

REPORT DOCUMENTATION PAGE FORM APPROVED
OMB NO. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

08-06-2004
2. REPORT TYPE

Final
3. DATES COVERED (From - To)
06-01-1999 to 11-30-2003

5a. CONTRACT NUMBERS
F30602-99-1-0524
5b. GRANT NUMBER

4. TITLE AND SUBTITLE

CAMERA: Coordination and Management
Environments for Responsive Agents

 5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Robert Neches
Pedro Szekely

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

USC INFORMATION SCIENCES INSTITUTE
4676 ADMIRALTY WAY
MARINA DEL REY, CA 90292-6695

8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSORING/MONITOR'S ACRONYM(S)

DARPA/AFRL

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
USAF, Air Force Material Command
Air Force Research Laboratory
26 Electronic Parkway
Rome, NY 13441-4514

11. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

12. DISTRIBUTION AVAILABILITY STATEMENT
 Distribution Statement A. Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES
14. ABSTRACT

The CAMERA project produced the SNAP (Schedules Negotiated by Agent-based Planners) flight scheduling software in
experimental use by Harrier squadrons of Marine Air Group 13, stationed in Yuma, AZ; it was also fielded aboard the USS
Bonhomme Richard, the USS Belleau Wood, the USS Pelleliu and the USS Essex that conducted operations in Iraq, Japan
and Afghanistan. The CAMERA project also produced an open hybrid solver architecture that allows off-the-shelf solvers to
be combined to solve a problem. Finally, it produced a family of market-inspired negotiation algorithms called MARBLES
(not an acronym).
15. SUBJECT TERMS
automated negotiation, multi-agent systems, agent management environments, human-in-
the-loop flight scheduling
16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON

Robert Neches a. REPORT

UNCLASSIFIED

b. ABSTRACT

UNCLASSIFIED

c. THIS PAGE

 UNCLASSIFIED

17. LIMITATION
OF ABSTRACT

UNCLASSIFIED

18. NUMBER
OF PAGES
47 19b. TELEPHONE NUMBER (Include area code)

 310-448-8481

 Standard Form 298 (Rev. 8-
98)
Prescribed by ANSI Std. Z39-18

Final Technical Report:

CAMERA: Coordination and Management
Environments for Responsive Agents

Agreement/Contract Number: F30602-99-1-0524

Period of Performance: 03-30-2000 to 03-30-2004

Robert Neches, Principal Investigator

Information Sciences Institute, University of Southern California

4676 Admiralty Way

Marina del Rey, CA 90292

E-mail: RNeches@isi.edu

WWW Homepage: http://www.isi.edu/camera

Voice: 310-448-8481
FAX: 310-822-6592

i

Abstract

The CAMERA project produced the SNAP (Schedules Negotiated by Agent-based Planners)
flight scheduling software in experimental use by Harrier squadrons of Marine Air Group 13,
stationed in Yuma, AZ; it was also fielded aboard the USS Bonhomme Richard, the USS Belleau
Wood, the USS Pelleliu and the USS Essex that conducted operations in Iraq, Japan and
Afghanistan. The CAMERA project also produced an open hybrid solver architecture that allows
off-the-shelf solvers to be combined to solve a problem. Finally, it produced a family of market-
inspired negotiation algorithms called MARBLES (not an acronym).

ii

Table of Contents
Abstract .. i
Table of Contents ..ii
List of Figures ..iii
1 Executive Summary .. 1
2 The Logistics Challenge Problem ... 1

2.1 Context .. 2
2.1.1 The Users .. 2
2.1.2 The Current Way of Doing It .. 2
2.1.3 The Logistics Challenge Goal ... 3

2.2 The Operations Problem ... 3
2.2.1 Goals ... 3
2.2.2 Objective Function .. 7
2.2.3 Resources .. 8
2.2.4 Tasks ... 10
2.2.5 Inter-Task Constraints ... 12

2.3 Producing Schedules ... 13
3 Technical Achievements and Insights... 19

3.1 Open Architecture for Hybrid Solvers .. 19
3.2 Integration of Planning and Scheduling .. 22

3.2.1 The "Create Tasks" Problem ... 22
3.2.2 The Enablement Problem.. 23

3.3 Making Solutions Understandable To End Users ... 24
3.4 Handling of Complex, Ad-Hoc Constraints Present In Real World Applications........ 25

3.4.1 The Crew Day and Crew Rest Problem .. 25
3.5 Solving Computationally Intractable Problems Via Kernel Sub-Problems.................. 26

3.5.1 Short and Long Planning Horizons ... 27
3.6 System of Systems Coordination .. 28
3.7 MARBLES Market-Inspired Negotiation ... 28

3.7.1 External Marbles Scheme Properties .. 29
3.7.2 Internal Marbles Scheme Properties ... 30
3.7.3 Formal Problem Statement.. 30
3.7.4 Running Example.. 31
3.7.5 A Rough Taxonomy of Solvers... 31
3.7.6 Evaluation ... 41
3.7.7 Related Work .. 43
3.7.8 MARBLES Conclusion... 44

4 Deliverables... Error! Bookmark not defined.
5 References ... 46

iii

List of Figures

Figure 1: Defining the qualification goals for pilots ... 4
Figure 2: Defining a squadron focus and allocating focus sorties to individual pilots 5
Figure 3: Entering “FRAGs”, Wing-ordered training or war-time missions 6
Figure 4: Fine-tuning scheduling preferences in the Metrics screen .. 7
Figure 5: Pilot currency information extracted from a legacy database ... 8
Figure 6: Viewing pilot schedule information in a time-line display ... 9
Figure 7: The overview screen for lighting, sortie cycles, and resources 10
Figure 8: The interactive time-line display for fine-tuning mission segments 11
Figure 9: Managing high-level operational planning goals .. 13
Figure 10: CAMERA-generated missions for the high-level goals .. 14
Figure 11: The resulting overall schedule (system choices are in green) 15
Figure 12: Understanding scheduling possibilities via the feasibility display 17
Figure 13: Fine-tuning details of sorties ... 18
Figure 14: The first CAMERA-produced daily schedule as signed and flown 19
Figure 15: CAMERA’s Hybrid Solver Architecture .. 20
Figure 16: Reducing complexity by solving a kernel sub-problem .. 27
Figure 17: The running example problem... 31
Figure 18: First stage of marbles2 solution to the problem .. 32
Figure 19: Second stage of marbles2 solution to the problem .. 32
Figure 20: Third stage of marbles2 solution to the problem... 33
Figure 21: Final stage of marbles2 solution to the problem.. 33
Figure 22: Bid values sequences for the Msmarbles scheme.. 35
Figure 23: First stage of marblesize solution to the problem.. 36
Figure 24: Second stage of marblesize solution to the problem ... 36
Figure 25: Final stage of marblesize solution to the problem... 37
Figure 26: Trade-off between message traffic and solution quality in msmarbles 37
Figure 27: First stage of grabmarbles solution to the problem ... 38
Figure 28: Second stage of grabmarbles solution to the problem... 38
Figure 29: Final stage of grabmarbles solution to the problem .. 39
Figure 30: Quantitative Comparison of MARBLES Algorithms ... 42
Figure 31: Easy-hard-easy phase-transition behavior of the total number of messages and

computational time for the Marblesize scheme. (a) 100 tasks, (b) 100 resources 43

 1

1 Executive Summary
The CAMERA project (Coordination and Management Environments for Responsive
Agents) investigated negotiation-based approaches to large and difficult scheduling
problems, in the context of real-world challenges offered by Harrier aircraft operations
for the United States Marine Corps (USMC).
This work led to practical demonstrations which had significant impact upon USMC, as
evidenced by the following quotes, and absorption into the CACE ACTD (Coherent
Analytical Computing Environment Advanced Concept Technology Demonstration),
which in turn received a positive evaluation from its users which led to USMC
establishment of a program of record, also called CACE, for deployment of the
technology:

“…gives a first-time opportunity to do extremely complex balancing of
considerations within critical time constraints…will provide 'look-ahead'
capabilities never before available. I think you have uncorked a genie. “
- M.A. Hough, Major General, USMC

“relevant to any set of specialized data systems…can enhance their singular
value through cross functional negotiation based on guidance in support of a
common intent.”
- Colonel D.L. Buland, Commanding Officer, Marine Air Group 13

Details of the test problem and results are provided in Section 2.
The effort yielded significant research results, as well, which are extensively reviewed in
Section 3.

2 The Logistics Challenge Problem
The CAMERA project focused on developing negotiation technology to solve real,
practical problems. The project focused on a logistics challenge problem, which involved
the coordinated scheduling of flight operations and aircraft maintenance. The Marines Air
Group 13 (MAG-13) in Yuma, Arizona provided the context for this challenge problem.
They provided the requirements, the data and military personnel committed to evaluate
and use incremental releases of the software. The logistics challenge problem is a
practical problem that the Marines solve on a daily basis to schedule their flight
operations and maintenance.

 2

2.1 Context

2.1.1 The Users

The users involved in producing the flight and maintenance schedules fall into three
groups:
Commanding officers: The commanding officers define the overall goals of the
schedule for a given planning horizon. For example, participate in a specific training
exercise, have Smith and Jones obtain their night systems qualification, fly 20 sorties per
day and maintain flight equity (every pilot flies roughly the same number of hours per
month).
Operations officers and staff: The operations people are in charge of figuring out how
to carry out the commander's intent. They must figure out who flies what type of mission,
when, and where.
Maintenance officers and staff: The maintenance people must figure out what type of
maintenance to do on each aircraft so that they can support the flights that the operations
people want to fly. They must also deal with unscheduled maintenance requirements that
arise when aircraft break down.
The commanding officers generate yearly and monthly guidance. The operations people
must produce weekly schedules to meet the guidance, and refine those schedules every
day to produce the schedules that get executed every day. The operations and
maintenance people must communicate frequently to coordinate their schedules: in order
for operations to produce a schedule they need to know how many aircraft of each type
are available. In order to answer that question maintenance needs to know the flight
schedule in order to figure out whether they have time to carry out all the usage-based
and calendar-based maintenance that must be done on the aircraft. (Usage-based
maintenance is performed after the aircraft has accumulated a number of flight hours;
calendar-based maintenance is performed after a predefined number of days pass – even
if the aircraft had not been flown at all.) The cycle is broken by starting with estimates
and refining those estimates though iterative refinement of the schedules.

2.1.2 The Current Way of Doing It

The users have databases that record all the information relevant for producing the
schedules. Operations has databases that record the flight logs of each pilot, their
qualifications, etc. Maintenance has databases that record all the maintenance work items
that must be performed or are being performed on each aircraft.
These databases have viewers and editors that allow users to see what is going on, and to
edit the information. Operations has a sophisticated schedule editor application that
enables users to enter and validate flight schedules, but they do not have a scheduling
application that computes a schedule. The users determine the schedules manually,
typically on a white board, and then enter it in the computer to validate it and to print the
official schedules that get signed by the commanding officers. The maintenance

 3

schedules are kept on white board and paper and never entered in a computer.

