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Abstract

There exist numerous sources of data on the World
Wide Web that contain useful information but are
not structured or grammatical enough to support
traditional information extraction. Furthermore,
even if the information extraction could be done,
the extracted values would need to be standard-
ized to ensure the queries over the source are ac-
curate. This paper presents an automatic, scalable
approach to semantically annotating such unstruc-
tured, ungrammatical sources with standardized
values, allowing for accurate, structured queries
of the source. Our technique recasts the informa-
tion extraction problem as an information retrieval
problem, treating each entry of unstructured, un-
grammatical text as a query and comparing it to a
set of known records called a “reference set.” Fur-
thermore, given a library of reference sets, the sys-
tem automatically chooses the correct one, mak-
ing the technique fully unsupervised. We compare
our automatic technique to a previous approach that
exploits supervised learning and show that we get
comparable results. In the previous approach, be-
yond providing labeled training data, a user also
must supply the “reference set” which is exploited
for the extraction and standardization of the values.

1 Introduction
There are numerous data sources on the World Wide Web
that are packed with useful information in the form of un-
structured and ungrammatical textual data. Examples of such
sources are internet classifieds such as Craig’s List,1 inter-
net auctions such as EBay,2 bulletin boards and forums such
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1www.craigslist.org
2www.ebay.com

as Bidding For Travel,3 and even the hyperlinks returned by
certain queries from some search engines. To generalize this
idea, we call each textual entry within such sources a “post.”
Figure 1 shows some real world posts from Craig’s List re-
garding cars for sale.

Figure 1: Posts from Craig’s List.

The goal is to enable structured queries over these posts,
allowing either an agent or a human a deeper ability to gain
insight from the information. Before the data can be queried
though, attributes and normalized values need to be added to
the post to query on. This process is semantic annotation.
For example, given the second post, we could annotate the
post with a make attribute with the value TOYOTA, a model
attribute with the value COROLLA, trim attribute of CE and
a year attribute of 2001, as in Figure 2. One way to perform
semantic annotation is to do information extraction to pull out
and label the attributes. However, the posts present numerous
problems to information extraction. First, the structure from
post to post is generally not similar enough to support struc-
ture based approaches to information extraction, such as the
wrapper methods of Stalker[Musleaet al., 2001] or Road-

3www.biddingfortravel.com

Figure 2: A semantically annotated post
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Runner[Crescenziet al., 2001]. Also, there is generally little
grammar within posts to support Natural Language Process-
ing approaches to information extraction such as those used
by Whisk [Soderland, 1999] or Rapier[Califf and Mooney,
1999].

However, the difficulty in querying the posts does not stop
with just extracting the attributes. The noisy nature of the
posts makes them difficult to query, even when information
extraction can be performed. For one, many posts are miss-
ing key attributes, which are implied. For example, consider
the post “2000 Civic for sale, $7,500.” The model name Civic
implies that the car make is a Honda, even though this is not
explicitly stated. So, if we were to query the posts on the
make of Honda, this post would not be returned. Beyond the
missing attributes, those that are within the post may have
many misspellings and the order of the attributes, and even
the tokens within the attributes, is not reliable enough to use
for extraction. This means that to accurately perform struc-
tured queries it is not enough to just extract the attributes, but
we need to supply normalized values for these attributes to
alleviate the spelling mistakes, myriad token orderings, and
missing tokens and attributes.

So, there are two main difficulties in semantically annotat-
ing the posts. First, the information extraction is particularly
hard since the posts are unstructured and ungrammatical. Fur-
thermore, the extracted attributes need to be normalized. To
alleviate both of these problems, we recast the problem to one
of information retrieval. If we have a set of normalized val-
ues representing the items in the post, then by matching the
posts to those items we can get an idea of what attributes are
within the post (information extraction) and we have a set of
normalized values for those attributes.

The key to our method is exploitingreference sets[Michel-
son and Knoblock, 2005]. A reference set is a known col-
lection of entities, along with the attributes that define these
entities. For example, a reference set could be an online col-
lection, such as the Edmunds website,4 which contains a list
of all cars from 1990 to the present. For each car, Edmunds
lists the car’s make, model, year, and trim. Reference sets
can also be online (or offline) data bases, such as the Comics
Price Guide,5 or even collections of documents such as the
CIA World Fact Book. The most important factor that defines
a reference set is that it can be treated as a relational data set
with a well defined schema and normalized attribute values.
To exploit reference sets, our method first automatically se-
lects the reference set(s) from a repository that are related to
the posts we are examining. We refer to these related refer-
ence sets asrelevant.

