world when it can be

shown that this constraint is more likely to apply in North America than in Europe.

Finally, research on using model refinement in CP also exists. The Conjure system

[26] reduces a specification of a problem into a set of alternative constraint models of

a type supported by current constraint solvers. Much like my framework, this system

takes a refinement approach to generating the constraint models, however, it functions at

the problem class level while I attempt to refine the model of a particular instance. The

Conjure system uses Essence [25] as its modeling language. This language provides

a high level of abstraction by mixing natural language and discrete mathematics in the

specification of combinatorial problems.

Other languages have been used to model combinatorial problems. NP-SPEC [11] can

represent the specifications of all NP-complete problems and research has shown that the

Z language specification is useful for the construction of constraint models [55]. OPL [33]

is also a complex language for combinatorial optimization It supports a decoupling of the

model (e.g., BID application) from the data (of particular instance). Both formalisms

can be used to specify the constraint model inferred by my inference framework.

127



7.3 Learning Constraints

Recent work in CP modeling aims at automatically learning constraint networks from

data. Coletta et al. [14] automatically learns constraint networks from full solutions

(both consistent and inconsistent) while Bessière et al. [10] use historical data (solutions

previously seen) to learn constraint networks. Machine learning approaches employing

SAT-based version-space algorithms [8] and neural nets [38] have also been used to acquire

constraint network models. These approaches are ways to model a problem class without

having to explicitly define the constraint model.

The key differences between these approaches and our work is that they use full

problem solutions to learn the constraint networks while our work requires a small number

of known values (a small partial-solution) to infer the constraint model. Additionally,

SVMs are best-suited to our class of problems as they handle noise better than version

spaces and are less prone to over-fitting when compared to neural networks. However,

some of these techniques could be extended and used to learn the constraints that make

up our constraint library. Extending the techniques in this branch of research to support

the types of constraints I am working with is something I propose as future work (see

Section 8.4).

Additional work in using machine learning to learn constraints such as the work by

Lallouet et al. [38] employs machine learning techniques to learn open constraints as well

as their propagators. Furthermore, Colton et al. [15] finds redundant constraints for

quasigroups and reformulate basic constraint models of these groups to improve search.

Finally, Cheng et al. [12] show how ad-hoc global case constraints can be customized to

128



construct various constraint models in the Still-Life game. These three papers provide

insight into optimizing the inferred model by incorporating different types of constraints

(i.e., redundant, case). Some of these techniques can be applied to the model generated

by my framework and could lead to a more efficient problem-solving process.

7.4 Geospatial Integration and Reasoning

The following work is specifically related to the building identification problem. The work

done by Bakshi et al. [5] presents methods to accurately geocode addresses using publicly

available data sources. The authors present two different approaches that can be used

to improve traditional geocoders. The end result of this work is accurate latitude and

longitude coordinates for buildings in a given area. This work also uses online sources

to improve the accuracy of building labels. The authors’ goal is to precisely identify the

location of buildings in a satellite image, which is different from my goal of providing a

set of labels to buildings in an image. Furthermore, this work assumes that the sources

used to identify all buildings in an image are complete (contain all of the buildings for

a given area). This may be a valid assumption to make when considering property tax

websites, however such sources are not available for most areas of the world. Therefore,

this approach may not be universally applicable.

There has also been work done in identifying buildings in satellite imagery and merging

geospatial databases using computer vision approaches, as seen in [2; 1; 20]. While some

of the goals in this work are similar (identifying objects in images), the work is more

focused on the actual detection of buildings in the images. This varies from my goal of

129



labeling and reasoning over specific buildings in images. This work could serve as a source

of information for my inference framework.

130



Chapter 8

Discussion and Future Work

In this chapter I first summarize the contributions of my dissertation. Next, I discuss

some application areas that would benefit from using my research and highlight some

limitations of my approach. Finally, I list possible directions for future work.

8.1 Contributions

The key contributions of this work are as follows:

• A general framework for automatic model generation that supports varying problem

instances within a problem class.

• The inference of a constraint model based on the problem instance at hand.

• The ability to deal with noisy data and incorrect inferences using support levels.

• The use of Support Vector Machines to automatically learn the scope of applicable

constraints.

Each contribution is described in more detail below.

131



The main contribution is a generalized constraint-inference framework for constraint

satisfaction problems. This framework reduces the burden placed on a domain expert by

using information found in a problem instance to infer the most representative constraint

model given the input information. This approach limits the involvement of the expert to

the definition of the constraint library and inference rules, a task that is more manageable

than having to define constraint models for all possible problem instances. Although

a domain expert must “setup” a domain before it can be supported by the inference

framework, the knowledge introduced by the expert is leveraged over time resulting in

accurate constraint models.

In addition to the generalized framework, I identified solvable CSP problems as a

class of problems amenable to modeling by an iterative process of model refinement

and model solving. This class of problems supports a set of assumptions, such as the

existence of a solution for all instances, that allows for the use of new techniques such

as the combination of constraint propagation and model relaxation for model refinement.

Further, the use of Support Vector Machines (SVMs) to automatically learn the scope of

a constraint is a novel approach to handling non-homogenous problem instances. This

approach is domain independent and only assumes that an instance’s input information

can be represented in the feature space. It can be applied to any problem where an

instance must be separated to handle contentions between applicable constraints without

creating multiple disjunctive constraint models.

Specific to the BID problem and Sudoku puzzles domain, I have created a set of infer-

ence rules and a library of constraints for each domain. As such, applications specific to

132



one of these two domains can use my framework to efficiently solve instances with mini-

mal domain expert involvement. The flexibility of the framework makes it easy to plug-in

different inference approaches and to manage different methods used to enhance the in-

ference process, such as augmenting the input information and propagating constraints

when instantiating a model. Finally, representing instances using the XCSP schema pro-

vides the research community with problem sets that can be used to further the research

in various areas of Constraint Programming.

8.2 Application Areas

Although only the BID problem and Sudoku puzzles are presented throughout this disser-

tation to illustrate the concepts and mechanisms used, I believe this work can be applied

to a general class of problems where a solution can be guaranteed. Because the tech-

niques used in the framework are general, they can also be applied to other domains. The

framework can be applied to any problem domain where commonalities existing across all

problem instances can be leveraged and where variations in the instances makes it infea-

sible to generate and store all possible constraint models beforehand. Two such domains

are machine translation and genealogical trees and I briefly discuss how my framework

could be applied to these domains.

8.2.1 Machine translation

Syntactic machine translation [27; 53] is a domain where syntactic transfer rules are

derived from bilingual corpa and used to translate documents from a base to a target

language. To apply my inference framework in this domain, the text in the document

133



being translated could be used as input information specific to a problem instance. This

text could determine a scope (what type of document it is) and what constraints ap-

ply. Because the subject matter contained in a document varies, the set of applicable

translation rules (constraints) may also vary across documents.