2.1.3 The Logistics Challenge Goal

The goal of the logistics challenge is to automate the production of the operations and
maintenance schedules. The payoff is large because developing the schedules by hand is
labor intensive and time consuming (typically 6 hours for a weekly operations schedule),
and little time is left to explore alternatives and to deal with often changing requirements.
In addition, producing schedules that extend beyond a week is infeasible, resulting in
commanders having limited ability to forecast the consequences of taking on new
commitments (e.g., can you participate in a week-long exercise at the beginning of next
month and still make your deployment commitments 6 months from now?)
The University of Southern California Information Sciences Institute’s CAMERA project
focused on the operations side of the logistics challenge problem. Vanderbilt University’s
sister project - also funded by the Defense Advanced Research Projects Agency’s
(DARPA’s) Autonomous Negotiation about Targets (ANTs) program - focused on the
maintenance side of the problem. The two institutions collaborated to build a coordinated
solution to the integrated operations/maintenance logistics challenge problem.
This report focuses on the operations aspect of the challenge problem.

2.2 The Operations Problem
We describe the operations side of the logistics challenge in terms of the goals that
commanders can specify, in terms of the objective functions that define the score of a
schedule, the resources and tasks, and constraints that define the scheduling problem.
Screen-shots of the Schedules Negotiated by Agent-based Planners (SNAP) flight
scheduling application are included to show how the different aspects of the problem are
handled in the application. The next sections will discuss the underlying CAMERA
negotiation technology.

2.2.1 Goals

The following list of goals is not a complete list of all the goals that commanders would
like to state. The list contains the goals that the challenge problem focused on.
Acquire qualification: A goal for a pilot to acquire a specific skill such as night systems,
or carrier operation. Each skill requires the pilot to fly a specific sequence of mission
codes with an instructor pilot who is qualified to evaluate performance, e.g., Jones gain
night systems qualification.
Figure 1 shows the SNAP screen where operators can define the qualification goals for
pilots.

 4

Figure 1: Defining the qualification goals for pilots

Achieve and maintain core competency: Pilots achieve core competencies such as air-
to-air or air-to-ground by flying a specific sequence of mission codes. Because
competency degrades with time, pilots must periodically fly specific subsets of the core
competency codes to maintain their competency. Commanders can specify goals for
certain pilots to achieve certain core competencies during a period.
Figure 2 shows the screens for defining core competency goals (also referred to as
squadron foci). The screen shows the level to which different pilots have achieved
competency in a particular skill (Low Altitude Tactics). SNAP shows whether pilots are
current on a training code (green cells), whether their skill on a training code has expired
(red) and whether they don’t have a particular skill, but are eligible to obtain it (white
cells). The operator can request that a certain number of sorties on the schedule be
devoted to improve a skill, and the system will automatically schedule sorties to refresh
or obtain skills as required.

 5

Figure 2: Defining a squadron focus and allocating focus sorties to individual pilots

Fulfill specific sorties: This goal specifies that the squadron must send a specified
number of aircraft with pilots capable of flying specific missions to specified locations
and at specified times. War-time sorties are examples of this goal. E.g., 2 close air
support aircraft at 12:30 am at 29 Palms.
Figure 3 shows a screen shot of the Operational Planning screen where the operator can
define these sorties. The screen shows that the user has defined 4 such sorties, and is
editing the first one.

 6

Figure 3: Entering “FRAGs”, Wing-ordered training or war-time missions

Schedule a given number of sorties: Commanders can specify that a certain number of
sorties be flown during a period, e.g., fly 100 sorties next week.
Schedule a given number of sorties per pilot per period: Specifies the desired number
of sorties that specific pilots should fly during specific periods, e.g., Smith to fly 5 sorties
per week. Typically flying less is bad, and flying more is wasteful.
Minimally modify an existing schedule to repair a schedule with respect to changes
in resources or requirements: Specifies that a new schedule should be as similar as
possible to a given schedule.
Figure 4 shows a screen shot of the display where operators can specify the last three
types of goals (in addition to variations of these goals). Each row corresponds to a
separate goal (also referred to as an objective). The table at the right of the image shows a
history of how well different versions of the schedules satisfy the goals. In this example
the operator is getting close to a satisfactory schedule. The schedule contains 2 more
sorties than desired, and one pilot is flying too much.

 7

Figure 4: Fine-tuning scheduling preferences in the Metrics screen

2.2.2 Objective Function

The objective function is a linear combination of metrics that specify how well each goal
is achieved. Each goal is scored using a piece-wise linear function that specifies how
good it is to obtain a certain quantity of something. For example, an objective function
for the number of sorties goal could be specified as follows: flying 0 sorties gives a score
of 0, flying 90% of the sorties gives a score of 0.5, and flying 100% gives a score of 1.
The score of a schedule is specified as a linear combination of the score for each goal.
Note: in the implemented system, the user interface did not allow users to give numeric
weights. Instead we offered the values "require", "prefer" and "don't care", which were
defined in such a way that all the "prefers" weighed less than a single "require" (see
figure above).
One of the lessons learned in the logistics challenge problem is that it is very difficult for
users to specify an objective function that captures all the issues they care about. We
found that it was only after seeing a solution that users would think about trade-offs that
would be impractical to specify in advance (e.g., I'll accept having Jones fly 8 rather than
5 sorties if that is the only way I can get Smith's night systems qualification done).

 8

2.2.3 Resources

The following is a list of the resources involved in producing operations flight schedules.
Pilots: A pilot's ability to participate in a task depends on the qualifications that the pilot
has acquired. The set of qualifications that pilots have changes dynamically: as they
participate in tasks they acquire new qualifications and as time goes on they may lose
qualifications if they don't participate in tasks that refresh them. A typical squadron has
24 pilots.
The information about pilots is read in from a legacy database that the Marines use daily
to update the pilot currencies after each day of flights. The information that SNAP uses
includes the qualifications that each pilot has, and the last performance date of each
training code. Figure 5 shows an excerpt of a report that SNAP produces after it reads the
data from the legacy database.

Figure 5: Pilot currency information extracted from a legacy database

Figure 6 shows a screen shot for viewing and specifying pilot information. The screen
shows a timeline of activities for each pilot, including times of unavailability or
SNIVELs (shown in tan), goals (shown in blue) and flights (shown in green). These

 9

screens allow operators to specify information that is not currently captured in the legacy
database.

Figure 6: Viewing pilot schedule information in a time-line display

Aircraft: There are two types of aircraft, radar and night, and they can be used only for
specific mission codes. A typical squadron has 16 aircraft.
Ranges: The places where missions are performed (e.g., dropping bombs, participating in
air-to-air combat training). Different ranges are suitable only for specific mission codes.
Suitability is defined using a preference ranking (e.g., large ranges are better for air-to-air
combat). There are about 30 different ranges available to a squadron, but availability is
very limited.
Simulators: Training on simulators is often required prior to actual flights. Different
types of simulators are available for different training codes.
Sun light and moon light: Some mission codes can be performed at any time of the day,
some can be performed only during the day and some during the night. In addition, some
of the night codes require a certain amount of moon light and others require very low
levels of light. Light level imposes interesting constraints because missing a moon cycle
for performing a certain mission code may mean that the mission can only be performed
several weeks later.

 10

Sortie cycles: Conceptual resources that limit the number of flights to be performed
during specific periods of a day. For example, 4 flights in the morning and 4 flights at
night.
Figure 7 shows the Framework screen with summary information about ranges,
simulators, sun light and moon light and sortie cycles. The sun light and moon light is
shown in the Fly Days row. The green rectangles correspond to the hours of the day when
flight operations will be conducted. The dark gray areas correspond to periods of
darkness (less than 0.0022 LUX) and light gray areas correspond to periods of
appropriate moon light (more than 0.0022 LUX) – in Figure 7 moon light is only
available early Monday morning, which means that certain training codes can only be
practiced during about a half hour period during the whole week.

Figure 7: The overview screen for lighting, sortie cycles, and resources

2.2.4 Tasks

The tasks specify the activities that appear in the schedule. There are 3 types of tasks: on-
base activities, simulator training and flights. On-base activities such as serving as
operations duty officer involves booking a pilot qualified for that activity for a specific
period of time. Simulator training involves booking a simulator, the pilot serving as the
trainee and an instructor pilot. Flights are the most complex tasks, because they have rich

 11

internal structure and involve all the resources.
The structure of a flight is defined in terms of the number of aircraft that participate in the
flight, and in terms of a number of flight segments that specify at what points during the
flight the different resources are needed.
• Number of aircraft: Although in general flights may consist of an arbitrary number

of aircraft, the challenge problem focused on flights consisting of up to 4 aircraft.
Most flights consist of two aircraft, and are called sections.

• Segments: The segments of a flight specify what is happening during the flight. A
flight consists of a briefing segment, a number of flight segments, an optional stop for
refueling followed by more flight segments, and finally a debriefing segment. Flights
typically consists of 3 flight segments, one to go to the range, one to perform a
mission code at a range, and one to come back from the range. Segments have a
specified duration.

The structure of a task is shown in Figure 8, which shows the segments and the resources
that participate in a task. The segments are shown as a time line at the top of the image.
Each segment has a name and duration. For example, the first segment is the “brief”
segment during which the pilots attend a briefing on the mission they are about to
perform. Its duration is 120 minutes. Each row in the image represents a resource that
participates in the task. The first two rows labeled “Lead” and “Wing” represent the
pilots. The green bars represent the segments during which resources are needed. For
example, the pilots are needed during all segments, whereas the aircraft are needed only
after the briefing segment.

Figure 8: The interactive time-line display for fine-tuning mission segments

Resources participate in flights as follows:
• Pilots: Pilots are needed during all segments of a flight, starting with the briefing and

ending with the debriefing. For each pilot, the segments are tagged with the mission
code that the pilot will be performing during that segment. For example, the pilot in
position 1 will be performing mission code 237 in the at range segment before the
refueling stop, and participating in mission code 280 in the at range segment after the
refueling. The pilot in position 2 may be performing different mission codes, and so
on.
In order to assign a pilot to a given position, he or she must have the minimum
qualifications to perform the mission codes defined in all segments for that position.
In addition, if a pilot is only minimally qualified to perform the mission codes in a
position, one of the pilots in the other position must posses additional qualifications.
In addition, one or several of the pilots in the flight must also posses certain

 12

leadership qualifications (e.g., section leader). Light restrictions may impose further
constraints on the qualifications because a pilot may be fully qualified to fly a mission
in high light, but only minimally qualified to fly it in low light. This means that
selection of pilots and selection of the time to fly a mission cannot be done
independently.