Once a reference set(s) is deemed relevant, we then try and
match each post to the best matching member(s) of the ref-
erence set. To do this, we use a vector space model, treating
each post as a query, and each member of the reference set
as a document. Then we return the records from the refer-
ence set that best match the query post. This vector space
model allows for unsupervised matching between the posts
and the reference set records. We use the attributes from the

4www.edmunds.com
5www.comicspriceguide.com

returned reference set records as the semantic annotation for
the posts. This annotation provides a standard set of attribute
values (since they come from the reference sets), and in some
cases this annotation provides attributes for a given post that
were not explicitly mentioned in the post. The overall archi-
tecture is shown in Figure 3.

Figure 3: Our architecture for the unsupervised annotation of
posts

In the past information extraction and annotation tech-
niques have incorporated outside information to aid in the
extraction process. Similar to our approach, some of this
extraction work is unsupervised, such as the CRAM system
[Agichtein and Ganti, 2004]. However, unlike this paper,
CRAM does not select the the appropriate reference set au-
tomatically and it assumes the matching between the posts
and reference sets has already been accomplished.

Other work in information extraction incorporates refer-
ence sets with machine learning techniques. Examples in-
clude the Phoebus system[Michelson and Knoblock, 2005]
and the work of Cohen and Sarawagi[Cohen and Sarawagi,
2004]. However, aside from requiring human selected refer-
ence sets, both of these techniques rely on supervised ma-
chine learning for the extraction/annotation. In this paper
we present an approach to unsupervised semantic annotation.
Our approach is unsupervised in both the selection of the ref-
erence sets and their matching.

The rest of the paper is organized as follows. In section
2, we describe our simple, automatic algorithm to choose the
relevant reference sets. In section 3 we present our informa-
tion retrieval approach to semantic annotation. In section 4
we provide experiments evaluating the technique along with
a discussion of these results. In sections 5 and 6 we present
some more related work and we conclude with some final
thoughts.

2 Choosing the Reference Sets
As stated previously, choosing the correct reference sets for
the set of posts is a precursor to our information retrieval ap-
proach to semantic annotation. To choose reference sets, we
have developed a simple, automatic method that exploits the
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notions of similarity between the set of posts and the refer-
ence sets in our collection.

Intuitively our algorithm decides that the most appropri-
ate reference set is that which has the most useful tokens in
common with the posts. The assumption here is that if there
is enough overlap between the set of posts and the reference
set, then they probably refer to the same things. Furthermore,
our assumption is that there are meaningful and distinctive to-
kens within a reference set, so if those overlap with the posts,
they are a good indicator of similarity. For example, if we
have a set of posts about cars from Craig’s list, we expect a
reference set with car makes, such as Honda or Toyota, to be
more similar to the posts than a reference set of hotels in Los
Angeles.

To do this, we treat all of the tuples in a reference set as a
single document and we treat the full set of posts as a single
document. Then we compute a similarity score between these
two documents. Next we select the reference sets that have
the highest meaningful scores as the relevant reference sets.

Selecting the “highest meaningful” scores is done as fol-
lows. The algorithm first sorts the similarity scores between
all of the reference sets and posts in descending order. Then it
traverses this list, computing the percent difference between
the current similarity score and the next. If this percent dif-
ference is above some threshold, and the score of the current
reference set is greater than the average similarity score for
all reference sets, the algorithm terminates. Upon terminat-
ing in this fashion, the algorithm returns the current reference
set and all reference sets that preceded as matching reference
sets. If the algorithm traverses all of the reference sets without
hitting the termination criteria, then there is not considered a
matching reference set for the set of posts. Table 1 shows the
algorithm in detail:

Given postsP and thresholdT
p← SingleDocument(P )
For all reference setsref ∈ R

ri ← SingleDocument(ref)
SIM(ri, p)← Similarity(ri, p)

For allSIM(ri, p) in descending order
If PercentDiff(SIM(ri, p), SIM(ri+1, p)) > T AND
SIM(ri, p) > AV G(SIM(rn, p)),∀n ∈ |R|

Return allSIM(rx, p), 1 > x > i
Return nothing (No matching reference sets)

Table 1: Automatically choosing a reference set

There are a few aspects of this algorithm that require clar-
ification. The first is the choice of percent difference as the
splitting criterion. This idea captures the intuition that if we
have relevant reference sets for the posts, and irrelevant ones,
then the relevant ones will be similar while the irrelevant ones
will not. However, just comparing the actual similarity val-
ues may not capture how much better one reference set is
compared to another. Instead, we need a measure of relative
similarity, within the set of reference sets, which is why we
choose percent difference.