By generating a constraint model specific to a particular document, a translation en-

gine could be optimized at run-time based on the the deduced rule set (and the rules’

scope) contained in the inferred model. This model would increase the efficiency of a

generalized translation engine for multiple bilingual translations. Such a translation en-

gine would be implemented using a general framework but the specificity of the inferred

models and the ability to support new translations by simply adding new constraints and

rules could increase its adoption in various settings. A constraint would represent gram-

matical conventions such as the modification of pronouns by an adjective and inference

rules would specify situations that support a given convention, for example an adjective

comes after a pronoun when the above mentioned convention is supported.

8.2.2 Genealogical Trees

Another example CSP problem to which I can apply my framework is the problem of

constructing genealogical trees which is guaranteed to have a solution as dictated by the

real world. The task that would need to be performed is, given a set of people, generate a

representative model of the relationships between the people such that a genealogical tree

representing these relationships can be constructed. Even though a set of generic con-

straints will apply to all problem instances (e.g., biological children must be younger than

parents), cultural influences introduce constraints which only apply to certain instances.

134



For example the accepted practice of polygamy in certain cultures or adoption can intro-

duce instance-specific characteristics and cross-cultural family trees may be represented

by a non-homogenous set of characteristics.

The known relationships between family members could be used to infer the set of

applicable constraints and their scopes for a given problem instance. Imagine the scenario

where we would like to build an application that, when provided with a set of people (data

points) between which we know some of the relationships, constructs the corresponding

genealogical tree. Using my framework as the foundation for this application allows it be

more robust to handling the cultural differences seen throughout the world and negates

the need to determine all possible familial combinations a priori.

8.3 Limitations

In this section I describe some of the assumptions and limitations specific to the inference

framework. As discussed in Section 1.1.1 the framework models only problems for which

a solution is guaranteed to exist. The framework exploits this property when relaxing

the model due to incorrect inferences or when it uses constraint propagation to infer

new input information. Additionally, when determining if a problem instance contains

multiple scopes, the framework assumes it a set of conflicting constraints has been pre-

determined by a domain expert. The problem of finding all pairs of conflicting constraints

in the constraint library is exponential, hence the framework assumes these pairs are

provided as a means to increase its efficiency and lower its complexity.

135



In the BID problem, two key assumptions are made. First the framework assumes

it has access to vector data for the given area of interest. While the data points may

come from varying data sources, road network information must be available as it is used

to extract key pieces of information such as the set of potential streets for all buildings.

The second assumption being made is that a building extraction tool is available to the

framework. Such a tool is able to extract the buildings from satellite imagery and provide

the framework with their location within the area. While I recognize that this is a difficult

computer vision problem, solving it is beyond the scope of this thesis. Accordingly, the

reported experiments for the BID problem use a manual process to extract the buildings

in each satellite image.

8.4 Directions for Future Work

I believe there are some future directions for this work that will allow the techniques I

developed to be applied more broadly. These directions include learning constraints to

automatically populate the constraint library and using multi-class SVMs to determine

the scope of constraints. Additional work can be done to improve the performance of

the framework in the BID problem and Sudoku puzzle domains. I discuss these possible

future directions in the following sections.

8.4.1 Learning Inference Rules

To further reduce the role played by a domain expert, the framework could learn the

inference rules and map them to the constraints in the constraint library. One possible

learning approach involves the use of agglomerative clustering [3]. This process would

136



work as follows. First, begin with nr sets of n data points where r corresponds to the

arity of the constraints we are trying to learn. Since all data points have a common set

of features, we can generate training data for the clustering algorithm by combining the

data points in each set to generate a single feature vector representing the set. When

comparing data points, we will limit ourselves to the set of predicate expressions preds =

{<, >,==, <=, >=}.

Each feature vector is constructed by taking a single attribute a and the n values for

that feature in the set and evaluating all predicate expressions in preds to generate |preds|

attribute-value pairs. The size of this feature vector would be A× |preds| where A is the

number of attributes that define the data points. Once we have constructed all feature

vectors, we perform agglomerative clustering on these vectors using cosine similarity as

the distance metric. Even though cosine similarity works only if all attribute values are

binary (0/1), this is a natural result when using the set of predicate expressions in preds.

The algorithm ends by considering clusters greater than some size c, where c must be

manually set or the optimal size is determined through experimentation. The cluster

center of all relevant clusters is a logical expression corresponding to an inference rule.

Once the set of inference rules have been determined, they must be mapped to the

constraints in the library. This process can be done in one of two ways: (1) the domain

expert can define mappings that can be used to automatically map rules to constraints, or

(2) the domain expert can manually map the learned rules to constraints. The mapping

of rules to constraints is not a straightforward process because the rules are defined in

the feature space, while constraints exist in the variable space. Very preliminary results

137



validate this process of learning inference rules but more intelligent ways of generating

feature vectors and handling noisy comparisons need to be determined.

8.4.2 Enhancing the Learning of a Constraint’s Scope

The current approach to learning the scopes requires a domain expert to define sets of

conflicting constraints. These conflicts are assumed to be binary. However, situations

may arise in domains where conflicts may be ternary and beyond. To support such cases,

the machine learning piece of the scope learning component in the framework needs to

be enhanced to support multi-class classification. By supporting multiple classes, the

framework could support more complex interactions between constraints and in turn

could handle increasingly complex problem instances.

One possible solution is to replace the binary implementation of Support Vector Ma-

chines (SVMs) currently used in the framework with an implementation of multi-class

SVMs [17; 35; 63]. Using multi-class SVMs would maintain the current algorithmic pro-

cess and it would allow the definition of non-binary sets of conflicting constraints. As

such, more complex constraint models could be learned, where the interaction between

constraints is more sophisticated than what is currently supported.

8.4.3 BID Problem

Future work with respect to the BID problem can be divided into two main categories:

performance improvement and application building. Specifically, to improve the perfor-

mance of the framework for the BID problem, the generic constraint-propagation algo-

rithm could be applied to augment the set of input information. The current implemen-

tation of the filtering techniques used to propagate the generic constraint model does

138



not support some of the constraints in the BID problem domain. Hence the propagation

methods need to be updated to propagate these different constraint types.

Additionally, to fully test the performance of the framework for the BID problem, an

online application for assigning addresses to buildings in satellite imagery can be built.

This application would take as input the coordinates of an area of interest and return

the corresponding satellite imagery with the buildings labeled with potential addresses.

To make this application a reality, all of the required information would need to be auto-

matically retrieved. Specifically, tools such as a computer vision method for identifying

buildings in satellite imagery and wrappers to extract information from public sources

around the world would need to be incorporated into the application along with the in-

ference framework. This is an application building task but one that could be useful to

many people.

8.4.4 Sudoku Puzzles

Future work in the Sudoku puzzle domain involves building an XML schema using the

XCSP standard for Sudoku that would allow the framework to automatically instantiate

the inferred constraint model. It would also provide the CP research community with

additional problem instances for solver competitions. Providing a standard format in

which to represent Sudoku puzzle instances could also lead to the creation of a test set

of instances that could be used in submitted papers when evaluating new approaches to

solving combinatorial problems. Using a base test set would make it easier to compare

techniques and evaluate their respective performance when compared to the state of the

art.