• Aircraft: Aircraft are needed for all segments except for the briefing and debriefing.
The challenge problem focused on scheduling of Harrier jet operations (AV8B),
which are single seat aircraft.

• Ranges: Ranges are needed only for the segments where mission codes are being
performed. The range must be suitable to perform all the mission codes listed in all
positions during a given segment.

• Sun light and moon light: The light requirements for all mission codes must be
satisfied. This sometimes creates tricky situations where the mission codes before a
refueling stop are daylight codes and the ones after are night-time codes. This means
that flight can only be scheduled around the sunset of days when moon conditions are
appropriate.

• Sortie cycles: The sortie cycles are needed for all segments except for the briefing
and debriefing.

2.2.5 Inter-Task Constraints

The previous section discussed the constraints that specify the required relationships
between the resources that participate in a task. There are additional constraints that
define relationships between tasks.
• Pilot qualifications: As mentioned before, pilots can gain qualifications after

participating in certain tasks, and can lose qualifications if they don't perform certain
tasks within certain periods. This means that in order to select pilots for a task it is
necessary to consider potential selections for other tasks. For example, if Smith has a
goal to fly mission code 281, but he has not flown 280, then it is necessary to select
Smith in a task that has mission code 280, and that task must be scheduled prior to
Smith's 281 task.

• Crew rest and crew day: There are many crew day and crew rest constraints. Pilots
must fly less than a certain number of sorties and flight hours per day (the limits are
different if they fly night missions). In addition, pilots must not be at base more than
10 hours every day, they must rest at least 8 hours between days, and the sleep pattern
must not slide more than 2 hours per day (all the numbers are parameters that users
can set). These constraints tie together the tasks in a very perverse way. For
example, selecting Smith to fly early in the morning on Monday may result in him
not being able to fly a night code on Wednesday, which may result in him not
acquiring a qualification he needs on Thursday.

• Location: Flights may end in a different location from where they started. This means
that the pilots and aircraft that participate in the flight will be at a new location. The
scheduler must ensure that critical resources are scheduled in new tasks that take
them to other locations where they are needed at critical times.

 13

2.3 Producing Schedules
The previous section introduced the operations side of the logistics challenge problem by
describing the elements that define the problem to be solved: the goals, objectives,
resources, tasks and constraints. This section describes how the system solves the
problem from the user’s point of view. The next section describes the under-the-hood
view of the system.
From the user’s point of view, producing a schedule involves the following steps:
1. Specify the problem. In order to specify an operations problem users must specify

the goals they want to achieve, and the resources available. They can ask the system
to automatically generate the tasks to achieve the goals, and they have the freedom to
add additional tasks, edit the tasks generated by the system, or delete generated tasks.

2. Run the scheduler. Once users specify the tasks they want to have on the schedule,
they need to run the scheduler to have the system assign resources to the tasks and
have the system determine the times when the tasks can be performed.

Figure 9 shows the screen where users manage the four different types of goals they can
enter in the system (Wing FRAGs, Pilot Builds, Squadron Focus and Committed Events).
The example screen shows that the user has entered 5 pilot build goals. The user can ask
the system to automatically generate the tasks to achieve these goals by clicking on the
Create Missions button at the lower right corner of their screen.

Figure 9: Managing high-level operational planning goals

Figure 10 shows the results after clicking on the Create Missions button. The tasks with a
little yellow light-bulb icon are the ones that the system generated automatically in order
to satisfy the goals. The other tasks are additional ones that users added to the schedule.

 14

Figure 10: CAMERA-generated missions for the high-level goals

Once users are satisfied with the list of tasks, they have completed step 1 (Specify the
problem) and are ready to perform step 2 (Run the pcheduler). To run the scheduler, they
click on the “Run SNAP” button at the top of the screen.
Figure 11 shows the results of running the scheduler. Scheduled tasks are marked with a
green icon, whereas tasks that the system was unable to schedule are highlighted with a
red X. Also, the resources and times that the system assigned to the tasks are shown in
green. Users are free to override any system decision by selecting a task and invoking the
task editor.

 15

Figure 11: The resulting overall schedule (system choices are in green)

When a task fails to schedule, the user has to go back to step 1 (Specify the problem) to
modify the problem so that the solution that the system can produce is satisfactory for the
user. We call this iterative step problem reformulation.
There are typically many ways to reformulate a problem to achieve a satisfactory
solution. The choice depends on the trade-offs that users are willing to make. Users can
make more resources available, they can override certain constraints that prevent a task
from scheduling (e.g., in the previous image the user waived the light constraints on the
first task, as indicated by the moon and stars icon), they can change priorities, they can
scale back their goals, etc. The system provides extensive editing capabilities that allow
users substantial freedom in reformulating their problem.
When a task fails to schedule, the user can invoke the task feasibility display to
understand why the task failed to schedule and what could be done to allow it to
schedule. Figure 12 shows the feasibility display. It contains a row for each resource
requirement of a task and for the constraints that it must satisfy. The planning horizon for
the schedule is shown horizontally. Each point on the horizontal axis represents a
potential start time (e.g., take-off time of a flight) for a task. The green bars in a row
represent possible task start times when resources listed in that row and the rows above

 16

are available. A red bar appears in a row when that row is the first row that causes some
possible start times to be eliminated. The blue bars represent the start times when a
particular resource is available. For example, the first row has uninterrupted blue and
green bars. This means that the Mission Specified Time does not restrict the start time of
the task at all. In other words, the user left the start time open. The second row
corresponding to Fly Day Times has smaller blue bars. This is because the Fly Day
specifies the times of day when flight operations are to be conducted and thus only start
times that allow a task to start and end within those hours are allowed. The red bars in the
Fly Day Times indicate possible start times that got eliminated because of the Fly Day
restrictions. Similarly, going down the display it is easy to see that no pilot was available
to fill the Lead position of the task until sometime late on Thursday. The Lead eliminated
all possible start times on Monday through Thursday, and allows start times only on
Friday, Saturday or Sunday. Looking further down in the display one can see that the task
did not get scheduled because no appropriate ranges could be found (see last row).
The feasibility display is very powerful. For example, one can see that in order to
schedule the task earlier during the week several things need to happen (in addition to
making an appropriate range available). Wednesday is bad because no appropriate pilots
can be found to fill the Lead or Wing positions. Tuesday is a good possibility because
only the Lead is missing. Monday would work too, but might be harder to pull off
because Wing pilots are only available for part of the day.

 17

Figure 12: Understanding scheduling possibilities via the feasibility display

In practice, producing a satisfactory schedule often involves several reformulations. 10
reformulations for a weekly schedule is typical. Given that the scheduler can compute a
weekly schedule in about 1 minute, the process can be completed in 15 to 20 minutes (it
takes about 6 hours to complete a schedule without the system).
Once all tasks are scheduled as desired, the user can use the Schedule Editor to fill in the
details of each task (ordnance, external support, remarks, etc). Figure 13 is a screen shot
of this editor.

 18

Figure 13: Fine-tuning details of sorties

Finally, users can publish the schedule on a Web server and print it for official signature.
Figure 14 shows a photo of the first schedule produced with the system that was signed
by a squadron commander and executed. The date on the schedule is August 14, 2002.

 19

Figure 14: The first CAMERA-produced daily schedule as signed and flown

3 Technical Achievements and Insights
The CAMERA project produced the following technical achievements:
1. Open architecture for hybrid solvers
2. Integration of planning and scheduling
3. Making solutions understandable to end users
4. Handling of complex, ad-hoc constraints present in real world applications
5. Solving computationally intractable problems via kernel sub-problems
6. System of system coordination

The following sub-sections describe each of these achievements in detail.

3.1 Open Architecture for Hybrid Solvers
In recent years work on problem solvers has been able to produce high quality generic
problem solvers that can solve large computationally difficult problems in diverse areas

 20

such as scheduling, planning, circuit verification and VLSI design. The input to these
solvers is a standard, domain-independent representation such as mixed integer linear
programming, 0/1 integer programming, or Boolean satisfiability and constraint
satisfaction. To use such solvers, a problem is first encoded in one of these formalisms,
then an off-the-shelf solver is applied to the encoded representation, and finally the
solution is decoded to produce a solution to the original problem.
The CAMERA work made it clear that military problems such as scheduling flight
operations are so complex that they cannot be effectively solved using any single off-the-
shelf solvers. Military problems contain a diverse set of features and constraints. The off-
the-shelf solvers can effectively address some of the features and constraints, but not
others.
The main technical achievement of the CAMERA project is a hybrid solver architecture
that allows several off-the-shelf solvers to be combined to solve a problem.

Figure 15: CAMERA’s Hybrid Solver Architecture

Figure 15 shows the main elements of the CAMERA hybrid solver architecture. Rather
than encoding a problem for a solver directly as traditionally done, in the CAMERA
architecture the problem is first reformulated to extract a sub-problem that can be
effectively solved using a specific solver. The solution from that solver is translated into
soft constraints, and those soft constraints are added to the original formulation of the
problem. The augmented problem is then solved using another solver. The key insight is
that those soft constraints allow the second solver to be more effective because they
provide information that allow the solver to reduce the search space for solutions. In
essence, the soft constraints tell other solvers where to look for solutions. The reason to
use soft constraints (i.e., constraints that the system is encouraged but not required to
satisfy) rather than hard constraints is that the reformulation step may ignore certain
features of the problem so that the first solver produces a solution that is not quite correct.
Because the soft constraints can be violated, the second and sub-sequent solvers are able
to recover from imperfect reformulations.
In the CAMERA project we developed one solver, the greedy solver. Other solvers were
either off-the-shelf, or developed by other ANTS contractors:
Greedy solver: developed by the University of Southern California’s Information

Distributed
solvers

Heterogeneous solvers
• SAT
• Pseudo-Boolean
• Finite domain
• Greedy
• Simulated annealing

Soft
constraints

 21

Sciences Institute (USC/ISI). This is the production solver in use with the fielded version
of the system. The greedy solver considers one task at a time, in priority order, and
allocates a time and resources that maximize the objectives defined by the user. Once a
task is allocated, the decisions are not revisited.
The benefits of the greedy solver are that it is fast (allocates about 1 task/second on a 2
GHz laptop), it respects all the domain constraints, and supports the feasibility display
that allows users to understand why the system made the decisions it made.
The main weakness of the greedy solver is that it is prone to making sub-optimal
solutions. When the greedy solver makes resource allocation decisions, those decisions
are made based on the current task and the tasks it has already allocated. However the
decisions don’t take into consideration the tasks that have not yet been allocated. This
means that the solver can select resources for the task at hand that prevent other tasks
from being scheduled.
In practice, this weakness is not a significant problem. In fact, it is the greedy nature (one
task at a time) of the greedy solver that makes the feasibility display possible (see section
2.3), and users find the feasibility display to be an indispensable part of the system.
Pseudo Boolean Solver: this solver consists of three parts: and encoder that encodes a
operations scheduling problem into linear inequalities using variables that can take values
0 or 1, and an equation solver that solves the inequalities, and a decoder that translates the
values of the variables back into the domain of flight scheduling.
The encoder and decoder parts of the Pseudo Boolean solver were developed by the
Automated Tools To Evaluate Negotiation Difficulty (ATTEND) project (also at
USC/ISI). We experimented with two solvers: one, the well known WALKSAT-OIP
solver, which is based on local search methods, and OPARIS (developed by the
University of Oregon – also an ANTS contractor).
The Pseudo-Boolean solver relied on the problem reformulation component of the
architecture. Before encoding a problem in the Pseudo Boolean format it was first
reformulated because the full complexity of a flight scheduling problem would produce
encodings with millions of variables and equations which are unsolvable with any
existing solver. The reformulation was parameterized and under user control:
• Time resolution: this reformulation changed the resolution of the problem from 1

minute to a coarser resolution (typically 30 minutes or 1 hour). When the resolution is
coarser, the solver has fewer decisions to make. In the case of the Pseudo Boolean
solver this manifests itself in significantly smaller encodings.

