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Abstract. The Web of Linked Data is characterized by linking structured data
from different sources using equivalence statements, such as owl:sameAs, as well
as other types of linked properties. The ontologies behind these sources, how-
ever, remain unlinked. This paper describes an extensional approach to generate
alignments between these ontologies. Specifically our algorithm produces equiv-
alence and subsumption relationships between classes from ontologies of differ-
ent Linked Data sources by exploring the space of hypotheses supported by the
existing equivalence statements. We are also able to generate a complementary
hierarchy of derived classes within an existing ontology or generate new classes
for a second source where the ontology is not as refined as the first. We demon-
strate empirically our approach using Linked Data sources from the geospatial,
genetics, and zoology domains. Our algorithm discovered about 800 equivalences
and 29,000 subset relationships in the alignment of five source pairs from these
domains. Thus, we are able to model one Linked Data source in terms of another
by aligning their ontologies and understand the semantic relationships between
the two sources.

1 Introduction

The last few years have witnessed a paradigm shift from publishing isolated data from
various organizations and companies to publishing data that is linked to related data
from other sources using the structured model of the Semantic Web. As the data being
published on the Web of Linked Data grows, such data can be used to supplement one’s
own knowledge base. This provides significant benefits in various domains where it is
used in the integration of data from different sources. A necessary step to publish data
in the Web of Linked Data is to provide links from the instances of a source to other
data ‘out there’ based on background knowledge (e.g. linking DBpedia to Wikipedia),
common identifiers (e.g. ISBN numbers), or pattern matching (e.g. names, latitude, lon-
gitude and other information used to link Geonames to DBpedia). These links are often
expressed by using owl:sameAs statements. Often, when such links between instances
are asserted, the link between their corresponding concepts is not made. Such con-
ceptual links would ideally help a consumer of the information (agent/human) to model
data from other sources in terms of their own knowledge. This problem is widely known
as ontology alignment [11], which is a form of schema alignment [16]. The advent of
the Web of Linked Data warrants a renewed inspection of these methods.



Our approach provides alignments between classes from ontologies in the Web of
Linked Data by examining their linked instances. We believe that providing ontology
alignments between sources on the Web of Linked Data provides valuable knowledge
in understanding and reusing such sources. Moreover, our approach can provide a more
refined ontology for a source described with a simple ontology (like GEONAMES) by
aligning it with a more elaborate ontology (like DBPEDIA). Alternatively, by aligning an
ontology (like GEOSPECIES) with itself using the same approach, we are able to generate
a hierarchy of derived classes, which provide class definitions complimentary to those
already existing in the source.

The paper is organized as follows. First, we briefly provide background on Linked
Data and describe the domains (geospatial, genetics and zoology) and data sources
(LINKEDGEODATA, GEONAMES, DBPEDIA, GEOSPECIES, MGI, and GENEID) that we fo-
cus on in this paper. Second, we describe our approach to ontology alignment, which is
based on defining restriction classes over the ontologies and comparing the extensions
of these classes to determine the alignments. Third, we provide an empirical evalua-
tion of the alignment algorithm on five pairs of sources: (LINKEDGEODATA-DBPEDIA,
GEONAMES-DBPEDIA, GEOSPECIES-DBPEDIA, MGI-GENEID and GEOSPECIES-GEOSPECIES).
Finally, we describe related and future work and discuss the contributions of this paper.

2 Linked Data Background and Sources

In this section, we provide a brief introduction to Linked Data and the three domains
and six data sources that we consider.

The Linked Data movement, as proposed by Berners-Lee [5], aims to provide machine-
readable connections between data in the Web. Bizer et al. [6] describe several ap-
proaches to publishing such Linked Data. Most of the Linked Data is generated auto-
matically by converting existing structured data sources (typically relational databases)
into RDF, using an ontology that closely matches the original data source. For exam-
ple, GEONAMES gathers its data from over 40 different sources and it primarily exposes
its data as a flat-file structure1 that is described with a simple ontology [19]. Such an
ontology might have been different if designed at the same time as the collection of
the actual data. For example, all instances of GEONAMES have geonames:Feature as
their only rdf:type, however, they could have been more effectively typed based on the
featureClass and featureCode properties (cf. Section 3.1).