139



Bibliography

[1] Peggy Agouris, Kate Beard, Georgios Mountrakis, and Anthony Stefanidis. Captur-
ing and modeling geographic object change: A spatio-temporal gazeteer framework.
Photogrammetric Engineering and Remote Sensing, 66(10):1224–1250, 2000.

[2] Peggy Agouris and Anthony Stefanidis. Integration of photogrammetric and geo-
graphic databases. International Archives of Photogrammetry and Remote Sensing,
ISPRS XVIIIth Congress, 31:24–29, 1996.

[3] Michael R. Anderberg. Cluster Analysis for Applications. Academic Press, Inc.,
1973.

[4] Krzysztof R. Apt. Principles of Constraint Programming. Cambridge University
Press, 2003.

[5] Rahul Bakshi, Craig A. Knoblock, and Snehal Thakkar. Exploiting online sources
to accurately geocode addresses. In Proceedings of the 12th ACM International
Symposium on Advances in Geographic Information Systems (ACM-GIS’04), pages
194–203, 2004.

[6] Kenneth M. Bayer, Martin Michalowski, Berthe Y. Choueiry, and Craig A. Knoblock.
Reformulating constraint satisfaction problems to improve scalability. In Proceedings
of the 7th Symposium on Abstraction, Reformulation and Approximation (SARA-
07), pages 64–79, 2007.

[7] Kenneth M. Bayer, Martin Michalowski, Berthe Y. Choueiry, and Craig A. Knoblock.
Reformulating CSPs for Scalability with Application to Geospatial Reasoning. In
Proceedings of the 13th International Conference on Principles and Practice of Con-
straint Programming (CP-07), pages 164–179, 2007.

[8] Christian Bessière, Remi Coletta, Frederic Koriche, and Barry O’Sullivan. A SAT-
Based Version Space Algorithm for Acquiring Constraint Satisfaction Problems. In
Proceedings of ECML’05, pages 23–34., Porto, Portugal, 2005.

[9] Christian Bessière, Pedro Meseguer, Eugene C. Freuder, and Javier Larrosa. On
Forward Checking for Non-binary Constraint Satisfaction. In Proceedings of the
Fifth International Conference on Principles and Practice of Constraint Program-
ming (CP-99), pages 88–102, 1999.

140



[10] Christian Bessière, Joel Quinqueton, and Gilles Raymond. Mining Historical Data
to Build Constraint Viewpoints. In Proceedings of CP-06 Workshop on Modelling
and Reformulation, pages 1–16, 2006.

[11] Marco Cadoli, Luigi Palopoli, Andrea Schaerf, and Domenico Vasile. Np-spec: An
executable specification language for solving all problems in np. In Proceedings
of the First International Workshop on Practical Aspects of Declarative Languages
(PADL98), pages 16–30, 1998.

[12] Kenil C. K. Cheng and Roland H. C. Yap. Applying ad-hoc global constraints with
the case constraint to still-life. Constraints, 11(2-3):91–114, 2006.

[13] Shing Chi Cheung and Jeff Kramer. Context Constraints for Compositional Reach-
ability Analysis. ACM Trans. Softw. Eng. Methodol., 5(4):334–377, 1996.

[14] Remi Coletta, Christian Bessière, Barry O’Sullivan, Eugene C. Freuder, Sarah
O’Connell, and Joel Quinqueton. Semi-automatic Modeling by Constraint Acquisi-
tion. In Proceedings of CP-03, pages 111–124, 2003.

[15] Simon Colton and Ian Miguel. Constraint generation via automated theory forma-
tion. Lecture Notes in Computer Science, 2239:575–579, 2001.

[16] Koby Crammer and Yoram Singer. The algorithmic implementation of multiclass
kernel-based vector machines. Technical report, School of Computer Science and
Engineering, Hebrew University, 2001.

[17] Koby Crammer and Yoram Singer. On the algorithmic implementation of multi-class
svms. Journal of Machine Learning Research, 2:265–292, 2001.

[18] Romuald Debruyne and Christian Bessière. Some practicable filtering techniques
for the constraint satisfaction problem. In Proceedings of the Fifteenth International
Joint Conference on Artificial Intelligence, IJCAI 97, Nagoya, Japan, August 23-29,
1997, volume 1, pages 412–417, 1997.

[19] Rena Dechter. Constraint Processing. The MIT Press, 1989.

[20] Peter Doucette, Peggy Agouris, Maohamad Musavi, and Anthony Stefanidis. Auto-
mated extraction of linear features from aerial imagery using kohonen learning and
gis data. Lecture Notes in Computer Science, 1737:20–33, 1999.

[21] David Eppstein. Nonrepetitive paths and cycles in graphs with application to su-
doku. ACM Computing Research Repository, 2005.

[22] Brian Falkenhainer and Kenneth D. Forbus. Compositional modeling: Finding the
right model for the job. Artificial Intelligence, 51(1-3):95–143, 1991.

[23] Hélène Fargier and Jerome Lang. Uncertainty in Constraint Satisfaction Problems:
a Probabilistic Approach. In Proceedings of the Second European Conferences on
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU-
93), pages 97–104, 1993.

141



[24] Ian Foster, Jens Vockler, Michael Wilde, and Yong Zhao. Chimera: a virtual data
system for representing, querying, and automating data derivation. In Proceedings
of 14th International Conference on Scientific and Statistical Database Management,
pages 37–46, 2002.

[25] Alan M. Frisch, Matthew Grum, Chris Jefferson, Bernadette Martinez-Hernandez,
and Ian Miguel. The design of essence: A constraint language for specifying combi-
natorial problems. In Proceedings of the Twentieth International Joint Conference
on Artificial Intelligence (IJCAI-07), pages 80–87, 2007.

[26] Alan M. Frisch, Chris Jefferson, Bernadette Martinez Hernandez, and Ian Miguel.
The Rules of Constraint Modelling. In Proceedings of the 19th International Joint
Conference on Artificial Intelligence (IJCAI), pages 109–116, 2005.

[27] Michel Galley, Jonathan Graehl, Kevin Knight, Daniel Marcu, Steve DeNeefe, Wei
Wang, and Ignacio Thayer. Scalable inference and training of context-rich syntactic
translation models. In Proceedings of COLING/ACL2006, pages 961–968, 2006.

[28] Michael R. Genesereth, Arthur M. Keller, and Oliver M. Duschka. Infomaster: An
information integration system. In Proceedings of ACM SIGMOD-97, 1997.

[29] Susanne Graf and Bernhard Steffen. Compositional minimization of finite state
systems. In Proceedings of the 2nd International Workshop on Computer Aided
Verification (CAV-90, pages 186–196. Springer-Verlag, 1991.