Also, the algorithm requires the setting of a threshold.
Since we want this method to be completely automatic, we
do not employ any machine learning to learn this threshold.
Instead, we simply set it to a “reasonable” value based on the
similarity metric used. By reasonable we mean a little better
than half, such as 0.6. We consider unreasonable thresholds
to be very high and specific numbers, or very low numbers
that pass almost anything through. Again, we show that a
reasonable value of 0.6 works well in our experiments across
domains and different similarity measures.

Furthermore, not only do we require that the percent dif-
ference is great, but we also require that the score is above
the average. We include this heuristic because in many cases,
toward the end of the sorted list of similarities the numbers
start to get small so that the percent differences will sud-
denly jump. However, this does not mean that these are good,
matching reference sets. It’s just that the next reference set
is that much worse than the current, bad one. We show this
property emerging in our experiments, justifying this heuris-
tic.

Lastly, there is no specific similarity metric defined for this
algorithm. Our approach is to make the algorithm as general
as possible without tying it to a specific measure of similarity.
As we show in the experiments section, two different similar-
ity metrics both prove effective. One similarity metric we
try is the cosine similarity using TF-IDF to weight the tokens
[Salton and McGill, 1983]. We also try the algorithm us-
ing the Jensen-Shannon distance (JSD)[Lin, 1991]. Jensen-
Shannon distance is an information theoretic measure that
quantifies the difference in probability distributions. (Note
that since JSD requires probability distributions, we define
our distributions as the likelihood of tokens occurring in each
document.)

3 Matching Posts to the Reference Set
Once the relevant reference sets have been chosen, the algo-
rithm then attempts to match the posts to best matching mem-
bers of the reference set, using these reference set member’s
attributes as normalized values for semantic annotation. In or-
der to match the reference set records to the posts, we employ
a vector space model, borrowed from the field of information
retrieval. We do this, rather than machine learning, to make
the algorithm unsupervised and scalable. We envision seman-
tic annotation of unstructured and ungrammatical data on the
scale of the World Wide Web, so these two characteristics are
necessary.

To match posts to the records of the reference set, we treat
each post as a query and each record of the reference set as
its own document. We define the similarity between the post
and a reference set record using the Dice similarity. Let us
call our postp and a record of the referencer, where bothp
andr can be considered sets of tokens. Then, Dice similarity
is defined as:

Dice(p, r) =
2 ∗ (p ∩ r)
|p|+ |r|

The one change we make to classic Dice similarity is that
we treat two tokens as belonging to the intersection between
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p andr if the Jaro-Winkler similarity between them is greater
than or equal to 0.95. This ensures that we capture tokens that
might be misspelled or abbreviated as matches, since mis-
spellings are common in posts. Using this definition of Dice
similarity, we compare each post,pi to each member of the
reference set, and we return the reference set matches that
have the maximal similarity, calledrmaxi

. For each post, we
also store the matches found inRmax which is a collection of
matches for the whole set of posts. This way, we can compute
the average Dice similarity scores for the matches, which we
will use later in the algorithm.

Once we have scored all of the posts, and found their
matching reference set members in this manner, there are two
more important steps. One major difference between ma-
chine learning approaches to matching and information re-
trieval methods is that machine learning can explicitly note
when something does not have a match, while information
retrieval will always return the maximally similar document,
if it exists. This can be a problem when matching posts to
the reference sets. For example, if we have a post “Some car
is for sale and very cheap” then machine learning would not
match it to anything, but a vector space model might assign
some member of the reference set as a match, albeit with a
very low similarity score. So, we must prune these types of
matches where the posts are not actually referring to anything.
The pruning is very simple. UsingRmax, we calculate the av-
erage similarity score for allrmaxi

for all differentpi. Then
we prune thermaxi

that are less than this average, removing
those matches for those posts.