The links in the Web of Linked Data make the Semantic Web browsable and, more-
over, increase the amount of knowledge by complementing data in a source with ex-
isting data from other sources. A popular way of linking data on the Web is the use of
owl:sameAs links to represent identity links [13, 7]. Instead of reusing existing URIs,
new URIs are automatically generated while publishing linked data and an owl:sameAs
link is used to state that two URI references refer to the same thing. Halpin et al. [13]
distinguish four types of semantics for these links: (1) same thing as but different con-
text, (2) same thing as but referentially opaque, (3) represents, and (4) very similar to.
For the purposes of this paper, we refrain from going into the specifics and use the term
as asserting equivalence.

1 http://download.geonames.org/export/dump/readme.txt



In this paper we consider six sources sources from three different domains (geospa-
tial, zoology, and genetics), which are good representatives of the Web of Linked Data:

LINKEDGEODATA is a geospatial source with its data imported from the Open Street
Map (OSM) [12] project containing about 2 billion triples. The data extracted from the
OSM project was linked to DBPEDIA by expanding on the user created links on OSM
to WIKIPEDIA using machine learning based on a heuristic on the combination of type
information, spatial distance, and name similarity [3].

GEONAMES is a geographical database that contains over 8 million geographical
names. The structure behind the data is the Geonames ontology [19], which closely
resembles the flat-file structure. A typical individual in the database is an instance of
type Feature and has a Feature Class (administrative divisions, populated places, etc.),
a Feature Code (subcategories of Feature Class) along with latitude, longitude, etc.
associated with it.

DBPEDIA is a source of structured information extracted from WIKIPEDIA contain-
ing about 1.5 million objects that are classified with a consistent ontology. Because of
the vastness and diversity of the data in DBPEDIA, it presents itself as a hub for links
in the Web of Linked Data from other sources [2]. We limit our approach to only the
rdf:type assertions and info-box triples from DBPEDIA as they provide factual informa-
tion. LINKEDGEODATA, GEONAMES are both linked to DBPEDIA using the owl:sameAs
property asserting the equivalence of instances.

GEOSPECIES is an initiative intended to unify biological taxonomies and to over-
come the problem of ambiguities in the classification of species.2 GEOSPECIES is linked
to DBPEDIA using the skos:closeMatch property.

Bio2RDF’s MGI and GENEID. The Bio2RDF project aims at integrating mouse
and human genomic knowledge by converting data from bioinformatics sources and
publishing this information as Linked Data [4]. The Mouse Genome Informatics (MGI)
database contains genetic, genomic, and biological data about mice and rats. This database
also contains assertions to a gene in the National Center for Biotechnology Information
- Entrez Gene database, which is identified with a unique GeneID.3 The data from the
MGI database and Entrez Gene was triplified and published by Bio2RDF on the Web
of Linked Data4, which we refer to as MGI and GENEID. We align these two sources
using the bio2RDF:xGeneID link from MGI to GENEID.

3 Ontology Alignment Using Linked Data

An Ontology Alignment is “a set of correspondences between two or more ontologies,”
where a correspondence is “the relation holding, or supposed to hold according to a par-
ticular matching algorithm or individual, between entities of different ontologies” [11].
Entities here, can be classes, individuals, properties, or formulas.

Our alignment algorithm uses data analysis and statistical techniques for matching
the classes of two ontologies using what Euzenat et al. [11] classify as a common exten-
sion comparison approach for aligning the structure. This approach considers classes

2 http://about.geospecies.org/
3 http://www.ncbi.nlm.nih.gov/entrez/query/static/help/genehelp.html
4 http://quebec.bio2rdf.org/download/data/



from different ontologies that have instances in common, and derives the alignment re-
lationship between the classes based on the set containment relationships between the
sets of instances belonging to each of the classes. Our approach is novel in two respects.
First, we identify common instances by using the equivalence links in the Web of Linked
Data. Specifically, we use the owl:sameAs property to link LINKEDGEODATA with DB-
PEDIA, and GEONAMES with DBPEDIA; the skos:closeMatch property to link GEOSPECIES

with DBPEDIA,5 and the bio2rdf:xGeneID property to link MGI with GENEID. Second,
instead of limiting ourselves to the existing classes in an ontology, we overlay a richer
space of class descriptions over the ontology and define alignments over these sets of
new classes, as we describe next.