[30] Greg Graham, Anzar Afaq, David Evans, Gerald Guglielmo, Eric Wicklund, and Pe-
ter Love. Contextual Constraint Modeling in Grid Application Workflows. Concurr.
Comput. : Pract. Exper., 18(10):1277–1292, 2006.

[31] Robert Haralick and Gordon Elliott. Increasing tree search efficiency for constraint
satisfaction problems. Artificial Intelligence, 14:263–313, 1980.

[32] Warwick Harvey. The Fully Social Golfer Problem. In Proceedings of the Third Inter-
national Workshop on Symmetry in Constraint Satisfaction Problems (SymCon’03),
pages 75–85, 2003.

[33] Pascal Van Hentenryck. The OPL optimization programming language. MIT Press,
1999.

[34] Thorsten Joachims. Making large-scale support vector machine learning practical.
In Advances in Kernel Methods: Support Vector Machines. MIT Press, Cambridge,
MA, 1999.

[35] Thorsten Joachims. Making large-scale support vector machine learning practical.
pages 169–184, 1999.

[36] Thorsten Joachims. Learning to Classify Text Using Support Vector Machines:
Methods, Theory and Algorithms. Kluwer Academic Publishers, 2002.

142



[37] Lina Khatib, Paul H. Morris, Robert Morris, Francesca Rossi, Alessandro Sperduti,
and Kristen Brent Venable. Solving and learning a tractable class of soft temporal
constraints: Theoretical and experimental results. AI Communications, 20(3):181–
209, 2007.

[38] Arnaud Lallouet and Andrei Legtchenko. Consistency for Partially Defined Con-
straints. In Proceedings of the 17th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI ’05), pages 118–125, Washington, DC, USA, 2005.
IEEE Computer Society.

[39] Kim G. Larsen and Robin Milner. Verifying a protocol using relativized bisimulation.
In 14th International Colloquium on Automata, languages and programming, pages
126–135. Springer-Verlag, 1987.

[40] Jean-Louis Laurière. A language and a program for stating and solving combinatorial
problems. Artificial Intelligence, 10:29–127, 1978.

[41] Alon Y. Levy. Logic-based techniques in data integration. In Logic Based Artificial
Intelligence, pages 575–595. Kluwer Publishers, 2000.

[42] Alon Y. Levy, Yumi Iwasaki, and Richard Fikes. Automated model selection for
simulation based on relevance reasoning. Artificial Intelligence, 96(2):351–394, 1997.

[43] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Querying heterogeneous
information sources using source descriptions. In Proceedings of the Twenty-second
International Conference on Very Large Data Bases (VLDB-96), pages 251–262,
Bombay, India, 1996.

[44] Chungan Lin and Ramakant Nevatia. Building detection and description from a sin-
gle intensity images. Computer Vision and Image Understanding Journal, 72(2):101–
121, November 1998.

[45] Michael L. Littman, Greg A. Keim, and Noam Shazeer. A probabilistic approach to
solving crossword puzzles. Artificial Intelligence, 134(1-2):23–55, 2002.

[46] Alan Mackworth. Consistency in networks of relations. Artificial Intelligence, pages
99–118, 1977.

[47] Martin Michalowski and Craig A. Knoblock. A Constraint Satisfaction Approach to
Geospatial Reasoning. In Proceedings of AAAI-05, pages 423–429, 2005.

[48] Michael D. Moffit, Aaron Ng, Igor Markov, and Martha E. Pollack. Constraint-
driven floorplan repair. In Proceedings of the Design Automation Conference (DAC-
06), pages 1103–1108, 2006.

[49] Roger Mohr and Gérald Masini. Good Old Discrete Relaxation. In European Con-
ference on Artificial Intelligence (ECAI-88), pages 651–656, Munich, W. Germany,
1988.

143



[50] Katharina Morik, Peter Brockhausen, and Thorsten Joachims. Combining statistical
learning with a knowledge-based approach - a case study in intensive care monitoring.
In Proceedings of the 16th International Conference on Machine Learning (ICML-
99), pages 268–277, 1999.

[51] Bernard A. Nadel. Representation selection for constraint satisfaction: A case study
using n-queens. IEEE Expert: Intelligent Systems and Their Applications, 5(3):16–
23, 1990.

[52] Pandurang Nayak. Causal approximations. Artificial Intelligence, 70:277–334, 1994.

[53] Franz Josef Och and Hermann Ney. The alignment template approach to statistical
machine translation. Computational Linguistics, 30(4):417–449, 2004.

[54] Patrick Prosser. MAC-CBJ: Maintaining Arc Consistency with Conflict-Directed
Backjumping. Technical Report 95/177, Univ. of Strathclyde, 1995.

[55] Gerrit Renker and Hatem Ahriz. Building models through formal specification.
In Proceedings of the First International conference on the Integration of AI
and OR Techniques in Constraint Programming for Combinatorial Optimization
(CPAIOR04), pages 395–401, 2004.

[56] Peter Van Roy, editor. Multiparadigm Programming in Mozart/Oz, Second Inter-
national Conference, MOZ 2004, Charleroi, Belgium, October 7-8, 2004, Revised
Selected and Invited Papers, volume 3389 of Lecture Notes in Computer Science.
Springer, 2005.

[57] Vijay Saraswat. Concurrent Constraint Programming. MIT Press, 1993.

[58] Christian Schulte. Programming Constraint Services, volume 2302 of Lecture Notes
in Artificial Intelligence. Springer-Verlag, Berlin, Germany, 2002.

[59] Helmut Simonis. Sudoku as a constraint problem. In Proceedings of CP 2005, pages
13–27, 2005.

[60] Barbara M. Smith, Sally C. Brailsford, Peter M. Hubbard, and H. Paul Williams.
The progressive party problem: Integer linear programming and constraint program-
ming compared. In Proceedings of the First International Conference on Principles
and Practice of Constraint Programming (CP’05), pages 36–52, 1995.

[61] Gert Smolka. Concurrent constraint programming based on functional programming.
In Chris Hankin, editor, Programming Languages and Systems, Lecture Notes in
Computer Science, vol. 1381, pages 1–11, Lisbon, Portugal, 1998. Springer-Verlag.

[62] Audine Subias and Louise Travé-Massuyès. Discriminating qualitative model gener-
ation from classified data. In 20th International Workshop on Qualitative Reasoning
(QR-06), pages 129–136, 2006.

144



[63] Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin Altun.
Support vector machine learning for interdependent and structured output spaces.
In Proceedings of the Twenty-First International Conference on Machine Learning
(ICML04), pages 104–112, 2004.

[64] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag,
1995.

[65] Takayuki Yato. Complexity and Completeness of Finding Another Solutions and its
Application to Puzzles. Master’s thesis, The University of Tokyo, January 2003.

145



Appendix A

Constraint Inference Rules

This appendix describes the constraint inference rules for the BID problem and Sudoku.
I show all of the rules that map to each constraint in the constraint library for a given
problem domain.