One more step remains for our semantic annotation. As
noted above, it is possible that more than one record can have
a maximum similarity score as compared to a post. That is,
rmaxi

might be a set of reference set records, rather than just
one. For example, consider a post “Civic 2001 for sale, look!”
Now, assume our reference set has 3 records, each with a
make, model, trim, and year. For example, record 1 might
be {HONDA, CIVIC, 4 Dr LX, 2001}, record 2 might be
{HONDA, CIVIC, 2 Dr LX, 2001} and record 3 might be
{HONDA, CIVIC, EX, 2001}. If all 3 of these records have
the maximum similarity to our post, then we have a problem
with some ambiguous attributes.

We can say with certainty that we should annotate the make
as HONDA, the model as CIVIC and the year as 2001, since
all of the matching records agree on these attributes. We call
these attributesin agreement. However, since there is dis-
agreement on the trim, we leave this attribute out of our an-
notation, since we can not disambiguate which value is best
for this attribute, based on the matches from the reference set.
I.e. they are all equally valid from our vector space perspec-
tive, so we decide that we do not know that attribute. This is a
reasonable approach since in many real world posts, not all of
the detailed attributes are specific. For example, the first post
of Figure 1 shows a Ford Thunderbird, but nothing else, so we
can not make a claim about its trim or even its year. So the
final step is to remove all attributes from our annotation that
do not agree across all matching reference set records. Our
vector space approach to unsupervised annotation is shown
in Table 2.

One aspect of this approach that requires some discussion

Given postsP and reference setR
Rmax ← {}
For allpi ∈ P

rmaxi ← MAX( DICE (pi,R))
Rmax ← Rmax ∪ rmaxi

For allpi ∈ P
Prunermaxi

if DICE(rmaxi
) < AVG(DICE(Rmax)

Remove attributes notin agreementfrom rmaxi

Table 2: Our Vector Space approach to automatic semantic
annotation

is the use of Dice similarity. While it has been used in the past
for information retrieval, we choose the Dice similarity based
on a few additional reasons. Once choice would be to use TF-
IDF weighting with cosine similarity. However, we found
that in reference sets, matching at such a fine level of indi-
vidual records to a post, the weighting schemes will overem-
phasize unimportant tokens, while discounting the important
ones. For example, in a reference set of cars, the token Honda
will occur much more frequently than Sedan. In this case, a
reference set record might incorrectly match a post simply
because it matches on Sedan, rather than the more important
token Honda. Dice, on the other hand, does not exploit fre-
quency based weights.

The other similarity measure we could use would be the
Jaccard similarity, which uses the intersection of the tokens
divided by their union. However, Jaccard penalizes having
only a small number of common tokens, which could be a
problem when matching to posts since often times posts con-
tain just a few important tokens for matching, such as “Civic
2001.” The reason that Jaccard penalizes having only a few
common tokens versus Dice similarity has to do with the
treatment of having just a few tokens in common. For Jac-
card, the denominator contains a union which can be defined
as the sum of the sizes of the sets minus the intersection, so
Jaccard’s denominator is affected by the size of the intersec-
tion. Therefore, if many tokens are in common, the denom-
inator is shrunk, resulting in a higher score, but if there are
only a few in common, the denominator is barely affected.
With just a few common tokens, Jaccard also has a small nu-
merator, resulting in a lower score than Dice. Meanwhile,
using Dice similarity the number of tokens in common does
not affect the denominator. So, if only a few tokens are
in common, Dice boosts this number in the numerator by 2
while leaving the denominator unnafected. Meanwhile, Jac-
card will not boost the numerator and barely affects the de-
nominator. So, with only a few tokens, Dice gets a higher
score than Jaccard.

4 Experiments
To validate our approach we run experiments showing that
we can correctly select the relevant reference sets automat-
ically, and then we present results exploiting these relevant
reference sets for semantic annotation. However, before we
examine the results of our experiments, we describe the ref-
erence sets and sets of posts we will use in testing. All data
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sources, whether posts or reference sets, were collected from
data sources that exist on the World Wide Web.