• Task resource simplification: this reformulation removes resources from
consideration. In our experiments we found that some resources are widely available
and they can be ignored when computing the start times of the tasks. Because they are
plentiful, they can be allocated after the start times have been computed.

• Constraint simplification: this reformulation removes some constraints from
consideration. Real world applications such as flight scheduling includes many
complex legality constraints to enforce important, yet infrequent situations during
scheduling (e.g., pilots who have not flown for 15 days must perform a simulated

 22

mission before flying). These constraints can be ignored during the production of the
schedule and later enforced by tweaking the resulting schedule. Ignoring these
constraints during scheduling makes the problem significantly easier (less variables
and constraints), and the hybrid architecture allows a simpler, local repair solver to
enforce them.

The encodings of weekly schedules produce very large numbers of variables and
inequalities (upwards of 50,000). The simplifications allow the Pseudo Boolean solver to
produce weekly schedules at 1 hour resolution. The Pseudo Boolean solver considers all
tasks simultaneously, and thus does not have the shortcomings of the greedy solver
(making early decisions that prevent other tasks from being scheduled).
The Pseudo Boolean solver, as many other advanced solvers, has the weakness that the
solutions it produces are hard to explain to users. If a task does not get scheduled, the
solver does not provide any information about why this happened. Given that it has
considered potentially millions of combinations, it is hard to extract a succinct reason
why certain decisions were made. However, the hybrid architecture greatly ameliorates
the problem because the greedy solver can be run after the Pseudo Boolean solver (or any
other advanced solver), and it can produce a feasibility display that conveys a partial
picture of why tasks were scheduled they way they were.
Simulated annealing solver: this solver developed by ALTARUM (ANTS contractor) is
an iterative repair solver that works by starting with a partial solution to a scheduling
problem and iteratively refining it. This solver was integrated into the CAMERA
architecture, and we demonstrated how it can be used to effectively repair solutions after
users make minor modifications to the inputs.
Market-based solver: this solver uses an auction based protocol for scheduling tasks.
The basic idea is that tasks bid on resources, and the highest bidder wins the allocation of
the resource. This solver was developed as part of an AFOSR grant, and also integrated
into the architecture. This solver also offered useful schedule repair capabilities.

3.2 Integration of Planning and Scheduling
Another example of the complexities of real world applications is that the flight
scheduling application is not a pure scheduling application. In scheduling applications the
input is a set of tasks and resources, and the problem is to compute the start times and
resource allocations for each task. In the flight scheduling application had two features
that bring in planning aspects into the scheduling application, which greatly increase the
complexity of the problem.

3.2.1 The "Create Tasks" Problem

The operations scheduling problem is a planning and scheduling problem. The goal
statements (e.g., achieve night systems qualification for Smith) specify what needs to be
done, whereas the tasks specify how it will be done. The challenge problem requires

 23

creating the tasks and scheduling them. For example, to achieve the night systems
qualification for Smith, he must fly mission codes 280 and 281. This could be done with
one task with a refueling stop such that 280 is done before the refueling and 281 done
after. It could be done with two tasks without a refueling stop, and in fact, could be done
in other kinds of tasks.

One simple approach to solve this problem is to have a "create tasks" phase that creates
tasks to meet the goals, followed by a scheduling phase that schedules the tasks. Of
course, the difficulty is that the scheduling problem could be made much easier if a
different set of tasks had been generated. However, without the information gathered
during scheduling it is not possible to determine which tasks make the scheduling
problem easier.

Alternative approaches are to interleave task creation and scheduling, or to do both
things at the same time. The difficulty here is that the search space becomes much larger
because it converts a scheduling problem into a planning and scheduling problem.

The solution to the challenge problem used the first approach even though it
sometimes led to unscheduled tasks and obviously sub-optimal solutions. However, the
system gave users the ability to overcome the problem by allowing them to edit the tasks
to re-structure them to be more amenable to the scheduler. In typical schedules users only
had to do this a few times.

The maintenance scheduling problem that Vanderbilt University worked on faced a
similar problem. Given a flight schedule, the maintenance tool would assign aircraft to
flights, making assignments to maximize the number of flights that could be supported.
Once aircraft are assigned to flights, the tools can forecast the flight hours for each
aircraft and create the tasks to perform maintenance on the aircraft. Again, the aircraft
assignments were done without consideration of how it affects scheduling of maintenance
on the aircraft. This sometimes resulted in unscheduled tasks or sub-optimal solutions.
The solution here was also to let the user edit the aircraft assignments to make the
maintenance scheduling easier.

3.2.2 The Enablement Problem

The enablement problem is similar to the "create tasks" problem in that it brings
planning aspects into the scheduling problem. The enablement problem concerns
qualifications that pilots gain by participating in tasks and qualifications they lose from
not participating in certain tasks. We called it the enablement problem because
participating in certain tasks enables pilots to participate in others. If participation in task
T gives a pilot a qualification to participate in task S, then if the system wants to select
that pilot for both S and T, then task S must be scheduled after task T. The difficulty is
that the relationship between tasks S and T is dynamic in the sense that it depends on the
assignment of pilots to the tasks: if a pilot is already qualified to participate in both S and
T, then those two tasks can be scheduled in any order.

 24

The enablement problem is significantly easier than the "create tasks" problem because
it does not change the structure of the tasks. The problem was solved in two different
ways.

The ISI/Cornell collaboration produced a solution based on a Pseudo-Boolean
encoding of the problem where the system automatically figures out both pilot
assignments and timing of tasks when it is optimizing the number of scheduled tasks.

The ISI team solved the problem in the greedy solver to provide a fast solution to the
most common cases. The most common occurrences of the enablement problem are in
the tasks generated to satisfy qualification build goal and in the tasks to achieve new core
competencies. In those tasks, one of the pilots is always known, i.e., the pilot assignment
is constrained to have a single value. This allows the greedy scheduler to sort the tasks in
enablement order so that if tasks T enables task S, the scheduler first schedules task T and
when it schedules task S, it can select the start time of S to be after the end time of T.
This simple approach covers the most common cases although it can lead to sub-optimal
solutions. For example, when scheduling task S the greedy scheduler does not consider
task T, so it doesn't know not to delay task S (e.g., to optimize another objective such as
range preference) in a way that task T is squeezed out of the schedule.

3.3 Making Solutions Understandable To End Users

Understandability refers to the users' ability to understand why tasks were scheduled
the way they were, and most importantly, why an allocation they had in mind had not
been done. In schedules with short planning horizons users would often edit the tasks to
add specific constraints such as specifying both pilots. The additional constraints made
the problem harder to solve, often resulting in tasks not being scheduled. In those cases,
users wanted to know why their tasks had not been scheduled.

In general, such questions are very hard to answer succinctly because there are a large
number of constraints that affect the allocation of a task, and the chains or reasoning can
be long. The solution to this challenge takes advantage of the simplicity of the greedy
solver, and the ability of the greedy solver to essentially hide from the user the
sophistication of the pseudo-Boolean solver when using the 2-phase solver.

The why, and why not questions are answered using a feasibility display that shows all
the possible times when the resources that can participate in a task are available. The
display cleverly arranges the timeline for each resource and each constraint class so it is
easy for the user to see which resource or which constraint prevents a task from getting
scheduled during all times in the planning horizon. The users learned how to use this
display, and were able to solve almost all scheduling questions using it.

The feasibility display relies on the sequential nature of the greedy solver in that the
ability to schedule a task depends only on the tasks that have been scheduled so far. This
means that the feasibility display does not work for solvers that do backtracking. The 2-
phase solver enabled a compromise in that the feasibility display is built from the results
of the greedy solver which runs after the more sophisticated pseudo-Boolean solver. The
result is that the feasibility display shows only one of the reasons why something didn't

 25

happen (based on the reasoning abilities of the greedy solver), but that is enough to let
users fix problems. Without the feasibility display users were unable to fix scheduling
problems, and thus were unable to use the system to solve practical problems.

3.4 Handling of Complex, Ad-Hoc Constraints Present In Real
World Applications
The flight scheduling application featured many ad-hoc (application-specific) constraints
that were difficult to represent in a generic way, and that were difficult to encode in the
generic formalisms of the off-the-shelf solvers.
Most of these constraints capture safety and legality issues. The hybrid architecture
provided an approach to deal with these constraints. The approach involved ignoring the
constraints that are triggered infrequently during the early stages of scheduling, and
enforcing them during the last stage of scheduling. This was done in the problem
reformulation component of the architecture where problems were reformulated to ignore
or approximate these constraints. This gave the advanced solvers more tractable
problems. In the last phase of scheduling, the solution of the advanced solvers was
converted into soft constraints and added to the original problem that contained the
difficult to handle constraints. The greedy solver, with the help of the soft constraints
avoided the usual pitfalls of making early incorrect decisions, and at the same time
enforced all constraints, often repairing the solutions from the advanced solvers to meet
the constraints that had been previously ignored.

3.4.1 The Crew Day and Crew Rest Problem

The crew day and crew rest constraints pertain to pilots, and essentially enforce that
pilots get enough rest every day. They are parameterized with respect to the length of the
work day and time of last landing, with respect to the number of hours of rest and the
shift of sleep patterns from day to day.