3.1 Restriction Classes

In the alignment process, instead of focusing only on classes defined by rdf:type, we
also consider classes defined by conjunctions of property value restrictions (i.e, has-
Value constraints in the Web Ontology Language), which we will call restriction classes
in the rest of the paper. Restriction classes help us identify existing as well as de-
rived set of classes in an ontology. A restriction class with only a single constraint
on the rdf:type property gives us a class already present in the ontology, for example
in LINKEDGEODATA the restriction (rdf:type=lgd:country) identifies the class Country.
Using restrictions also helps us get a refined set of classes when the ontology of the
source is rudimentary i.e. when there are little or no specializations of top level classes,
as can be seen in the case of GEONAMES. In GEONAMES, the rdf:type for all instances
is Feature. Thus, the ontology contains a single concept. Traditional alignments would
then only be between the class Feature from GEONAMES and another class from DB-
PEDIA, for example Place. However, instances from GEONAMES have featureCode and
featureClass properties. A restriction on the values of such properties gives us classes
that we can effectively align with classes from DBPEDIA. For example, the restriction
class defined by (featureCode=geonames:A.PCLI) (independent political entity) aligns
with the class Country from DBPEDIA. Our algorithm defines restriction classes from
the source ontologies and generates alignments between such restrictions classes using
subset or equivalence relationships.

The space of restriction classes is simply the powerset of distinct property-value
pairs occurring in the ontology. For example assume that the GEONAMES source had only
three properties: rdf:type, featureCode and featureClass; and the instance Saudi Arabia
had as corresponding values: geonames:Feature, geonames:A.PCLI, and geonames:A.
Then this instance belongs to the restriction class defined by (rdf:type=geonames:Feature
& featureClass=geonames:A). The other elements of the powerset also form such re-
striction classes as shown in Figure 1. It is evident that in order to consider all restric-
tion classes, the algorithm would be exponential. We thus need some preprocessing that
eliminates those properties that are not useful.

5 Based on the ‘Linked Open Data Cloud Connections’ section in http://about.geospecies.org/



(rdf:type=geonames:Feature & featureCode=geonames:A.PCLI & featureClass=geonames:A) 

(rdf:type=geonames:Feature) (featureCode=geonames:A.PCLI) (featureClass=geonames:A) 

(rdf:type=geonames:Feature & featureCode=geonames:A.PCLI) 

(rdf:type=geonames:Feature & featureClass=geonames:A) 

(featureCode=geonames:A.PCLI & featureClass=geonames:A) 

Fig. 1. Hierarchy showing how restriction classes are built

3.2 Pre-processing of the data

Before we begin exploring alignments, we perform a simple pre-processing on the in-
put sources in order to reduce the search space and optimize the representation. First,
for each pair of sources that we intend to align, we only consider instances that are
actually linked. For example, instances from DBPEDIA not relevant to alignments in the
geospatial domain (like People, Music Albums, etc.) are removed. This has the effect
of removing some properties from consideration. For example, when considering the
alignment of DBPEDIA to GEONAMES, the dbpedia:releaseDate property is eliminated
since the instances of type album are eliminated.

Second, in order to reduce the space of alignment hypotheses, we remove prop-
erties that cannot contribute to the alignment. Inverse functional properties resemble
foreign keys in databases and identify an instance uniquely. Thus, if a restriction class
is constrained on the value of an inverse functional property, it would only have a sin-
gle element in it and not be useful. For example, consider the wikipediaArticle prop-
erty in GEONAMES, which links to versions of the same article in WIKIPEDIA in dif-
ferent languages. The GEONAMES instance for the country Saudi Arabia6 has links
to 237 different articles. Each of these, in turn, however could be used to identify
only Saudi Arabia. Similarly, in LINKEDGEODATA the ‘georss:point’ property from the
‘http://www.georss.org/georss/’ namespace contains a String representation of the lat-
itude and longitude and would tend to be an inverse functional property. On the other
hand, the addr:country property in LINKEDGEODATA has a range of 2-letter country
codes that can be used to group instances into useful restriction classes.

Third, we transform the instance data of a source into a tabular form, which allows
us to load the data in a relational database and process it more efficiently. Specifically,
each instance is represented as a row in a table, each property occurring in the ontology
is a column, and the instance URI is the key. For example, the table for GEONAMES

contains 11 columns not including the identifier. We call this tuple representation of
an instance a vector. In cases of multivalued properties, the row is replicated in such a
way that each cell contains a single value but the number of rows equals the number
of multiple values. Each new row however, is still identified with the same URI, thus

6 http://sws.geonames.org/102358/about.rdf



(rdf:type=lgd:country)  
(rdf:type=owl:Thing) 

(rdf:type=lgd:node)  
(rdf:type=dbpedia:PopulatedPlace) 

(rdf:type=lgd:node)  
(rdf:type=dbpedia:BodyOfWater) 

Seed hypotheses generation 

(rdf:type=lgd:node)  
(rdf:type=dbpedia:PopulatedPlace & dbpedia:Place#type=dbpedia:City) 