4.1 Reference Sets

For our experiments we use six different reference sets, cross-
ing multiple domains. Most of these reference sets have been
used in the past in either the information extraction litera-
ture or record linkage literature. The first two reference sets
are both from the restaurant domain and come from previous
work on record linkage[Bilenko and Mooney, 2003]. The
first is a collection of 534 restaurants from Fodors that have
a name, address, city and cuisine as their attributes. We call
this reference setFodors.The second set of restaurants comes
from Zagats, so we refer to it asZagat. This data set also has
name, address, city and cuisine as the attributes and contains
330 records.

The next reference set contains 918 records from the
Comics Price Guide regarding Fantastic Four and Incredible
Hulk comic books. This reference set has a title, issue num-
ber (such as vol. 2 or #14), and a publisher. In our results, we
call this reference setComics. This reference set was used
in [Michelson and Knoblock, 2005]. Also from this paper is
the Hotels reference set which consists of 132 hotels in the
Sacramento, San Diego and Pittsburgh areas culled from the
Bidding For Travel website’s Hotel List. These records con-
tain a star rating, a hotel name and a local area.

Lastly, we have two reference sets containing information
about cars. The first, calledCars, contains all of the cars from
the Edmunds Car Buying Guide from 1990-2005. From this
data set we extracted the make, model, year and trim for all
cars from 1990 to 2005, resulting in 20,076 records. We sup-
plement this reference set with cars from before 1990, taken
from the auto-accessories company, Super Lamb Auto. This
supplemental list contains 6,930 cars from before 1990, each
having a make, model year and trim. We consider this com-
bined reference set of 27,006 records as theCars reference
set. This reference set is used for the demonstration of the
Phoebus system[Michelson and Knoblock, 2006]. Our last
reference set is about cars having make, model, year and trim
as its attributes as well. However, it is a subset of the cars cov-
ered by theCars reference set. This data set comes from the
Kelly Blue Book car pricing service containing 2,777 records
for Japanese and Korean makes from 1990-2003. We call this
setKBBCars. This data set has also been used in the record
linkage community[Minton et al., 2005]. A summary of the
reference sets is given in Table 3.

These sets of posts and reference sets demonstrate the dif-
ferent cases that exist for finding the appropriate reference
sets, and we describe them next.

4.2 Posts Sets

We have two sets of posts which match only a single reference
set in our collection. The first are 1,125 posts from the inter-
net forum Bidding For Travel. These posts, calledBFT match
theHotelsreference set only. The other set of single match-
ing posts are auction item posts from EBay regarding Fantas-
tic Four and Incredible Hulk merchandise for sale. There are
776 of these posts. We call this setEBayand it should match

theComicsreference set only. Both theBFT andEBayposts
were used in[Michelson and Knoblock, 2005].

Our approach can also select multiple relevant reference
sets. So we use a set of posts that matches both car reference
sets. This set contains 2,568 posts about cars from the inter-
net classifieds Craig’s List. We call this set of postsCraigs
List. Note, however, that while there may be multiple refer-
ence sets that are appropriate, they also might have an internal
ranking. As an example of this, we expect that theCraigs List
posts selects both theCarsandKBBCarsreference sets, but
Carsshould be ranked first.

Lastly, we need a set of posts to test whether the algo-
rithm can suggest that there is no relevant reference set in our
repository. To test this idea, we collected 1,099 posts about
boats from Craig’s List. Our intuition is that boats are similar
enough to cars to make this a non-trivial test, since, for exam-
ple, boats and cars are both made by Honda, so that keyword
appears in both sets of posts. However, boats are also differ-
ent enough from all the reference sets that there should not be
an appropriate reference set selected. We call this set of posts
Boats. All of the sets of posts are summarized in Table 4.

4.3 Results for Choosing Relevant Reference Sets
In this section we provide results to show the algorithm suc-
cessfully performs on multiple cases and across multiple do-
mains. We also show the invariance to the similarity metric
used, as long as it is not too simple, and we show that an
intuitive, reasonable threshold performs well. In fact, for all
experiments we keep the threshold at 0.6. We expect that the
last appropriate reference set should be roughly 60% better
than the first inappropriate one. Lastly, we show that includ-
ing the heuristic that a score must be above the average, not
just that the percent difference is large, is justified by showing
cases where the similarities get small enough to increase the
percent differences.