Crew day and crew rest constraints cannot be ignored during the reformulation phase
of problem solving because they affect every pilot allocation to a task.

In the greedy solver 50% of the time was spent evaluating the crew day and crew rest
constraints in order to compute the time intervals when these constraints allowed pilots to
fly. The problem is that the solver invokes this computation each time it considers a time
point for a pilot because for each proposed time it must figure out if there is a way to
arrange the work and rest patterns of the pilot to make them consistent with all other
activities the pilot has in the schedule. The ISI team is considering less sophisticated
algorithms that would miss some of the more creative solutions, but would be
significantly faster.

In the pseudo-Booelan solver the number of variables and constraints devoted to
encoding these constraints are 3 times more than the variables and constraints used to
encode the rest of the problem.

 26

In both solvers, the parts of the solver that address these constraints were written
several times and significant development time was spent just on this aspect of the
system. Even though crew day and crew rest are just one of the constraints in the logistics
problem, it was important to address them thoroughly because these constraints are
critical to safety. A general, fast solution to this type of constraint remains an important
unsolved problem.

3.5 Solving Computationally Intractable Problems Via Kernel
Sub-Problems
Our experiments with the hybrid solver architecture revealed that the large flight
scheduling problems often contain a small kernel sub-problem that captures the essence
of the original problem. Once the small kernel problem is solved, it is easy to find a
solution to the much larger original problem.
Figure 16 illustrates the kernel sub-problem idea in the context of difficult 3-day surge
scheduling problem. The problem is difficult because a surge schedule contains a large
number of tasks, but not a larger number of resources so that finding a solution is
significantly harder. For example, the greedy solver was able to schedule only 18 of the
21 tasks. The chart shows that if one desires a high fidelity solution (4 minute resolution),
the Pseudo Boolean encoding would contain half a million variables and over a million
constraints. This is too large for even the most sophisticated solvers. Problem
reformulation can simplify the problem significantly. The chart shows that by reducing
the time resolution the number of variables and constraints is reduced very rapidly. This
moves the problem away from the region of problems that are too complex to solve.
However, reducing the time resolution beyond a certain point produces a reformulation of
the problem that is too inaccurate. This means that once the reformulated problem is
solved, the soft constraints generated from its solution are too weak to effectively guide
other solvers towards a solution to the original problem. The result is that the later solvers
are not better off, and in fact the soft constraints end up misguiding those solvers and
making their job harder.
The lower curves in the chart show the complexity reductions achievable by ignoring
resources and simplifying constraints. In the example shown, the best kernel problem
involved changing the time resolution to 30 minutes and ignoring the range constraints.
The blue arrow shows that the original problem could be simplified into a kernel problem
that contained less than 30K variables. The Pseudo Boolean solver was able to solve the
kernel problem in 3 minutes, and the greedy solver was able to use the soft constraints
generated from that solution to solve the original problem in about 30 seconds, taking
into account all constraints and resources, and producing a solution to a 1 minute
resolution.

 27

Figure 16: Reducing complexity by solving a kernel sub-problem

3.5.1 Short and Long Planning Horizons

The logistics challenge called for computing daily, weekly and monthly schedules, all
with the same level of detail. The technical challenge was to produce scheduling
algorithms that scale linearly with the size of the planning horizon. The greedy scheduler
is almost linear with the size of the planning horizon because it schedules one task at a
time and does not backtracking. The pseudo-Boolean solver is not linear with the size of
the planning horizon because its complexity is not linear with the number of tasks, and
the number of tasks grows linearly with the size of the planning horizon. The greedy
solver computed daily schedules in a few seconds, and monthly schedules in about 5 to
10 minutes.

Even though the 2-phase solver offers the opportunity to address long planning
horizons by discretizing long planning horizons very coarsely (say to 6 hours), this was
not tried because coarse discretizations should be conceptually different from fine-
grained discretizations. For example, crew day and crew rest make no sense when
discretized more coarsely than the amount of shift allowed between adjacent crew days
(typically 2 hours). In that case, crew day and crew rest constraints should be replaced by
capacity constraints, that for instance, limit pilots to fly twice a day. There was no time to
implement such problem reformulations.

 28

3.6 System of Systems Coordination
The flight scheduling problem is only one part of the problem of producing a viable flight
schedule. The other part involves ensuring that aircraft maintenance can be arranged to
support the flights in the schedule.
A CAMERA sister project at Vanderbilt University addressed the maintenance aspect of
the problem. USC/ISI and Vanderbilt University collaborated to address the coordinated
operations/maintenance problem. The issue is to compute a flight schedule and an aircraft
availability forecast such that it supports the flight schedule. This comes about in the
following way:
1. Operations uses an estimate of the available aircraft to produce a flight schedule.
2. Maintenance produces an aircraft availability forecast based on the flight schedule.
3. Operations verifies that the aircraft availability file supports the flight schedule, i.e.,

no changes to take-off times are needed.
4. If the aircraft availability forecast forces changes to the flight schedule then repeat the

cycle, i.e., go to step 1 and use the new availability forecast as a revised estimate.

If operations makes any changes to the flight schedule, then the cycle must be repeated
until it is verified that maintenance can support the flight schedule. If maintenance needs
to change the forecast, the cycle must also be repeated to verify the new forecast supports
the flight schedule.
As mentioned before, in the end the squadron is better off when operations produces
more maintainable schedules. This means that the scheduling of flights is made sensitive
to maintenance requirements. This defines a spectrum of possibilities: in one end of the
spectrum (full sensitivity), the operations and maintenance problems are solved as a
single larger problem; at the other end of the spectrum (no sensitivity), the problems are
solved independently and only the results are exchanged between the parties. In the full
sensitivity mode steps 1 through 4 wash out into a collection of constraints that tie the
requirements together. In the no sensitivity mode the steps 1 through 4 are done with the
results of the schedulers and repeated until convergence is reached. In the middle points
of the spectrum operations and maintenance exchange additional information than just
point solutions (e.g., ranges of take-off times) and repeat the cycles incrementally (e.g.,
for single aircraft rather than for all aircraft at a time).
During this project only the no-sensitivity mode was explored. The operations scheduler
produces a fully detailed flight schedule. The maintenance scheduler user the fully
detailed flight schedule to produce a single aircraft availability forecast (i.e., with no
what-ifs), and steps 1 through 4 were repeated until convergence was reached. Even
though this was a very simple solution, the outcome was much better than the pre-
existing way of doing business, which involved coordinating the schedules by talking on
the phone.

3.7 MARBLES Market-Inspired Negotiation
We also investigated market-inspired negotiation algorithms in the context of an

 29

idealized version of the flight scheduling problem. These algorithms are distributed in
nature and can in principle also be applied to, say, robotic soccer players or Unmanned
Combat Air Vehicles (UCAVs). These agents can act individually but are better off
coordinating with their peers. A subset of this problem is distributed real-time resource
allocation – deciding under time pressure which soccer player will take the final shot on
the goal, or which UCAVs will neutralize a newly discovered enemy threat.
There is a spectrum of approaches for distributed real-time resource allocation, ranging
from no communication at all (physics-based approach: agents observe each others’
behavior but do not explicitly communicate, much like a wolf pack closing in on prey) to
communication of the full rationale of behavior (argumentation approach: agents back up
requests to others by an argument of why they should grant it).
In this continuum, our Marbles schemes and other “market-inspired” approaches fall in-
between. Compared to a purely physics-based approach, they obviously use more
messages yet also explore a more complex set of alternatives. Compared to the
argumentation approach, they exchange messages of smaller complexity, yet the prices
set by supply and demand can possibly communicate rationale in an alternative, more
compact fashion, and potentially steer the group of agents to sensible behavior via “the
invisible hand of the market”.

3.7.1 External Marbles Scheme Properties

“Marbles” schemes1 are a family of resource allocation algorithms that are characterized
by the following properties:
Distributed. Each task only knows about its local requirements, and communicates with
potential resources for those requirements exclusively through messages. Hence, each
task and each resource can – but does not have to – be located on a different machine.
Cooperative. Marbles schemes are not designed to tolerate malicious participants, which
distinguishes our research from work on e.g. electronic commerce and automated
auctions; we believe that security against external attack of cooperative negotiation
schemes is best located at a lower level (such as the message transport and encryption
level). The cooperative nature of the negotiation also means that tasks participating in
resource auctions can altruistically commit suicide by permanently withdrawing, and
therefore lowering resource prices that possibly help others succeed. The distributed
algorithms for concluding that tasks are unlikely to succeed further distinguishes our
work from work on competitive auctions.
Adaptive. A Marbles scheme can adapt a current partial solution to a new situation rather
than having to re-compute the new solution from scratch. This makes them applicable in
cases where “the world can’t stop while a solver computes a solution for everyone”, that
is, in cases where the time interval between situation changes is smaller than the total
running time of a non-adaptive centralized solver.
Real-Time. The individual negotiation participants should be explicitly aware of time and
adapt their behavior based on how much time is left.
Fault-Tolerant. A Marbles scheme should be robust against a set level of message loss, in

1 The name is not an acronym, a team member likened the agent behavior to “kids trading marbles” in an

early design discussion, and the name stuck.

 30

the sense of being able to make statements like “given an average message delay of 2
seconds and a message loss rate of 5%, this negotiation has a 99% likelihood of
concluding in less than 3 minutes”. Obviously, no message-based scheme can ever be
robust in the sense of making a 100% real-time response guarantee if there is a non-zero
chance of a message getting lost.

3.7.2 Internal Marbles Scheme Properties

We further characterize Marbles scheme by their “internal” properties; that term is
accurate in the sense of being more linked to our approach than the above “external”
ones. However, these choices do “shine through” to the user level, so the distinction
between external and internal is not as sharp as it may sound.
Domain-based task valuation. Marbles schemes put a value on the execution of tasks that
is quantitative and that has meaning to domain practitioners.2 The value of resources is
exclusively derived from the value of the tasks they enable; they have no intrinsic domain
value of their own.
Lack of inflation. We do not allow inflation (the artificial introduction of currency not
backed up by domain value during negotiation) because the overall solution can
otherwise not be verified in domain terms. For example, imagine that a negotiation
scheme introduces inflation by increasing the value of tasks the longer they go unfilled
during negotiation: consequently, the basis of the proposed overall solution cannot be
analyzed by a domain expert without understanding the negotiation algorithm. Thus, the
problem with mixing intrinsic task value and negotiation-scheme-dependent artificial
“value” is that it would make the term “domain” currency meaningless.
Ever-fluctuating prices. In the prototypical open-outcry auction, participants bid until no
one wants to bid higher, and the highest bidder then owns the resource from that point in
time on. In contrast, Marbles schemes resources continually auction themselves -- the
auctions never “close”. That is, you can only be the current, not final, winner, of a
resource -- if the situation changes because, e.g., a new high-valued task appears you will
lose it.