(rdf:type=lgd:node)  
(rdf:type=dbpedia:BodyOfWater & dbpedia:Place#type=dbpedia:City) 

(rdf:type=lgd:node)  
(dbpedia:Place#type=dbpedia:City) 

Seed hypothesis  
pruning (owl:Thing 
covers all instances) 

Prune as no change  
in the extension set 

Pruning on empty set 
r2=Ø 

(rdf:type=lgd:node)  
(dbpedia:Place#type=dbpedia:City & rdf:type=owl:Thing) 

(lgd:gnis%3AST_alpha=NJ)  
(dbpedia:Place#type= 

http://dbpedia.org/resource/City_(New_Jersey)) 

Fig. 2. Exploring and pruning the space of alignments

retaining the number of distinct individuals. In general, the total number of rows for
each individual is the product of cardinalities of the value sets for each of its properties.

From these individual vectors, we then perform a join on the equivalence property
(e.g. owl:sameAs property from LINKEDGEODATA to DBPEDIA) such that we get a com-
bination of vectors from both ontologies. We call this concatenation of two vectors an
instance pair.

3.3 Searching the space of ontology alignments

An alignment hypothesis is a pair of restriction classes, one from each of the ontologies
under consideration. The space of alignment hypotheses is combinatorial, thus our al-
gorithm exploits the set containment property of the hypotheses in a top-down fashion
along with several pruning features to manage the search space.

We describe the search algorithm that we use to build the alignments by example.
Figure 2 shows a small subset of the search space, as explored by this algorithm while
aligning LINKEDGEODATA with DBPEDIA. Each gray box represents a candidate hypoth-
esis where the first line within it is the restriction class from the first source(O1) and the
second line is the restriction class from the second source (O2). The levels in the ex-
ploration space, denoted by dashed horizontal lines, separate alignments where the one
from a lower level contains a restriction class with one extra property-value constraint
than its parent alignment (that is, it is a subclass by construction).

We first seed the space by computing all alignment hypotheses with a single property-
value pair from each ontology, that is [(p1

i = v1
j )(p2

k = v2
l )], as shown at the top of

Figure 2. There are O(n2m2) seed hypotheses, where n is the larger of the number of



properties in each source, and m is the maximum number of distinct values for any
property. Then, we explore the hypotheses space by using a depth-first search. At each
level we choose a property and add a property-value constraint to one of the restriction
classes and thus explore all specializations. The instance pairs that support the new
hypothesis are obtained by restricting the set of instance pairs of the current hypoth-
esis with the additional constraint. In Figure 2, while adding a new constraint ‘db-
pedia:Place#type=dbpedia:City’ to the restriction (rdf:type=dbpedia:PopulatedPlace)
while aligning it with (rdf:type=lgd:node), we take the intersection of the set of iden-
tifiers covered by [(rdf:type=dbpedia:PopulatedPlace) (rdf:type=lgd:node)] with the set
of instances in DBPEDIA that have a value of ‘dbpedia:City’ for the property ‘dbpe-
dia:Place#type’.

Our algorithm prunes the search space in several ways. First, we prune those hy-
potheses with a number of supporting instance pairs less than a given threshold. For
example, the hypothesis [(rdf:type=lgd:node) (rdf:type=dbpedia:BodyOfWater & db-
pedia:Place#type=dbpedia:City)] is pruned since it has no support.

Second, we prune a seed hypothesis if either of its constituent restriction classes
covers the entire set of instances from one of the sources, then the algorithm does not
search children of this node, because the useful alignments will appear in another branch
of the search space. For example, in the alignment between (rdf:type=lgd:country) from
LINKEDGEODATA and (rdf:type=owl:Thing) from DBPEDIA in Figure 2, the restriction
class (rdf:type=owl:Thing) covers all instances from DBPEDIA. The alignment of such
a seed hypothesis will always be a subset relation. Moreover, each of its child hy-
potheses can also be explored through some other hypotheses that does not contain
the non-specializing property-value constraint. For example, our algorithm will explore
a branch with [(rdf:type=lgd:country) (dbpedia:Place#type=dbpedia:City)], where the
restriction class from the second ontology actually specializes in the extensional sense
(rdf:type=owl:Thing).

Third, if the algorithm constrains one of the restriction classes of an hypothesis, but
the resulting set of instance pairs equals the set from the current hypothesis, then it
means that adding the constraint did not really specialize the current hypothesis. Thus,
the new hypothesis is not explored. Figure 2 shows such pruning when the constraint
(rdf:type=owl:Thing) is added to the alignment [(rdf:type=lgd:node) (dbpedia:Place#type
=dbpedia:City)].