A.1 BID Problem Inference Rules

These rules map to the constraints in the constraint library specific to the BID problem.

A.1.1 Odd on North rules

The Odd on North constraint ensures that all buildings on the North side along East/West
running streets are assigned an odd address number. The rules that map to the Odd on
North (a more specific Parity constraint) constraint are as follows:

1. (sType(B1) = sType(B2) = EW) & (mod2(B1) = mod2 (B2) = 1)

& (sSide(B1) = sSide(B2) = N)

2. (sType(B1) = sType(B2) = EW) & (mod2(B1) = mod2 (B2) = 0)

& (sSide(B1) = sSide(B2) = S)

3. (sType(B1) = sType(B2) = EW) & (mod2(B1) = 1) & (mod2(B1) != mod2 (B2))

& (sSide(B1) != sSide(B2)) & (sSide(B1) = N)

4. (sType(B1) = sType(B2) = EW) & (mod2(B2) = 1) & (mod2(B1) != mod2 (B2))

& (sSide(B1) != sSide(B2)) & (sSide(B2) = N)

5. (sType(B1) = sType(B2) = EW) & (mod2(B1) = 0) & (mod2(B1) != mod2 (B2))

& (sSide(B1) != sSide(B2)) & (sSide(B1) = S)

6. (sType(B1) = sType(B2) = EW) & (mod2(B2) = 0) & (mod2(B1) != mod2 (B2))

& (sSide(B1) != sSide(B2)) & (sSide(B2) = S)

A.1.2 ¬Odd on North rules

The ¬Odd on North constraint ensures that all buildings on the South side along East/West
running streets are assigned an odd address number. The rules that map to the ¬Odd
on North (a more specific Parity constraint) constraint are as follows:

1. (sType(B1) = sType(B2) = EW) & (mod2(B1) = mod2 (B2) = 0)

146



& (sSide(B1) = sSide(B2) = N)

2. (sType(B1) = sType(B2) = EW) & (mod2(B1) = mod2 (B2) = 1)

& (sSide(B1) = sSide(B2) = S)

3. (sType(B1) = sType(B2) = EW) & (mod2(B1) = 0) & (mod2(B1) != mod2 (B2))

& (sSide(B1) != sSide(B2)) & (sSide(B1) = N)

4. (sType(B1) = sType(B2) = EW) & (mod2(B2) = 0) & (mod2(B1) != mod2 (B2))

& (sSide(B1) != sSide(B2)) & (sSide(B2) = N)

5. (sType(B1) = sType(B2) = EW) & (mod2(B1) = 1) & (mod2(B1) != mod2 (B2))

& (sSide(B1) != sSide(B2)) & (sSide(B1) = S)

6. (sType(B1) = sType(B2) = EW) & (mod2(B2) = 1) & (mod2(B1) != mod2 (B2))

& (sSide(B1) != sSide(B2)) & (sSide(B2) = S)

A.1.3 Odd on East rules

The Odd on East constraint ensures that all buildings on the East side along North/South
running streets are assigned an odd address number. The rules that map to the Odd on
East (a more specific Parity constraint) constraint are as follows:

1. (sType(B1) = sType(B2) = NS) & (mod2(B1) = mod2 (B2) = 1)

& (sSide(B1) = sSide(B2) = E)

2. (sType(B1) = sType(B2) = NS) & (mod2(B1) = mod2 (B2) = 0)

& (sSide(B1) = sSide(B2) = W)

3. (sType(B1) = sType(B2) = NS) & (mod2(B1) = 1) & (mod2(B1) != mod2 (B2))

& (sSide(B1) != sSide(B2)) & (sSide(B1) = E)

4. (sType(B1) = sType(B2) = NS) & (mod2(B2) = 1) & (mod2(B1) != mod2 (B2))

& (sSide(B1) != sSide(B2)) & (sSide(B2) = E)

5. (sType(B1) = sType(B2) = NS) & (mod2(B1) = 0) & (mod2(B1) != mod2 (B2))

& (sSide(B1) != sSide(B2)) & (sSide(B1) = W)

6. (sType(B1) = sType(B2) = NS) & (mod2(B2) = 0) & (mod2(B1) != mod2 (B2))

& (sSide(B1) != sSide(B2)) & (sSide(B2) = W)

A.1.4 ¬Odd on East rules

The ¬Odd on East constraint ensures that all buildings on the West side along North/South
running streets are assigned an odd address number. The rules that map to the ¬Odd
on East (a more specific Parity constraint) constraint are as follows:

1. (sType(B1) = sType(B2) = NS) & (mod2(B1) = mod2(B2) = 0)

& (sSide(B1) = sSide(B2) = E)

2. (sType(B1) = sType(B2) = NS) & (mod2(B1) = mod2(B2) = 1)

& (sSide(B1) = sSide(B2) = W)

3. (sType(B1) = sType(B2) = NS) & (mod2(B1) = 0) & (mod2(B1) != mod2(B2))

& (sSide(B1) != sSide(B2)) & (sSide(B1) = E)

4. (sType(B1) = sType(B2) = NS) & (mod2(B2) = 0) & (mod2(B1) != mod2(B2))

& (sSide(B1) != sSide(B2)) & (sSide(B2) = E)

5. (sType(B1) = sType(B2) = NS) & (mod2(B1) = 1) & (mod2(B1) != mod2(B2))

147



& (sSide(B1) != sSide(B2)) & (sSide(B1) = W)

6. (sType(B1) = sType(B2) = NS) & (mod2(B2) = 1) & (mod2(B1) != mod2(B2))

& (sSide(B1) != sSide(B2)) & (sSide(B2) = W)

A.1.5 Increasing North rules

The Increasing North constraint ensures that the address of all buildings along a North/South
running streets increase when heading in the North direction. The rules that map to the
Increasing North constraint are as follows:

1. (sType(B1) = sType(B2) = NS) & (addr(B1) > addr(B2))

& (sSide(B1) = sSide(B2)) & (lat(B1) > lat(B2))

2. (sType(B1) = sType(B2) = NS) & (addr(B1) < addr(B2))

& (sSide(B1) = sSide(B2)) & (lat(B1) < lat(B2))

More general (not limited to same side of the street)

3. (sType(B1) = sType(B2) = NS) & (addr(B1) > addr(B2))

& (lat(B1) > lat(B2))

4. (sType(B1) = sType(B2) = NS) & (addr(B1) < addr(B2))

& (lat(B1) < lat(B2))

Across blocks

5. (sType(B1) = sType(B2) = NS) & (addr(B1) > addr(B2))

& (lat(B1) > lat(B2)) & ((lon(B1) > lon(B2)) || (lon(B1) < lon(B2)))

6. (sType(B1) = sType(B2) = NS) & (addr(B1) < addr(B2))

& (lat(B1) < lat(B2)) & ((lon(B1) > lon(B2)) || (lon(B1) < lon(B2)))