3.7.3 Formal Problem Statement

Below we introduce the minimalistic problem statement that our existing Marbles
schemes operate on. In the future, we will continually expand the problem definition to,
e.g., be able to shift tasks in time, to introduce a notion of equity in resource use, and so
on, but the current problem already captures the essential challenge of distributed
resource allocation. Note that none of our existing Marbles schemes presented below
exhibits all of the desirable properties outlined in the Marbles Vision section; in
particular, none of them can make real-time response or fault tolerance guarantees yet.

2 For example, the value of executing a training mission in our Marine Corps application is measured in

“combat readiness percentage” (CRP) gain. For example, a pilot may gain 0.3% CRP from participating
in a mission. The Marbles schemes themselves are unaware of the meaning of that number - they simply
see a task of domain value 300 (we multiply Marines CRP by 1000 to convert it to an integer).

 31

Problem
There is a collection of available resources that are characterized by a unique name (and
nothing else). There is a collection of possible tasks that are worth a fixed domain value
if they are executed. They need to acquire one resource for each of their requirements to
be executed. Each resource can only be used for at most one task. Each task knows in
advance which resources are suitable for its requirements. (Thus, we neglect a prior
“resource discovery” phase.)
This problem is very complex if tasks have multiple requirements (“complementaries”
exist, in economic jargon) - it would be trivial if each task had just a single requirement.

Solution
A solution consists of an assignment of resources to requirements such that every task has
either none or all of its requirements filled. The quality of a solution is measured by the
sum of the domain values of its satisfied tasks; a higher sum indicates a better solution.

3.7.4 Running Example

We will use the following example depicted in Figure 17 to explain how the various
Marble scheme variants operate. There are four resources called A, B, C, and D. There
are two tasks called Q and R of domain value 300 and 100, respectively. Each of the two
tasks has two requirements that can be filled by the resources indicated with a triangle.
This particular example was chosen because it is small yet leads to backtracking behavior
if schemes assign resources to requirements from left to right (as they usually do). The
optimal solution of domain value 400 is obvious (Q gets A and D, R gets B and C).

 A B C D

1    Q
(300) 2 

1   R
(100) 2 

Figure 17: The running example problem

3.7.5 A Rough Taxonomy of Solvers

We will present a number of “solvers” – any piece of code that produces a solution given
a problem in the above terms. Our research interest is exclusively in fully distributed
resource allocation schemes, but we have also build a number of centralized solvers for
comparison purposes. In addition, some of our Marbles variants have so far only
addressed part of the challenge in a distributed way because we have not had the time to
make them fully distributed.
All Marbles solvers fundamentally perform two tasks: assigning resources to the highest-
bidding tasks (“allocation”), and eliminating tasks from competition (“elimination”)
because they drive up the prices for others without seeming to have a chance of obtaining
all of their needed resources. Each of the variants indicates if it solves each phase in a
distributed or centralized fashion.

 32

Marbles2 [allocation: distributed, elimination: centralized]
The main inspiration behind this Marbles variant is that the cost of a resource should be
defined by the value that the second-highest bidder places on it (the “displacement” or
“opportunity” cost of the resource). Consequently, resources cost zero if no one else
wants them.

Message Protocol
Task to resource: bid(amount), withdrawal(); resource to task: loss(), win(amount that
can be lower than bid), priceChange(can be up or down but recipient is still winning).

The Running Example under Marbles2
In this variant of our Marbles schemes, tasks attempt to fill each requirement one at a
time, bidding all of their available value to satisfy the next unfilled requirement.
1. Q simultaneously bids 300 on A, B, and D to satisfy its first requirement. R bids 100
on A and C.

 A B C D

1 300 300 300 Q
(300) 2 

1 100 100 R
(100) 2 

Figure 18: First stage of marbles2 solution to the problem

2. Q obtains A for 100 (the cost as a displacement cost is determined by the second
highest bidder). It reacts by bidding 200 for B and D (because it has internally determined
that it is better off by using A for its second requirement 3 , and has already spent 100 of
its 300 value for obtaining a resource.

 A B C D

1 100! 200 200 Q
(300) 2 

1 100 100 R
(100) 2 

Figure 19: Second stage of marbles2 solution to the problem

3. R wins C for 0 (as there are no competing bidders). It reacts by bidding 100 on B to
obtain its second resource, and by completely withdrawing its bid for A (it already has a
resource for its first requirement for free; otherwise it would have bid on A whatever it
had to pay for C minus the minimum bid increment/decrement).
4. Q gets notified that the price of its A dropped to 0 (because all competition disap-
peared). It thus now increases its bids for B and D to 300. Exclamation marks indicate

3 Interestingly, we handle internal assignments by an internal use of the very same Marbles scheme where

each requirement gets the same constant value to bid on resources won by the task, but we won’t go into
the details of that here.

 33

that the tasks is currently winning the resource.

 A B C D

1 0! 300 300 Q
(300) 2 

1 100 0! R
(100) 2 

Figure 20: Third stage of marbles2 solution to the problem

5. Q wins B for 100 (because that’s R’s bid). It is now satisfied, but bids 99 for D (a
cheaper resource is always preferable) just in case.
6. Q wins D for 0 because no one else wants it. It withdraws its bid for B because nothing
beats a free resource.
7. R gets notified that it is now the winner on B (also for 0). The scheme is in a terminal
state unless the environment changes (new high-value tasks could steal resources, for
example).

 A B C D

1 0!  0! Q
(300) 2 

1  0! R
(100) 2 0!

Figure 21: Final stage of marbles2 solution to the problem

Thus, in the end it has been determined that there is no competition for resources at all –
all tasks can be satisfied with the available resources, using about 12 messages overall
and about 4 message round-trips.
Experience and Limitations of Marbles2
As is evident from the curves in the Evaluation section below, this Marbles scheme (the
first one written) tends to produce the lowest-quality solutions and also require largest
number of messages. We believe that the latter is true because tasks bid on all qualified
resources for every requirement, and in addition the scheme bids down prices one by one
in epsilon increments (rather than in logarithmic sizes as some of the schemes below do).
We have not had the time to investigate why the former is true.

Msmarbles [allocation: distributed, elimination: distributed]
In the Msmarbles (Multi-Sized Marbles) scheme each task has the same number of
marbles. The size of each marble is the total value of the task divided by the number of
marbles that the task has. Consequently, tasks with higher value have larger marbles.

Message Protocol
Tasks bid on resources by placing marbles on them. A task can bid one marble at a time,
and must wait for a price-update message from the resource before placing another
marble. Resources grant themselves to the task that has placed the largest value (not

 34

largest number) of marbles on them. When a task runs out of marbles, it can withdraw its
marbles from a resource. When it does so, the resource returns all marbles to all tasks that
have bid on it, with one exception. The resource keeps one marble from the current
winner. In essence, the price for the current winner goes down to one marble.
When a task withdraws its marbles from a resource, it will not attempt to bid on that
resource again unless it has available at least one more marble than it got back. We call
this number of marbles the task’s “block amount” on a given resource. Block amounts
always go up, and eventually will reach the point where a task cannot win an allocation
of resources for all its requirements because the block amounts on the required resources
exceeds the total number of marbles that a task has. When this happens, the task
voluntarily withdraws from competition by withdrawing all marbles from all resources.
The scheme converges because tasks keep withdrawing until all remaining tasks succeed.
The intuition behind Msmarbles is that if the valuation of resources emerges
incrementally, in small steps, it will be more accurate. This will enable tasks to make
more informed decisions about where to place or withdraw marbles and when to give up,
and thus lead to a better solution.
The timing of withdrawals is critical. It is advantageous to delay withdrawals as long as
possible because by that time other tasks may have withdrawn first and hence they
become subject to the eventually deadly block-amounts. In order to diminish the
advantages of delays, we made each task have the same number of marbles, each task bid
a single marble at a time, and each task wait for a reply before bidding the next marble.
Richer tasks will have an advantage, as they should, because they can delay placing
marbles. Poorer tasks may need several bids to catch up to the bid of a richer task, hence
allowing the richer task to hold on to its marbles for a longer time.
One of the main qualities of Msmarbles is that multiple medium-sized tasks can together
bid up the valuation of multiple resources forcing a richer task to become subject to
several block amounts, and eventually forcing it to give up. This enables the Msmarbles
scheme to make trade-offs between multiple medium-sided tasks and few richer tasks.

The Running Example under Msmarbles
Figure 22 shows the behavior of Msmarbles in the simple running example. In this
example we gave each task 8 marbles (twice the number of resources). Task Q’s marbles
are worth 37.5 points, whereas Task R’s marbles are worth 12.5 points. Lines labeled A,
B, C and D represent the valuation of resources A, B, C and D over time. Lines Q-A, Q-B
and Q-C represent the amount task Q has bid for resources A, B and C. R-A, R-C and R-
B represent task R’s bids. Initially, both tasks bid on A. Then they bid on the next
resource they need: Q bids on B and R bids on C. When responses come back, Q learns
that it is winning both resources. Task R learns that it is losing on A and winning on C.
Task R must now bid for B, its only choice for requirement 2, and it keeps placing
marbles on it until it outbids task Q. When Q is outbid it determines that the price
increment to win D is 0+ (i.e., any amount larger than 0), and hence places a marble on
D. At this point, both tasks are fulfilled and they stop bidding.
The second graph shows a more complex example where not all tasks can be fulfilled,
and tasks need to withdraw bids and eventually withdraw from competition. The graph
shows the evolution of the price for resource A, the amount task R bids on A (R-A), and
the amounts task S bids on resources A, B and C (S-A, S-B and S-C respectively). In this

 35

example there are 4 tasks and 8 resources (not all shown in the graph), and S is the
poorest task with 60 points. The graph shows how S first went on a bidding war for
resource C and eventually withdrew because it needed marbles to bid on other resources.
Similarly, S had losing bidding wars for resources A and B. A, B and C were the only
choices that S had to fulfill one of its requirements, and after the three withdrawals, the
block amounts went so high that S would have had to use all its marbles to win one of
those resources, leaving no marbles to win resources for its other requirements. At that
point, S gave up, enabling the other three tasks to succeed. The price for A went down
sharply enabling the task that needed it to use its marbles for other resources. (The second
problem comes from an example that Walsh uses to demonstrate that simple auctions
cannot be used to compute optimal resource allocations when complementarities are
present. For this particular example -- but by no means for all -- Msmarbles computes the
optimal solution).

Figure 22: Bid values sequences for the Msmarbles scheme

Experience and Limitations of Msmarbles
The Msmarbles algorithm has not been as thoroughly evaluated as the others, so that
implementation bugs disqualify it from the systematic comparison with the other
algorithms in the Evaluation section. The solutions of the examples it does run are of high
quality (defined as “close to the best solutions of other schemes”). However, the scheme
is also one of the slowest, using significantly more messages than the others.