Fourth, we prune hypotheses [r1r2] where r1 ∩ r2 = r1 as shown in Figure 3(a).
Imposing an additional restriction on r1 to form r′

1 would not provide any immediate
specialization as the resultant hypothesis could be inferred from r′

1 ⊂ r1 and the current
hypothesis. The same holds for the symmetrical case r1 ∩ r2 = r2.

Finally, to explore the space systematically the algorithm specializes the restriction
classes in a lexicographic order. By doing this, we prune symmetric cases as shown by
Figure 3(b). The effect of lexicographic selection of the property can also be seen in Fig-
ure 2 when the hypotheses [(rdf:type=lgd:node) (rdf:type=dbpedia:PopulatedPlace &
dbpedia:Place#type=dbpedia:City)] is not explored through the hypothesis [(rdf:type=
lgd:node) (dbpedia:Place#type=dbpedia:City)].7

7 Note that the pruning from Figure 3(a) & (b) is not explicitly depicted in Figure 2.
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(p5=v5 & p6=v6 & p7=v7) 
(p8=v8) 

(b) Pruning due to lexicographical ordering 

Hypothesis 

r1 

Fig. 3. Pruning the hypotheses search space

3.4 Scoring Alignment Hypotheses

After building the hypotheses, we score each hypothesis to assign a degree of confi-
dence for each alignment. Figure 4 illustrates the instance sets considered to score an
alignment. For each hypothesis, we find the instances belonging to the restriction class
r1 from the first source and r2 from the second source. We then compute the image of
r1 (denoted by I(r1)), which is the set of instances from the second source that form
instance pairs with instances in r1, by following the owl:sameAs links. The dashed
lines in the figure represent these instance pairs. All the pairs that match both restric-
tions r1 and r2 also support our hypothesis and thus are equivalent to the instance pairs
corresponding to instances belonging to the intersection of the sets r2 and I(r1). This
set of instance pairs that support our hypothesis is depicted as the shaded region. We
can now capture subset and equivalence relations between the restriction classes by
set-containment relations from the figure. For example, if the set of instance pairs iden-
tified by r2 are a subset of I(r1), then the set r2 and the shaded region would be entirely
contained in the I(r1).

We use two metrics P and R to quantify these set-containment relations. Figure 5
summarizes these metrics and also the different cases of intersection. In order to allow a
certain margin of error induced by the dataset, we are lenient on the constraints and use
the relaxed versions P’ and R’ as part of our scoring mechanism. For example, consider
the alignment between the restriction class (lgd:gnis%3AST alpha=NJ) from LINKED-
GEODATA to the restriction (dbpedia:Place#type=http://dbpedia.org/resource/City (New-
Jersey)) from DBPEDIA shown in Figure 2. Based on the extension sets, our algorithm

finds |I(r1)| = 39, |r2| = 40 and |I(r1)∩ r2| = 39. The value of R′ therefore is 0.97 and
that of P ′ is 1.0. Based on our margins, we hence assert the relation of the alignment as
equivalent in an extensional sense.

3.5 Eliminating Implied Alignments

From the result set of alignments that pass our scoring thresholds, we need to only keep
those that are not implied by other alignments. We hence perform a transitive reduction
based on containment relationships to remove the implied alignments. Figure 6 explains
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these reductions, where alignments between r1 and r2 and between r′
1 and r2 are at

different levels in the hierarchy such that r′
1 is a subclass of r1 by construction (i.e.,

by conjoining with an additional property-value pair). Figure 6(a) through (i) depict
the combinations of the equivalence and containment relations that might occur in the
alignment result set. Solid arrows depict these containment relations. Arrows in both
directions denote an equivalence of the two classes.

A typical example of the reduction is Figure 6(e) where the result set contains a
relation such that r1 ⊂ r2 and r′

1 ⊂ r2. Based on the implicit relation r′
1 ⊂ r1, the

relation r′
1 ⊂ r2 can be eliminated (denoted with a cross). Thus, we only keep the

relation r1 ⊂ r2 (denoted with a check). The relation r1 ⊂ r2 could alternatively be
eliminated but instead we choose to keep the simplest alignment and hence remove
r′
1 ⊂ r2. Other such transitive relations and their reductions are depicted with a ‘T’ in

box on the bottom-right corner.
Another case can be seen in Figure 6(d) where the subsumption relationships found

in the alignment results can only hold if all the three classes r1, r′
1 and r2 are equivalent.