As mentioned previously, two similarity metrics we tried
with our approach are cosine similarity using TF-IDF to
weight the tokens, and the Jensen-Shannon distance (JSD).
Table 5 shows the results when running the algorithm using
TF-IDF and Table 6 shows the results using JSD. The refer-
ence set names in bold reflect those that are chosen as appro-
priate. (This means boats should have no bold names). The
scores in bold are the similarity scores for the chosen refer-
ence sets, and the percent difference in bold is the point at
which the algorithm breaks out and returns the appropriate
reference sets.

TF-IDF successfully performed all of the cases outlined in
the descriptions of the posts. The only incorrect reference set
selection was rankingCars as the second best reference set
for Craigs Listposts, while incorrectly rankingKBBCarsas
the best. This is due to the fact that we treat the whole ref-
erence set as a single document, and cosine similarity prefers
shorter strings[Jeanet al., 2005], which would be true in
comparingCars to KBBCars. However, JSD appears to per-
form better than TF-IDF in that the percent differences are
larger, and when comparing theCraigs List posts it selects
Cars ahead ofKBBCars, which is correct. Also, using JSD
we never run into the case where we have a large percent dif-
ference between the sets, but the scores are below the average
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Name Source Website Attributes Records
Fodors Fodors Travel Guide www.fodors.com name, address, city, cuisine534
Zagat Zagat Restaurant Guide www.zagat.com name, address, city, cuisine330
Comics Comics Price Guide www.comicspriceguide.com title, issue, publisher 918
Hotels Bidding For Travel www.biddingfortravel.com star rating, name, local area132
Cars Edmunds and www.edmunds.com and make, model, trim, year 27,006

Super Lamb Auto www.superlambauto.com
KBBCars Kelly Blue Book Car Prices www.kbb.com make, model, trim, year 2,777

Table 3: Reference Set Descriptions

Name Source Website Reference Set Match Records
BFT Bidding For Travel www.biddingfortravel.com Hotels 1,125
EBay EBay Comics www.ebay.com Comics 776
Craigs List Craigs List Cars www.craigslist.org Cars, KBBCars 2,568
Boats Craigs List Boats www.craigslist.org 1,099

Table 4: Descriptions of the sets of posts

score. This shows that JSD scores allow for a successful rel-
ative ranking of their appropriateness.

The results using JSD and TF-IDF validate our approach
to automatically choosing relevant reference sets. In partic-
ular, they successfully identify the multiple cases where we
might have a single appropriate reference set, multiple ref-
erence sets, or no reference set. Also, they show that across
domains using the intuitive and simple threshold of 0.6 works
well, so there is no need for tuning this parameter.

The results also justify the need of including a double stop-
ping criteria for the algorithm. It is not enough to just con-
sider the percent difference as an indicator of relative supe-
riority amongst the reference sets. The scores must also be
compared to an average to make sure that the algorithm is not
errantly supplying a bad reference set as appropriate just be-
cause it is relatively better than an even worse one. For an
example of this, consider the last two rows of theBoatsposts
in Table 5.

BFT Posts Ebay Posts
Ref. Set Score % Diff. Ref. Set Score % Diff
Hotels 0.499 1.743 Comics 0.402 0.973
Fodors 0.182 0.318 Fodors 0.204 0.522
Comics 0.138 0.029 Zagat 0.134 0.057
Zagat 0.134 0.330 Cars 0.127 1.567
Cars 0.101 1.893 KBBCars 0.049 0.184
KBBCars 0.035 Hotels 0.041
Average 0.182 Average 0.160

Craig’s List Boat Posts
Ref. Set Score % Diff. Ref. Set Score % Diff.
KBBCars 0.122 0.239 Cars 0.200 0.189
Cars 0.099 1.129 Comics 0.168 0.220
Zagat 0.046 0.045 Fodor 0.138 0.296
Fodor 0.044 0.093 Zagat 0.107 0.015
Comics 0.041 0.442 KBBCars 0.105 0.866
Hotels 0.028 Hotels 0.056
Average 0.063 Average 0.129

Table 5: Results using TF-IDF as similarity measure

BFT Posts Ebay Posts
Ref. Set Score % Diff. Ref. Set Score % Diff
Hotels 0.622 2.172 Comics 0.579 2.351
Fodors 0.196 0.050 Fodors 0.173 0.152
Cars 0.187 0.248 Cars 0.150 0.252
KBBCars 0.150 0.101 Zagat 0.120 0.186
Zagat 0.136 0.161 Hotels 0.101 0.170
Comics 0.117 KBBCars 0.086
Average 0.234 Average 0.201