Marblesize [allocation: distributed, elimination: distributed]
The motivation of the Marblesize scheme is to allow trading off the quality of the

 36

solution against the number of messages needed through different pre-specified Marbles
“sizes”.
In the Marblesize scheme, no resource is free and the price for a resource is determined
by the current highest bid. To acquire a resource, a task needs a certain number of
marbles. Marbles have given size that can be subdivided in equal parts an arbitrary
number of times. The size of the marbles represents the minimum amount a task can bid
on a resource. For each task, the initial marble size is equal to the task value divided by
the number of requirements in that task. At the beginning, each task selects a possible
combination of resources for its requirements and bid one marble on each of them. After
that the bidding mechanisms continues based on the following rules: (1) If a task has
more than one possible combination of resources, it chooses the cheapest one based on
the current bids on those resources and allocate all its value among them but placing at
least one marble on each resource. (2) A task wins if it is winning on all of its current
bids. (3) A task loses if it is losing on all of its current bids. (4) A task that is winning on
some of its bids can move one marble at a time from a winning resource bid to a losing
resource bid. (5) A task can cut its marble size until the marble size is less than the
minimum marble size allowed. (6) A losing task tries another resource combination and
repeats the process. If it cannot find a new combination of resources it commit suicide.

Message Protocol
Task to resource: bid (amount), withdrawal (); Resource to task: loss (), win ().

The Running Example under Marblesize

First round: Q: Marble size (150) R: Marble size (50).

 A B C D

1  150!  Q
(300) 2 150!

1 50  R
(100)

2 50

Figure 23: First stage of marblesize solution to the problem

The two requirements of task Q are winning so no changes happen in that task. In task R
both requirements are losing. Since the first bidding proposal is no good it tries a second
bidding proposal [C,B] while keeping a marble size of 50.

Second round: Q: Marble size (150) R: Marble size (50).

 A B C D

1  150!  Q
(300)

2 150!

1  50! R
(100)

2 50

Figure 24: Second stage of marblesize solution to the problem

 37

Now R is winning on C that nobody wants and tries to move its marbles from C to B.

Third round: Q: Marble size (150) R: Marble size (25).
R cuts it marble size to the minimum size of 25. Although R is still winning on C, it
cannot move its marble anymore because each resource needs at least one minimum size
marble. So R’s second proposal is declared dead. Since it cannot try a third proposal, R is
declared dead and the process terminates. (Thus, the scheme fails to find the optimal
solution for this simple problem - nevertheless it is the single best scheme we have for
large problems, as will become evident in the Evaluation section.)

 A B C D

1  150!  Q (300)
2 150!
1  25! R (100)
2 75

Figure 25: Final stage of marblesize solution to the problem

Experience and Limitations of Marblesize
The Marblesize scheme has the unique ability to trade off solution quality against speed
of convergence. Figure 26 shows the impact that the minimum marbles size has on the
total number of messages and the quality of the solution. As is evident, it is possible to
control the minimum marble size to trade-off solution quality for computational time. In
this example, an increase of less that 1% of solution quality is paid by a 10 fold increase
in the number of messages.

Number of
Subdivisions

Total Number of
Messages

Maximum Value
of Solution

4 7986 19017
3 6013 18950
2 3635 18894
1 1250 18880
0 793 18649

Figure 26: Trade-off between message traffic and solution quality in msmarbles

In terms of scalability with respect to problem size, the number of messages and solving
shows a phase transition behavior where, for fixed number of resources, the number of
messages increases sharply with the number of tasks until it reaches a certain value where
starts decreasing again, resembling the critical behavior observed in other combinatorial
problems. We believe that this is due to the fact that for large number of tasks the lack of
resources leads to quick suicide of most tasks with large requirements, thus the
competition quickly decreases along the process.

Grabmarbles [allocation: distributed, elimination: distributed]
Grabmarbles is a variation of the Marblesize scheme which relies on heuristic selection
of resource combinations. As in Marblesize, a task bids on the cheapest set of resources

 38

that will satisfy its requirements. Unlike the Marblesize scheme, rebidding is not
permitted after a losing resource bid, and bids are not based on marble sizes. Instead, a
task agent submits a bid that is a heuristic evaluation of the task, based on its domain
value, number of task requirements, and number of alternative resources. A task only
bids for resources whose prices (the evaluations of the currently winning tasks) are less
than the bidding task’s own evaluation. When a task agent loses a bid, it gives up on the
current resource set and tries another if possible. The heuristics used by Grabmarbles
were originally applied to Marbles2, and improvements in solution quality motivated the
application of those heuristics to Marblesize.
A heuristic task evaluation function is defined for a given task and resource. (Note that
this heuristic function actually violates the “no inflation” rule for Marbles schemes,
making it impossible to use the prices paid for resources as an indication for ther
contribution of domain value. This has not been an issue because we have only measure
pure solution quality so far.) The following example of a task evaluation function rewards
tasks that have only one or two alternative resources to choose from, otherwise penalizing
the task according to its number of requirements.
 function taskeval (dval, reqs, alts)
 if alts = 1 return dval / reqs;
 else if alts = 2 return dval / (2 * reqs);
 else return dval / (4 * reqs);

Message Protocol
Task to resource: bid (amount), withdrawal (); Resource to task: loss (), win ().

The Running Example under Grabmarbles
First round: Q selects A and B.

 A B C D

1  37.5!  Q
(300)

2 150!

Figure 27: First stage of grabmarbles solution to the problem

The running example is analyzed here using the task evaluation function described above.
All resources are initially free, so task agent Q selects A and B. Q’s domain value of 300
and its 2 requirements yield an evaluation of 37.5 for resource A, while its evaluation
with respect to A (150) reflects the fact that A is Q’s only alternative resource for
requirement 2.

Second round: R selects B and C.

 A B C D

1  25! R
(100)

2 50!

Figure 28: Second stage of grabmarbles solution to the problem

The possible resource sets available to task agent R are (A,B) and (C,B). The cheaper

 39

alternative is (C,B), whose total price of 37.5 is due to Q’s currently winning bid. Like
task Q, R’s second requirement has only one qualified alternative, so R’s task evaluation
with respect to resource B comes to 50. Task Q is outbid for resource B, so it withdraws
its bids and tries another resource combination.

Third round: Q selects A and D.

 A B C D

1   37.5! Q
(300)

2 150!

1  25! R
(100)

2 50!

Figure 29: Final stage of grabmarbles solution to the problem

Task agent Q finally selects price-free resources A and D. Both tasks are now satisified,
reaching the optimal solution domain value of 400, with 15 messages passed.

Experience and Limitations of Grabmarbles
The Grabmarbles scheme produces solutions that are comparable to those of Marblesize,
with a relatively small number of messages. The use of heuristics in evaluating each
task’s “deservedness” with respect to different resources has a globally beneficial effect
on resource allocation. In the Marblesize scheme, the relative merit of competing tasks is
resolved through the process of rebidding and transferral of funds between resources. In
Grabmarbles, the selection of resources through heuristics tends to direct the task agents
toward resources they can realistically attain, while avoiding resources that are critical to
other tasks. The focus on globally beneficial resource selection helps to eliminate the
need for rebidding.
The choice of task evaluation formula used in Grabmarbles has not yet been automated.
The quality of solutions is greatly affected by how well suited the evaluation formula is
for a particular problem set. The results shown in the curves in the Evaluation section
were obtained using the following evaluation function.

function taskeval (dval, reqs, alts)
 return dval / reqs – 2 * alts;

This evaluation formula fails to yield the optimal solution domain value for the running
example problem. The previous formula emphasizes the lack of resources available to a
task, while the above formula only uses this as a tie-breaker. A hybrid evaluation
formula, combining features of the two shown, has produced good solutions to all of
these problem sets. But there remains a need for the automatic selection of an approriate
formula for a given problem, based on the distribution of task requirements per task, and
alternative resources per requirement.

Brute-Force [allocation: centralized, elimination: centralized]
We have built a trivial centralized brute-force solver that enumerates all possible
solutions and then picks the best one. It is impractical for more than about 15 tasks and

 40

30 resources but serves its purpose in producing small-size challenge problems for the
Marbles schemes for which the optimal solution is known.

Random [allocation: centralized, elimination: centralized]
Similarly, we have built a solver which synthesizes a random solution, keeps it if it beats
the previous one, and keeps doing this until it exceeds a given time limit. We have used it
to establish lower bounds on the solution quality for large-size problems.

Simulated Annealing [allocation: centralized, elimination: centralized]
We have implemented a Simulated Annealing (SA) solver [Kirkpatrick 1983] to further
compare the results of the different Marble solvers against well-known central schemes.
The SA algorithm seeks to escape local maximum by accepting downhill moves with a
probabilistic model based on statistical mechanics. In our implementation of SA we start
by randomly assigning resources to tasks until all resources are allocated. Then, for a
number of maxFlips times, we perturb or flip the state of the system to a neighboring
state by randomly picking a task, a requirement from that task and a new resource for that
requirement from its list of eligible resources. We evaluate δ, the change in the total
value, and always accept the move if δ ≥ 0. If δ < 0, we accept the move with probability
exp(δ/T), where T is the temperature parameter. We repeat this procedure for different
values of T, starting with a high value of T and decreasing it following a geometric
scheduling such that Ti+1= 0.5*Ti.

Experience and Limitations of the SA implementation
In terms of performance the SA solver ranks very close to but actually below the
Marblesize solver. In certain problem instances SA beats Marblesize in finding a higher
value in comparable execution size but on average Marblesize beats SA. SA provides the
maximum number of flips (maxFlips) as its mechanism for externally controlling or
trading-off quality of solution for execution time, similar to Marblesize using marble
granularity for the same purpose. Even for a surprisingly low values of maxFlips, SA
finds solutions within a few percent of the highest value with a significant speed up in
solution time. With such a low value of maxFlips, SA is our “most efficient” solver (as
measured by dividing solution quality by running time).

SAT Encoding [allocation: centralized, elimination: centralized]
We have also implemented a centralized SAT solver by encoding the resource allocation
problem into Boolean satisfiability formulas in conjuctive normal form (CNF). In this
approach, the allocation of resources to tasks is obtained by finding truth assignments to
the resulting formulas. To use satisfiability testing for optimal allocation of resources we
turn to the problem of finding valid assignments of resources for at least k (with k ≤ N,
the total number of tasks) tasks and then do a binary search to find the maximum k. This
problem can then be encoded into a CNF formula of the following form:

Where fk is responsible for switching on at least k of the variables representing the N

 41

tasks, fcross precludes resources from being assigned to more than one requirement and fi
(i=1,2,…,N) selects eligible resources within each individual task.