These relations have a characteristic cycle of subsumption relationships. We hence need
to correct our existing results by converting the subset relations into equivalences. This
is depicted by an arrow with a dotted line in the figure. Other similar cases can be
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Fig. 6. Eliminating Implied Alignments

seen in Figure 6(a), (c) and (f) where the box on the bottom-right is has a ‘C’ (cycle).
In such cases, we order the two equivalences such that the one with more support is
said to be a ‘better’ match than the other (i.e. if |I(r1) ∩ (r2)| > |I(r′

1) ∩ (r2)|, then
r1 = r2 is a better match than r′

1 = r2). The corrections in the result alignments based
on transitive reductions may induce a cascading effect. Hence our algorithm applies the
’C’ rules shown in Figure 6(a), (c), (d), (f) to identify equivalences until quiescence.
Then it applies the ‘T’ rules to eliminate hypotheses that are not needed.

In sources like DBPEDIA an instance may be assigned multiple rdf:types with values
belonging to a single hierarchy of classes in the source ontology. This results in multiple
alignments where relations were found to be implied based on the rdf:type hierarchy.
Such alignments were also considered as candidates for cycle correction, equivalence
ordering and elimination of implied subsumptions. We used the ontology files (RDF-
S/OWL) provided by GEONAMES, LINKEDGEODATA, DBPEDIA AND GEOSPECIES as the
source for the ontologies.

4 Empirical Evaluation

We evaluate our algorithm on the domain and sources described in Section 2. Table 1
shows the number of properties and instances in the original sources. For example,
LINKEDGEODATA has 5,087 distinct properties and 11,236,351 instances.8

As described in Section 3.2, we consider only linked instances and remove prop-
erties that cannot generate useful restriction classes. This reduced dataset contains in-
stances that reflect the practical usage of the equivalence links and properties relevant
to the domain. In LINKEDGEODATA, most of the instances coming from OSM have a

8 Data and results available at: http://www.isi.edu/integration/data/LinkedData



Source # properties # instances
LinkedGeoData 5087 11236351
DBpedia 1043 1481003
Geonames 17 6903322
Geospecies 173 98330
MGI 24 153646
GeneID 32 4153014

Table 1. Properties and instances in the original sources

rudimentary type information (classified as ‘lgd:node’ or ‘lgd:way’) and are not linked
to any instance from DBPEDIA. DBPEDIA similarly has instances not linked to LINKED-
GEODATA and they were removed as well.

Table 2 shows the results of pre-processing on the source pairs. The table lists the
number of properties and instances retained in either sources, the count of the number
of combinations of the vectors as a result of the join, and the count of the distinct
instance pairs as identified by the concatenation of their respective URIs. Our algorithm
processed this set of instance pairs for each source pair and generated alignments that
have a minimum support level of 10 instance pairs.

Source 1 # properties # instances Source 2 # properties # instances # vector # distinct
after after after after combin- instance

elimination reduction elimination reduction ations pairs
LinkedGeoData 63 23594 DBpedia 16 23632 329641 23632

Geonames 5 71114 DBpedia 26 71317 459716 71317
Geospecies 31 4997 Dbpedia 13 4982 289967 4998

MGI 7 31451 GeneID 4 47491 829454 47557
Geospecies 22 48231 Geospecies 22 48231 771690 48231

Table 2. Generation of instance pairs in pre-processing

The alignment results after eliminating implied alignments, as described in Sec-
tion 3.5, are shown in Table 3. The table shows the two sources chosen for the align-
ment and the count of the hypotheses classified as equivalent, r1 ⊂ r2 and r2 ⊂ r1

both before and after elimination.9 Even though our algorithm provides for the correc-
tion and cascading of mislabeled equivalence relations, for all the source pairs that we
considered for alignment, such corrections did not arise. The number of equivalences
that our algorithm finds can be seen in Table 3 along with the count of equivalences that
were labeled as the best match in a hierarchy of equivalence relations. The procedure for
elimination of implied relations further prunes the results and helps the system focus on
the most interesting alignments. For example, in linking LINKEDGEODATA to DBPEDIA,
the 2528 (r1 ⊂ r2) relations were reduced to 1837 by removing implied subsumptions.
Similarly, in aligning GEOSPECIES with itself, we found 188 equivalence relations, 94
of which were unique due to the symmetrical nature of the hypotheses.