Craig’s List Boat Posts
Ref. Set Score % Diff. Ref. Set Score % Diff.
Cars 0.520 0.161 Cars 0.251 0.513
KBBCars 0.447 1.193 Fodors 0.166 0.144
Fodors 0.204 0.144 KBBCars 0.145 0.089
Zagat 0.178 0.365 Comics 0.133 0.025
Hotels 0.131 0.153 Zagat 0.130 0.544
Comics 0.113 Hotels 0.084
Average 0.266 Average 0.152

Table 6: Results using Jensen-Shannon distance as similarity
measure

4.4 Results for Semantic Annotation
Once the relevant reference sets are chosen, we use these cho-
sen reference sets in our vector space model of semantic an-
notation for each post, and in this section we present results
showing that our approach to semantic annotation is valid. To
do this, we take the true matches between the posts and the
reference sets, and for each set of true matches for each post,
we use the attributes in agreement, as stated above. Then we
compare these to the attributes in agreement for our matches
chosen using our vector space model. Obviously, we present
only results for the BFT, Ebay and Craig’s List posts, since
Boats have no relevant reference set.

To evaluate the semantic annotation, we use the traditional
information extraction measures of precision, recall and f-
measure, the harmonic mean between precision and recall.
We define a correct match for an attribute when the attributes
in agreement predicted by the vector space model matches
that from the true matches. In some sense these are field
level extraction results. In many extraction experiments, just
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finding a token in common between the truly extracted at-
tribute and the predicted is counted as a match, but in our
case, we are considering matches only where the whole at-
tribute matches (all of the tokens), which is a stricter rubric,
and more truly indicates the accuracy for searching based on
the extracted attributes. These results are shown in Figure 7.

We compare our results to those from our previous work
[Michelson and Knoblock, 2005], for the two experimental
domains which we can, the BFT Posts and the EBay posts.
To do this, we use the F-measure record linkage results from
the previous paper, since we used the matching reference set
record’s attributes as normalized semantic annotation previ-
ously, as in this paper. This allows us to compare our seman-
tic annotation using the attributes in agreement to the anno-
tation stemming from our previous record matching method.
In Table 7 we report the previous record linkage F-measure
asPrev. F-Mes.

BFT Posts
Attribute Recall Prec. F-Measure Prev. F-Mes.

Hotel Name 88.23 89.36 88.79 92.68
Star Rating 92.02 89.25 90.61 92.68
Local Area 93.77 90.52 92.17 92.68

EBay Posts
Title 86.08 91.60 88.76 88.64
Issue 70.16 89.40 78.62 88.64

Publisher 86.08 91.60 88.76 88.64
Craig’s List Posts

Make 93.96 86.35 89.99 N/A
Model 82.62 81.35 81.98 N/A
Trim 71.62 51.95 60.22 N/A
Year 78.86 91.01 84.50 N/A

Table 7: Semantic Annotation Results

Although, a direct comparison between the two results is
slightly skewed because our current system is unsupervised,
where as the previous system is not, the results are good. Our
results are competitive with those of the supervised system
that requires labeling 30% of the data. So, not only are we
able to perform semantic annotation well, we can do it in an
unsupervised manner.

One interesting difference between the two approaches is
in disambiguating false positives, which leads to some prob-
lems with this paper’s approach. In our previous work,
[Michelson and Knoblock, 2005] we used machine learn-
ing which learns directly that some candidate matches are
true matches while others are false positives, especially given
that certain matching attributes might be more indicative of a
match than others. This allowed us to be sure that the refer-
ence set attributes for a match are correct, so we could return
them all confidently. In this sense there was no problem with
attributes not being in agreement. In this paper, however, we
have a disambiguation problem because certain reference set
records that score the same for a given post are all equally as
likely to be a match, especially since we have no notion of
certain attributes being more indicative than others. Clearly
this is a limitation with our approach and it requires us to ei-
ther select the intersection or the union of the attributes for
all returned reference set attributes. We select the intersec-

tion because we want to limit the false positives for given at-
tributes, but clearly this leads to problems, especially with at-
tributes that are short and ambiguous. For example, the issue
attribute in EBay comics and the trim attribute in Craig’s List
Cars are both very short pieces of text, usually just a number
or 1 or 2 letters. So, in some cases, if there is another number
in the post or another 1-2 letters that could match another ref-
erence set member, then these attributes are not in agreement
and they get removed, hindering their accuracy. Overcoming
this issue is something we plan to investigate in the future.