A.1.6 Increasing South rules

The Increasing South constraint ensures that the address of all buildings along a North/South
running streets increase when heading in the South direction. The rules that map to the
Increasing South constraint are as follows:

1. (sType(B1) = sType(B2) = NS) & (addr(B1) > addr(B2))

& (sSide(B1) = sSide(B2)) & (lat(B1) < lat(B2))

2. (sType(B1) = sType(B2) = NS) & (addr(B1) < addr(B2))

& (sSide(B1) = sSide(B2)) & (lat(B1) > lat(B2))

More general (not limited to same side of the street)

3. (sType(B1) = sType(B2) = NS) & (addr(B1) > addr(B2))

& (lat(B1) < lat(B2))

4. (sType(B1) = sType(B2) = NS) & (addr(B1) < addr(B2))

& (lat(B1) > lat(B2))

Across blocks

5. (sType(B1) = sType(B2) = NS) & (addr(B1) > addr(B2))

& (lat(B1) < lat(B2)) & ((lon(B1) > lon(B2)) || (lon(B1) < lon(B2)))

6. (sType(B1) = sType(B2) = NS) & (addr(B1) < addr(B2))

& (lat(B1) > lat(B2)) & ((lon(B1) > lon(B2)) || (lon(B1) < lon(B2)))

148



A.1.7 Increasing East rules

The Increasing East constraint ensures that the address of all buildings along a East/West
running streets increase when heading in the East direction. The rules that map to the
Increasing East constraint are as follows:

1. (sType(B1) = sType(B2) = EW) & (addr(B1) > addr(B2))

& (sSide(B1) = sSide(B2)) & (lon(B1) > lon(B2))

2. (sType(B1) = sType(B2) = EW) & (addr(B1) < addr(B2))

& (sSide(B1) = sSide(B2)) & (lon(B1) < lon(B2))

More general (not limited to same side of the street)

3. (sType(B1) = sType(B2) = EW) & (addr(B1) > addr(B2))

& (lon(B1) > lon(B2))

4. (sType(B1) = sType(B2) = EW) & (addr(B1) < addr(B2))

& (lon(B1) < lon(B2))

Across blocks

5. (sType(B1) = sType(B2) = EW) & (addr(B1) > addr(B2))

& (lon(B1) > lon(B2)) & ((lat(B1) > lat(B2)) || (lat(B1) < lat(B2)))

6. (sType(B1) = sType(B2) = EW) & (addr(B1) < addr(B2))

& (lon(B1) < lon(B2)) & ((lat(B1) > lat(B2)) || (lat(B1) < lat(B2)))

A.1.8 Increasing West rules

The Increasing West constraint ensures that the address of all buildings along a East/West
running streets increase when heading in the West direction. The rules that map to the
Increasing West constraint are as follows:

1. (sType(B1) = sType(B2) = EW) & (addr(B1) > addr(B2))

& (sSide(B1) = sSide(B2)) & (lon(B1) < lon(B2))

2. (sType(B1) = sType(B2) = EW) & (addr(B1) < addr(B2))

& (sSide(B1) = sSide(B2)) & (lon(B1) > lon(B2))

More general (not limited to same side of the street)

3. (sType(B1) = sType(B2) = EW) & (addr(B1) > addr(B2))

& (lon(B1) < lon(B2))

4. (sType(B1) = sType(B2) = EW) & (addr(B1) < addr(B2))

& (lon(B1) > lon(B2))

Across blocks

5. (sType(B1) = sType(B2) = EW) & (addr(B1) > addr(B2))

& (lon(B1) < lon(B2)) & ((lat(B1) > lat(B2)) || (lat(B1) < lat(B2)))

6. (sType(B1) = sType(B2) = EW) & (addr(B1) < addr(B2))

& (lon(B1) > lon(B2)) & ((lat(B1) > lat(B2)) || (lat(B1) < lat(B2)))

A.1.9 K-Block Numbering rules

The K-Block Numbering constraint ensures that the addresses of buildings across city
blocks increase by an increment of K. The rules that map to the K-Block Numbering
constraint are as follows where the block(x) value is generated from a “virtual” grid:

149



Specific to a given street

1. (sName(B1) = sName(B2)) & (modK(B1) - modK(B2) = block(B1) - block(B2))

Across streets

2. (sType(B1) = sType(B2)) & (modK(B1) - modK(B2) = block(B1) - block(B2))

A.1.10 San Francisco Block Numbering rules

The San Francisco Block Numbering constraint ensures that the addresses of buildings
across city blocks increase by an increment of K. This differs from the K-Block Numbering
constraint in that the blocks of parallel streets do not need to align. The rules that map
to the San Francisco Block Numbering constraint are as follows:

1. ((sName(B1) = sName(B2)) & (modK(B1) - modK(B2) = block(B1) - block(B2)))

& ((sType(B1) = sType(B3)) & (modK(B1) - modK(B3) != block(B1) - block(B3)))

2. ((sName(B1) = sName(B3)) & (modK(B1) - modK(B3) = block(B1) - block(B3)))

& ((sType(B1) = sType(B2)) & (modK(B1) - modK(B2) != block(B1) - block(B2)))

3. ((sName(B2) = sName(B3)) & (modK(B2) - modK(B3) = block(B2) - block(B3)))

& ((sType(B2) = sType(B1)) & (modK(B2) - modK(B1) != block(B2) - block(B1)))

A.1.11 C-Continuous Numbering rule

The C-Continuous Numbering constraint ensures that the addresses adjacent to each
other on a given street increase by a constant C. The rule that maps to the C-Continous
Numbering constraint is as follows where the Order(x) comes from the order of a building
along the given street for the given side:

1. (sName(B1) = sName(B2)) & (sSide(B1) = sSide(B2))

& (order(B1) - order(B2) * C = addr(B1) - addr(B2))

A.1.12 Marker Distance rule

The Marker Distance constraint ensures that the addresses of buildings are related to the
buildings’ distance from a fixed marker. The rule that maps to the Marker Distance con-
straint is as follows where the Distance(X,Y) is the distance between two buildings calcu-
lated using the lat/lon coordinates and f is a factor in the set {.001,.01,.1,1,10,100,1000,10000}:

1. (sName(B1) = sName(B2)) & (distance(B1,B2) = (addr(B1) - addr(B2)) * f)

A.2 Sudoku Inference Rules

These rules map to the constraints in the constraint library specific to the Sudoku puzzle
domain. Each constraint type is indicated in bold.

AllDiff Row: Ensures that all cells in the same row are assigned a different number.

(Row_1 == Row_2) & (Number_1 != Number_2)

150



AllDiff Column: Ensures that all cells in the same column are assigned a different
number.

(Column_1 == Column_2) & (Number_1 != Number_2)

AllDiff Region: Ensures that all cells in the same region are assigned a different number.

(Region_1 == Region_2) & (Number_1 != Number_2)

AllDiff Diagonol 1: Ensures that all cells along the first diagonal are assigned a different
number.