Since the subset and equivalence relationship our algorithm finds are based on ex-
tensional reasoning, they hold by definition. However, in the remainder of this section

9 The counts of any of the containment relations in the table do not include the logically implied
relations within the same source, that is, when r′

1 is a subset of r1 by construction.



Source 1 Source 2 #(r1 = r2) #(r1 = r2) #(r1 ⊂ r2) #(r1 ⊂ r2) #(r2 ⊂ r1) #(r2 ⊂ r1)
(O1) (O2) total best matches before after before after
LinkedGeoData DBpedia 158 152 2528 1837 1804 1627
Geonames DBpedia 31 19 809 400 1384 1247
Geospecies DBpedia 509 420 9112 2294 6098 4455
MGI GeneID 10 9 2031 1869 3594 2070
Geospecies Geospecies 94 88 1550 1201 - -

Table 3. Alignment results

we show some examples of the alignments discovered and discuss whether the exten-
sional subset relationships correspond to the intuitive intensional interpretation. As we
use an extensional approach as opposed to an intensional one, the results reflect the
practical nature of the links between the datasets and the instances in these sources.

Table 4 provides an assessment of the experimental results by selecting some in-
teresting alignment examples from the five source pairs. For each alignment, the table
depicts the restrictions from the two sources, the values of the metrics used for hypothe-
ses evaluation (P ′ and R′), the relation, and the support for that relation.

We refer to the row numbers from Table 4 as a shorthand for the alignments. For ex-
ample alignment 1 refers to the alignment between the restriction class (rdf:type=lgd:node)
from LINKEDGEODATA and the class (rdf:type=owl:Thing) from DBpedia classified as
an equivalent relation. Alignments 1, 2, 3 and 5 are the simplest alignments found by
our algorithm as they are constrained on values of only the rdf:type property. However,
we are also able to generate alignments like 4, as shown in Figure 2. GEONAMES has
a rudimentary ontology comprised of only a single Feature concept. Hence alignments
between the restriction classes prove to be more useful. Alignments 6 and 7 suggest
that such restrictions from GEONAMES are equivalent to existing concepts in DBPEDIA.
Our algorithm is thus able to build a richer set of classes for GEONAMES. This ontology
building can also be observed in GEOSPECIES in alignment 12. A more complicated and
interesting set of relations is also found in alignments 8, 15, 17, 18, 20 and 22. For ex-
ample, in alignment 8, pointing a web browser to ‘http://sws.geonames.org/3174618/’
confirms that for any instance in GEONAMES that has this URI as a parent feature, would
also belong to the region of ‘Lombardy’ in DBPEDIA. In a similar way, 20 provides an
alternate definition for a restriction class with another class in the same ontology and
thus build complimentary descriptions to existing classes and thus reinforce it.

The alignments closely follow the ontological choices of the sources. For example,
we could assume that alignment 11, mapping ‘geonames:featureCode=T.MT’ (Moun-
tain) to ‘rdf:type=dbpedia:Mountain’, should be equivalent. Closer inspection of the
GEONAMES dataset shows, however, that there are some places with Feature Codes like
‘T.PK’ (Peak), ‘T.HLL’ (Hill), etc. from GEONAMES whose corresponding instances in
DBPEDIA are all typed ‘dbpedia:Mountain’. This implies that the interpretation of the
concept ‘Mountain’ is different in both the sources and only a subset relation holds.
Alignments 16, 19 and 21 also express a similar nature of the classes. As our results fol-
low the data in the sources, incompleteness in the data reflects closely on the alignments
generated. Alignment 9 suggests Schools from GEONAMES is extensionally equivalent
Educational Institutions. It should naturally follow that Schools in the US be a subset
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of Educational Institutions. However, as there are only 3 other Schools (outside the
US), extensionally these classes are very close, as shown by alignment 10. This exam-
ple illustrates that reasoning extensionally actually provides additional insight on the
relationship between the sources. Alignments 13 and 14 show two equivalent align-
ments that have different support due to missing assertions in one of the ontologies (the
property dbpedia:kingdom for all moths and butterflies).

Our approach makes an implicit ‘closed-world’ assumption in using the instances
of a class to determine the relationships between the classes in different sources. We be-
lieve that this is an important feature of our approach in that it allows one to understand
the relationships in the actual linked data and their corresponding ontologies. The align-
ments generated can be readily used for modeling and understanding the sources since
we are modeling what the sources actually contain as opposed as to what an ontology
disassociated from the data appears to contain based on the class name or description.
Moreover, even if we delve into the open-world assumption of data, it would be very
difficult to categorize the missing instances as either: (1) yet unexplored, (2) explored
but purposefully classified as not belonging to the dataset, or (3) explored but not in-
cluded in the dataset by mistake. Hence, our method provides a practical approach to
understanding the relationships between sources.