5 Related Work
Performing semantic annotation automatically is a well stud-
ied field of research, especially as researchers develop the Se-
mantic Web. As stated previously, this work is similar to the
Phoebus system in that it exploits reference sets to perform
annotation. However, unlike Phoebus, our research is more
automatic, given a set of reference sets, making our algorithm
much more scalable.

Beyond Phoebus there are other systems that perform se-
mantic annotation in an automatic fashion, and according to
a recent survey[Reeve and Han, 2005], these annotation sys-
tems break into 3 basic categories: rule based, pattern based,
and wrapper induction based methods. Pattern based systems,
such as Armadillo[Dingli et al., 2003], can automatically ex-
tract entities from text by identifying them based on regular
patterns in the text. However, this regularity is not guaran-
teed in unstructured, ungrammatical text, which makes this
approach difficult for posts. This is a similar case for the rule
based annotation systems, where the rules rely on regularity.
The wrapper induction methods, such as MnM[Vargas-Vera
et al., 2002] use supervised machine learning, so they are not
fully automatic.

The most similar system to ours is the SemTag[Dill et al.,
2003] system, which first identifies tokens of interest in the
text, and then labels them using the TAP taxonomy, which is
similar to our exploitation of reference sets. To perform its
annotation, SemTag tokenizes data, such as a web page, then
gives each token(s) a label by looking it up in the taxonomy.
It then disambiguates the possible labels (since several may
match) using neighbor tokens and corpus statistics, picking
the best label for a token.

However, there are few key differences between this ap-
proach and ours. First, the noisy nature of the posts does not
allow for an exact lookup of the tokens in the reference set.
So our approach emphasizes this aspect as a contribution, us-
ing a vector model to select the labels, while SemTag’s focus
is more on disambiguating the possible labels. Second, their
disambiguation comes about because of synonymy that our
approach avoids entirely. For instance, in their paper they
mention the token Jaguar might mention a car or an animal,
since they disambiguate after labeling. In our case, we per-
form this type of disambiguation before the labeling proce-
dure, during the selecting of the relevant reference sets. If we
had a reference set of animals and one of cars, and we chose
cars as the relevant reference set, then we would not have this
type of synonymy since animal labels would not be an option.

Lastly, our approaches differ in their outside knowledge.
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SemTag uses a well defined, carefully crafted taxonomy. This
gives their reference set good accuracy and well defined la-
bels with lots of meaning. Our approach is just to incorporate
any reference sets that we can collect automatically from the
web. Including new reference sets in our repository has no
effect on the data already in it (since the reference sets are
independent). So our approach to data collection is not as
careful as using a full taxonomy, but we can much more eas-
ily and quickly gather lots and lots of reference data, greatly
increasing our coverage of items we can annotate.

The automatic selection of reference sets presented in this
paper is similar to the problem of resource selection in dis-
tributed information retrieval, sometimes used for the “hidden
web.” For example,[Craswellet al., 2000], provide a com-
parison of three approaches to this problem that each treat
the information sources as documents, like we do. However,
one major difference between their resource selection prob-
lem and ours is that a major focus of their attention is esti-
mating the data that their sources cover. They must execute
probe queries and examine the results to estimate statistics of
data coverage and then use these statistics to select the correct
resources at query time. In our problem, we have full access
to the reference sets, so we can select the resource using the
full reference set without any such coverage estimations.

6 Conclusion
In this work we present an unsupervised method to seman-
tically annotate unstructured, noisy text found on the World
Wide Web. This scalable approach allows for much richer,
structured, accurate querying of these noisy data sources.
While the reported results are encouraging, this annotation
is not the last step in processing the unstructured sources. In
the future, we will investigate how to exploit the matching
members of the reference sets to perform unsupervised infor-
mation extraction. Many of the current unsupervised extrac-
tion techniques rely on patterns in the data which would not
exist in our unstructured, ungrammatical text. Unsupervised
extraction using reference sets would allow for the process-
ing of volumes of new data previously unavailable because of
their lack of structure.
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