(Row_1 == Column_1) & (Row_2 == Column_2) & (Number_1 != Number_2)

AllDiff Diagonol 2: Ensures that all cells along the second diagonal are assigned a
different number.

(Row_1 + Column_1 == 10) & (Row_2 + Column_2 == 10) & (Number_1 != Number_2)

Color Even: Ensures that all cells of the same color are assigned an even number.

(Number_1 % 2 == 0) & (Number_2 % 2 == 0) & (Color_1 == Color_2)

Color Odd: Ensures that all cells of the same color are assigned an odd number.

(Number_1 % 2 == 1) & (Number_2 % 2 == 1) & (Color_1 == Color_2)

Color Small: Ensures that all cells of the same color are assigned a number in the range
{1 . . . 4}.

(Number_1 < 5) & (Number_2 < 5) & (Color_1 == Color_2)

Color Big: Ensures that all cells of the same color are assigned a number in the range
{5 . . . 9}.

(Number_1 > 4) & (Number_2 > 4) & (Color_1 == Color_2)

151



Appendix B

Constraint Model: XML Schema

This appendix describes the XML schema for all XML files that compose a problem
instance. I show the XSD schema definition, followed by an example XML file.

B.1 Layout XML file

The schema for the layout XML file is the following.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:simpleType name="commaSeparatedList">

<xs:restriction base="xs:string">

<xs:whiteSpace value="collapse" />

<xs:pattern value="[0-9a-zA-z ]+(,[0-9a-zA-z ]+)*" />

<xs:pattern value="" />

</xs:restriction>

</xs:simpleType>

<xs:element name="layout">

<xs:complexType>

<xs:sequence>

<xs:element name="building" minOccurs="0" maxOccurs=

"unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="street" minOccurs="0" maxOccurs=

"unbounded">

<xs:complexType>

<xs:attribute name="streetname" type="xs:string"

use="required" />

<xs:attribute name="side" use="required">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="N" />

<xs:enumeration value="S" />

<xs:enumeration value="E" />

152



<xs:enumeration value="W" />

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name="buildingid" type="xs:integer"

use="required" />

<xs:attribute name="lat" type="xs:double" use="required" />

<xs:attribute name="lon" type="xs:double" use="required" />

</xs:complexType>

</xs:element>

<xs:element name="street" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>

<xs:simpleContent>

<xs:extension base="commaSeparatedList">

<xs:attribute name="streetname" type="xs:string"

use="required" />

<xs:attribute name="orientation" type="xs:string"

use="required" />

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

The layout file has two elements:

1. building: The file contains a building element for each building on the map. Every
building has a buildingid attribute that provides a unique identifier for the building.
Every building node has one or more children that are street elements. Each street
element represents a street to which the building is adjacent. Each street element
contains a streetname, which is the name of the street, and a side, which is a single
character that indicates on which side of the street the building lies (N,S,E, or W).

2. street: The file contains a street element for each street on the map. Each street
element has a streetname attribute, which stores the name of the street, and an
orientation attribute, which indicates the orientation of the street (NS or EW).

The content of the street element is a comma separated list of the buildings on the
street. The order of the buildings in this list indicate the order in which the buildings
lie along the street, starting with the southmost (respectively, westmost) building
and ending with the northmost (respectively, eastmost) building. The sequence

153



contains buildings from both sides of the street, even though the addresses for the
opposite sides of the street may not be interdependent.

An example XML file is the following.

<boundarylayout districtid="1">

<building buildingid="B1">

<street streetname="S2" side="S" />

</building>

<building buildingid="B2">

<street streetname="S1" side="E" />

<street streetname="S2" side="S" />

</building>

<building buildingid="B3">

<street streetname="S2" side="S" />

</building>

<building buildingid="B4">

<street streetname="S1" side="E" />

</building>

<street streetname="S1" orientation="NS">B4, B2</street>

<street streetname="S2" orientation="EW">B1, B2, B3</street>

</boundarylayout>

B.2 Phone-book XML file

The schema for the phone-book XML file is the following.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:simpleType name="commaSeparatedList">

<xs:restriction base="xs:string">

<xs:whiteSpace value="collapse"/>

<xs:pattern value="[0-9]+(,[0-9]+)*" />

<xs:pattern value="" />

</xs:restriction>

</xs:simpleType>

<xs:element name="phonebook">

<xs:complexType>

<xs:sequence>

<xs:element name="street" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>

<xs:simpleContent>

<xs:extension base="commaSeparatedList">

<xs:attribute name="streetname" type="xs:string" />

</xs:extension>

154



</xs:simpleContent>

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name="districtid" type="xs:int"

use="required" />

</xs:complexType>

</xs:element>

</xs:schema>

The phone-book xml file contains multiple street elements. Each street element has a
streetname attribute which indicates the name of the street corresponding to the phone-
book entries. The content of the street element is a comma separated list of all phone-book
addresses for that street.

An example XML file is the following.

<phonebook districtid="1">

<street streetname="S1">105</street>

<street streetname="S2">111, 213</street>

</phonebook>

B.3 Grid XML file

The schema for the grid XML file is the following.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="constraint">

<xs:complexType>

<xs:sequence>

<xs:element name="grid">

<xs:complexType>

<xs:sequence>

<xs:element name="street" minOccurs="0" maxOccurs=

"unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="incrementalpoint" minOccurs="0"

maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="buildingPreceding" type=

"xs:int" />

<xs:element name="buildingFollowing" type=

"xs:int" />

</xs:sequence>

155



</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name="streetname" type="xs:string"

use="required" />

<xs:attribute name="value" type="xs:int"

use= "required" />

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name="districtid" type="xs:int" use="required"/>

</xs:complexType>

</xs:element>

</xs:schema>

The grid xml file contains multiple street elements. Each street element has a street-
name attribute, which indicates the name of the street along which the gridlines occur,
and a value attribute, which indicates the increment size for the gridlines. Each street
element has multiple incrementalpoint children, which each have both a buildingpreceding
and a buildingfollowing child. Each incrementalpoint node corresponds to a point where
a grid line crosses the street. The buildingpreceding and buildingfollowing nodes indicate
the buildings that lie on either side of the grid line.

An example XML file is the following, assuming there are grid lines at each cross
street.

<constraint districtid="1">

<grid>

<street streetname="S2" value="100">

<incrementalpoint>

<buildingPreceding>B1</buildingPreceding>

<buildingFollowing>B2</buildingFollowing>

</incrementalpoint>

</street>

</grid>

</constraint>

B.4 Landmark XML file

The schema for the landmark XML file is the following.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="constraint">

156



<xs:complexType>

<xs:sequence>

<xs:element name="landmarks">

<xs:complexType>

<xs:sequence>

<xs:element name="point" minOccurs="0" maxOccurs=

"unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="address" type="xs:int" />

<xs:element name="street" type="xs:string" />

</xs:sequence>

<xs:attribute name="name" type="xs:string"

use="required" />

<xs:attribute name="buildingid" type="xs:int"

use="required" />

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name="districtid" type="xs:int" use="required" />

</xs:complexType>

</xs:element>

</xs:schema>

In a landmark XML file, the landmarks node contains multiple point children. Each
point has a name attribute, which indicates the common name for the building, and a
buildingid attribute, which indicates the specific identifier from the layout that corre-
sponds to this building. The point node has an address and street child, which indicate
the known number and street assignment for the landmark.