In summary, our algorithm is able to find a significant number of interesting align-
ments, both equivalent and subset relationships, as well as build and refine the ontolo-
gies of real sources in the Web of Linked Data.

5 Related Work

There is a large body of literature on ontology matching [11]. Ontology matching has
been performed based on terminological (e.g. linguistic and information retrieval tech-
niques [10]), structural (e.g. graph matching [14]), and semantic (e.g. model-based)
approaches or their combination. The FCA-merge algorithm [18] uses extensional tech-
niques over common instances between two ontologies to generate a concept lattice in
order to merge them and, thus, align them indirectly. This algorithm, however, relies on
a domain expert (a user) to generate the merged ontology and is based on a single corpus
of documents instead of two different sources, unlike our approach. A strong parallel to
our work is found in Duckham et al. [9], which also uses an extensional approach for
fusion and alignment of ontologies in the geospatial domain. The difference in our ap-
proach in comparison to their work (apart from the fact that it predates Linked Data) is
that while their method fuses ontologies and aligns only existing classes, our approach
is able to generate alignments between classes that are derived from the existing on-
tology by imposing restrictions on values of any or all of the properties not limited to
the class type. The GLUE system [8] also uses an instance-based similarity approach to
find alignments between two ontologies. It uses the labels of the classes that a concept
belongs to along with the textual content of the attribute values of instances belonging
to that concept to train a classifier and then uses it to classify instances of a concept
from the other ontology as either belonging to the first concept or not. Similarly, it also
tries to classify the concepts in the other direction. GLUE then hypothesizes alignments
based on the probability distributions obtained from the classifications. Our approach,



instead, relies on the links already present in the Web of Linked Data, which in some
cases uses a much more sophisticated approach for finding instance equivalences.

Most of the work in information integration within the Web of Linked Data is in
instance matching as explained in Bizer et al. [6]. Raimond et al. [17] use string and
graph matching techniques to interlink artists, records, and tracks in two online music
datasets (Jamendo and MusicBrainz) and also between personal music collections and
the MusicBrainz dataset. Our approach solves a complimentary piece of the informa-
tion integration problem on the Web of Linked Data by aligning ontologies of linked
data sources. Schema matching in the Web of Linked Data has also been explored by
Nikolov et al. [15], who use existing instance and schema-level evidence of Linked Data
to augment instance mappings in those sources. First, instances from different sources
are clustered together by performing a transitive closure on owl:sameAs links such that
all instances in a cluster are equivalent. Class re-assignment is then performed by la-
beling each instance with all the other classes in the same cluster. Second, a similarity
score is computed based on the size of the intersection sets and classes are labeled as
equivalent. Finally, more equivalence links are generated based on the new class assign-
ments. Our approach differs from this in the sense that, first, the class re-assignment step
increases the coverage of a class. Such an assumption in aligning schemas would bias
the extensional approach as it modifies the original extension of a class. Second, only
existing classes are explored for similarity in that work and thus faces severe limitations
with rudimentary ontologies like GEONAMES, where our approach performs well as it
considers restriction classes.

6 Conclusion

The Web of Linked Data contains linked instances from multiple sources without the
ontologies of the sources being themselves linked. It is useful to the consumers of the
data to define the alignments between such ontologies. Our algorithm generates align-
ments, consisting of conjunctions of restriction classes, that define subsumption and
equivalence relations between the ontologies. This paper focused on automatically find-
ing alignments between the ontologies of geospatial, zoology and genetics data sources
and building such ontologies using an extensional technique. However, the technique is
general and can be applied to other Web of Linked Data data sources.

In our future work, we plan to improve the scalability of our approach, specifically,
improve the performance of the algorithm that generates alignment hypotheses by us-
ing a more heuristic exploration of the space of alignments. The sizes of the sources in
this paper were quite large (on the order of thousands of instances after preprocessing).
Although we have fixed a minimum support size of ten instance pairs for a hypothesis,
the effectiveness of the extensional approach needs to be verified when the sources are
small (number of instances in the order of hundreds or less). We also plan to explore
the integration of this work with our previous work on automatically building models of
sources [1]. Linking the data from a newly discovered source with a known source al-
ready linked to an ontology will allow us to more accurately determine the classes of the
discovered data. Finally, we plan to apply our alignment techniques across additional
domains and to pursue in depth alignments in biomedical Linked Data.
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