An example XML file is the following, assuming we know that the address of building
B4 is S1#105.

<constraint districtid="1">

<landmarks>

<point name="Apartment Building" buildingid="B4">

<address>105</address>

<street>S1</street>

</point>

</landmarks>

</constraint>

157



B.5 Inferred Ranges XML file

The schema for the inferred ranges XML file is the following.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="constraint">

<xs:complexType>

<xs:sequence>

<xs:element name="ranges">

<xs:complexType>

<xs:sequence>

<xs:element name="street" minOccurs="0" maxOccurs=

"unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="segment" minOccurs="0" maxOccurs=

"unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="startpt">

<xs:complexType>

<xs:attribute name="buildingid" type="xs:int"

use="required" />

</xs:complexType>

</xs:element>

<xs:element name="endpt">

<xs:complexType>

<xs:attribute name="buildingid" type="xs:int"

use="required" />

</xs:complexType>

</xs:element>

<xs:element name="startAddress" type="xs:int" />

<xs:element name="endAddress" type="xs:int" />

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name="streetname" type="xs:string" use=

"required" />

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name="districtid" type="xs:int" use="required" />

158



</xs:complexType>

</xs:element>

</xs:schema>

In a inferred ranges on addresses XML file, the ranges node contains multiple street
children. Each street has a streetname attribute, which indicates the common name for
the street. The street node contains multiple segment children. The segment node has a
startpt and endpt child, which indicate the start and end buildings of the segment. The
segment node also has a startAddress and endAddress child, which indicate the start and
end address number of the segment.

An example XML file is the following.

<constraint districtid="1">

<ranges>

<street streetname="W Grand Ave">

<segment>

<startpt buildingid="6532" />

<endpt buildingid="6539" />

<startAddress>100</startAddress>

<endAddress>200</endAddress>

</segment>

<segment>

<startpt buildingid="4321" />

<endpt buildingid="5412" />

<startAddress>201</startAddress>

<endAddress>300</endAddress>

</segment>

</street>

<street streetname="Binder Pl">

<segment>

<startpt buildingid="1043" />

<endpt buildingid="231" />

<startAddress>100</startAddress>

<endAddress>200</endAddress>

</segment>

</street>

</ranges>

</constraint>

B.6 Ascending/Descending Value XML file

The schema for the Ascending/Descending XML file is the following.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="inference">

159



<xs:complexType>

<xs:sequence>

<xs:element name="ascending">

<xs:complexType>

<xs:sequence>

<xs:element name="street" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>

<xs:attribute name="streetname" type="xs:string" use=

"required" />

<xs:attribute name="value" use="required">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="N" />

<xs:enumeration value="S" />

<xs:enumeration value="E" />

<xs:enumeration value="W" />

<xs:enumeration value="false" />

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name="districtid" type="xs:int" use="required" />

</xs:complexType>

</xs:element>

</xs:schema>

In an ascending/descending value XML file, the ascending node contains multiple
street children. Each street has a streetname and a value attribute, which indicate the
common name for the street and in which direction addresses increase in value. False
indicates that a constraint could not be inferred for that street.

An example XML file is the following.

<inference districtid="54">

<ascending>

<street streetname="W Grand Ave" value="N" />

<street streetname="Binder Pl" value="false" />

</ascending>

</inference>

160



B.7 Parity XML file

The schema for the Parity XML file is the following.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="inference">

<xs:complexType>

<xs:sequence>

<xs:element name="parity">

<xs:complexType>

<xs:sequence>

<xs:element name="street" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>

<xs:attribute name="streetname" type="xs:string"

use="required" />

<xs:attribute name="value" use="required">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="N" />

<xs:enumeration value="S" />

<xs:enumeration value="E" />

<xs:enumeration value="W" />

<xs:enumeration value="false" />

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name="districtid" type="xs:int" use="required" />

</xs:complexType>

</xs:element>

</xs:schema>

In a parity XML file, the parity node contains multiple street children. Each street has
a streetname and a value attribute, which indicate the common name for the street and
which side of the street is odd. False indicates that a constraint could not be inferred for
that street.

An example XML file is the following.

<inference districtid="54">

<parity>

<street streetname="W Grand Ave" value="N" />

161



<street streetname="Binder Pl" value="false" />

</parity>

</inference>

B.8 Continuous Numbering XML file

The schema for the Continuous Numbering XML file is the following.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="inference">

<xs:complexType>

<xs:sequence>

<xs:element name="continuous">

<xs:complexType>

<xs:sequence>

<xs:element name="street" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>

<xs:attribute name="streetname" type="xs:string"

use="required" />

<xs:attribute name="value" use="required">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:pattern value="false | [1-9][0-9]*" />

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name="districtid" type="xs:int" use="required" />

</xs:complexType>

</xs:element>

</xs:schema>

In a continuous numbering XML file, the continuous node contains multiple street
children. Each street has a streetname and a value attribute, which indicate the common
name for the street and the fixed increment amount between addresses. False indicates
that a constraint could not be inferred for that street.

An example XML file is the following.

<inference districtid="54">

<continuous>

162



<street streetname="W Grand Ave" value="2" />

<street streetname="Binder Pl" value="false" />

</continuous>

</inference>

B.9 District Boundaries XML file

The schema for the District Boundaries XML file is the following.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="inference">

<xs:complexType>

<xs:sequence>

<xs:element name="district" minOccurs="1" maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="area">

<xs:complexType>

<xs:sequence>

<xs:element name="point" minOccurs="3" maxOccurs=

"unbounded">

<xs:complexType>

<xs:attribute name="lat" type="xs:double" use=

"required" />

<xs:attribute name="lon" type="xs:double" use=

"required" />

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name="districtid" type="xs:int" use="required" />

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

In a district boundaries XML file, the boundary node contains a single area children.
The area node has multiple point children (a minimum of three). Each point has a lat
and a lon attribute, which indicates the latitude and longitude of the boundary point.

An example XML file is the following.

<inference>

163



<boundary districtid="1">

<area>

<point lat="54.1" lon="46.1" />

<point lat="54.2" lon="46.1" />

<point lat="54.2" lon="46.2" />

<point lat="54.1" lon="46.2" />

</area>

</boundary>

<boundary districtid="2">

<area>

<point lat="54.1" lon="46.1" />

<point lat="54.2" lon="46.1" />

<point lat="54.2" lon="46.0" />

</area>

</boundary>

</inference>

164