SAT encoding of the running example
To encode the running example presented above for at least two tasks (k = 2) filled we
define the following 13 boolean variables. First we introduce the tasks variables: t1 and
t2, that represent each task in the formula. Then we define the resources variables A11,
A12, A21, B11, B21, C21 and D11. Where Aij=TRUE indicates the assignment of
resource A to task i requirement j. To select at least 2 different tasks variables we
introduce four additional variables p1, p2, r1, r2 with the condition that p1  -r1, p2  -
r2, (p1,r1)  t1 and (p2,r2)  t2. With this variables definition, the formulas introduced
above take the following form:

We solve the resulting formula f using a Java implementation [Jackson] of the WSAT
[Selman 1993] solver. One can verify that f evaluates to TRUE by setting A12, B22, C21,
D11, t1, t2, p1 and r2 to TRUE and all other variables to FALSE, which yields the
correct solution for the running problem.

Experience and Limitations of the SAT Encoding
Our current SAT-based solver performs very well compared to Marblesize and Simulated
Annealing for small and medium size problems (i.e., N ≈ 50). For larger problems (e.g.,
N=100) the solution time degrades about an order of magnitude compared to Marblesize
and SA but it is still able to produce high value results. By controlling the number of
solutions that we ask WSAT to generate, we can externally trade-off solution quality with
execution time and the solver can sometimes find solutions within less than 5% of the
best value found with SA but with 10 to 20 times speedup. Another advantage of this
approach is that it can be used to rapidly estimate the maximum number of filled tasks
without having to search for the optimal solution. In its current implementation the SAT-
based solver is fully centralized but the same SAT encoding approach can be combined
with Marbles or other distributed market mechanisms [Walsh 1998] to produce a
distributed solver.

3.7.6 Evaluation

We evaluated the performance of the different solvers described above on synthetic

 42

problems that have the same characteristics of the problems stated above but with
arbitrary number of resources and tasks. The problems were generated by randomly
assigning to each task a certain number of requirements and a task value. The set of
possible resources for each task was also randomly selected from the original resource
pool. These random values were independently selected from three different Gaussian
distributions. Thus, the dominant parameters in describing a given problem are: a)
number of tasks, b) number of resources, c) r, average number of requirements per tasks,
d) v, average task value and e) p, the average number of possible resources per
requirement.

Figure 30: Quantitative Comparison of MARBLES Algorithms

In Figure 30, we compare the performance of our solvers for 30 different problems with
100 resources and 100 tasks. (The problems were generated with r =4, v = 300 and p =
10.) The parameters we use to evaluate performance are the total value (i.e., the sum of
the task values for all filled tasks) of a solution and the (execution) time it took the solver
to find that solution. In Figure 1a and b, we compare the results for total value and time,
respectively. We see that Marblesize, Grabmarbles and Simulated Annealing can find
comparable results of the total value but with Marblesize being 3 to 4 times faster than
Grabmarbles and about an order of magnitude faster than Simulated Annealing. The
results obtained with SAT and Marbles2 are of lesser quality in terms of performance but

 43

we see that they follow the same structure found in the other curves suggesting that all
curves are somehow converging towards an optimal solution.

Figure 31: Easy-hard-easy phase-transition behavior of the total number of messages and
computational time for the Marblesize scheme. (a) 100 tasks, (b) 100 resources

In Figure 31 we study the behavior of the total number of messages, execution time and
total value of solutions found with Marblesize for different size of the problem. In Figure
31a, shows results for 100 tasks and different number of resources while in Figure 31b
the results correspond to 100 resources and different number of tasks. In both curves we
observe an easy-hard-easy phase-transition effect where the number of messages (and
time) increases very drastically as the problem gets larger until it reaches a peak and after
that drops down again. This property of Marblesize is due to the fact that unlikely to
succeed tasks drop out of the competition very early in the process and do not waste any
bidding messages. Since the distributions of task values and number of requirements per
tasks are independent, tasks with large number of resources and low task value end up
with marbles of relatively small size that makes them lose in all bids before entering
competition. In Figure 31b, the execution time continues to rise slowly after the transition
peak while the number of messages drops down and this is due to the fact that in the
initial phase tasks need to evaluate alternative combination of resources before bidding
and the total computational time of this operation increases with the number of tasks.

3.7.7 Related Work

What we are after are distributed negotiation schemes in which (1) domain experts can
understand the decisions made by negotiation participants because they use a domain
currency for making their trade-offs that the experts share, and that (2) can be “steered”
in its collective real-time response, fault tolerance, and solution quality behavior by
changing their relative desirability at run-time.

We list the most relevant non-market-inspired previous work on distributed resource
allocation in the References section, but do not have the space here to discuss them at any

 44

length (they generally address neither (1) nor (2) above). Instead, we will use the
remaining space to put the auction protocols we use for resource acquisition in the
context of prior work. A negotiation protocol in our terms defines the types of messages
that can be sent and how they can be strung together (the syntax of message exchange).
In our terminology, this – together with the bidding strategies of requesters and the
auctioning strategy of requesters – defines a “scheme” for market-based distributed
resource allocation.

Walsh et al. (1998) outline the fundamental choices in this design space: (a) single-
resource auctions, (b) combinatorial auctions, and (c) Vickery auctions. We view (b)
combinatorial auctions as generally inapplicable to truly distributed assignment of
resources. This is because they need a large number of messages to coordinate between
themselves (as they cannot individually auction themselves but must bundle up with
others to be bid on in combination). We cannot say with certainty that there may not be a
space for them in real-time adaptive distributed resource allocation but we are not
currently exploring this route. In (c) Vickery auctions, every resource requester has an
incentive to report his true requirements to a centralized auction mechanism which can
then make an optimal assignment of resources (solving an NP-complete problem) and
report the assignments back to the requesters. This is obviously not an option for truly
distributed resource allocation either, and we are not investigating this avenue further
either.

This leaves (a) single-resource auctions, in which each resource can auction itself off to
the highest-value task based solely on its local bid information. Our Marbles schemes are
a subclass of single-resource auction. However, the distributed algorithms introduced for
the altruistic task suicide phase further distinguish our Marbles schemes from work on
competitive auctions. This task suicide phase is fundamental for the quick convergence of
the Marbles schemes: by lowering resource prices it usually helps other tasks succeed.

3.7.8 MARBLES Conclusion

It is obviously far too early for us to make any claims on how far from “optimal” in any
sense our currently implemented Marbles schemes are (be that in term of the quality of
the solution, in terms of the number of messages needed, or any combination thereof).
However we can conclude the following:

1. Marbles-type distributed collaborative negotiation schemes are an exciting and
worthwhile research program for years to come; this is because there are many “optimal”
solvers depending on how much the application domain values fault-tolerance, average
response time, real-time response guarantee, and quality of the solution.

2. We are seeing “phase transitions” in our problems as is evidenced in Figure 31; to be
precise, we are seeing Gauss-like curves for the amount of messages needed based on a
varying number of resources for a fixed number of tasks. A Marbles scheme finds out
quickly that few tasks can be satisfied with the very few resources, as well as that nearly
all tasks can be satisfied with the abundant resources, but uses substantially more

 45

computation if there are “just enough resources for most of the tasks with the right
assignments”. However, we currently have no way of predicting how much negotiation a
given problem requires.

3. It seems that the Marbles schemes with good performance all seem to have the
property of eliminating (apparently) losing tasks very early on.

4. As this is work in progress we have not compared our schemes against other
distributed algorithms at great length. However, based on our performance comparisons
of our best Marbles schemes to the well-known centralized Simulating Annealing
strategy we believe that this family of market-inspired collaborative negotiation schemes
is well-suited to the real-time distributed solution of resource allocation problems.

4 Transitions to Military Applications
The main deliverable of the CAMERA project was the SNAP flight scheduling
application that embodies the CAMERA technology that was fielded and used by the US
Marines. The system was fielded at the following locations:
Marine Air Group 13 in Yuma. The system was fielded in all 4 squadrons.
Marine Expeditionary Units. The system was fielded on board the USS Bonhomme
Richard, the USS Belleau Wood, the USS Pelleliu and the USS Essex that conducted
operations in Iraq, Japan and Afghanistan.
The software produced by the CAMERA project involves over 500,000 lines of code. Of
these about 40% is part of the generic negotiation framework, and 60% is application
specific.
We are currently collaborating with Lockheed-Martin Information Systems (Orlando,
Florida) to also transition the CAMERA-funded flight scheduling software to the Joint
Strike Fighter program (which will eventually replace the current Harrier fleet), and are
integrating our software with Lockheed-Martin’s autonomic logistics effort. Lockheed-
Martin demonstrated a first prototype incorporating our software in early 2004.

5 The ANTS E-Book
The project also produced the DARPA Autonomous Negotiating Teams Electronic Book,
an archival compendium of research funded by this and other projects funded by the
DARPA ANTS Program:
 http://www.isi.edu/~szekely/antsebook/ebook/
The e-book was edited by Alejandro Bugacov, Stephen Fitzpatrick, Gabor Karsai, Victor
Lesser, H. Van Dyke Parunak, Vijay Raghavan, Bart Selman, and Pedro Szekely, and
contains detailed problem descriptions for the two challenge problems addressed by the
ANT program, one in logistics and one in electronic warfare. It also contains technical
descriptions of the scheduling, distributed constraint optimization, Bayesian tracking,
case-based reasoning, and mediation techniques for negotiating teams that were

 46

investigated by ANTs contractors, and points to re-usable software that resulted from the
effort.

6 References

Andersson, M., and Sandholm, T. 1999. Time-Quality tradeoffs in reallocative
negotiation with combinatorial contract types. In Proceedings of AAAI-99, Orlando,
Florida.

Atkins, E.; T. Abdelzaher; Shin, K.; and E. Durfee, E. 1999. Planning and resource
allocation for hard real-time. In Proceedings of the Third International Conference on
Autonomous Agents, Seattle, Washington.

Boutilier, C.; Goldzmidt, M.; and Sabata, B. 2000. Sequential auctions for the allocation
of resources with complementarities. In Proceedings of IJCAI-99, Stockholm, Sweden.

Chen, J.; Bugacov, A.; Szekely, P.; Frank, M.; Cai, M.; Kim, D.; and Robert Neches, R.
Distributed Resource Allocation: Knowing When To Quit. Accepted at the
Representations and Approaches for Time-Critical Decentralized Resource/Role/Task
Allocation Workshop of the Second International Joint Conference on Autonomous
Agents & Multi-Agent Systems (AAMAS 2003). Melbourne, Australia

Choy, M., and Singh, A. 1992. Efficient fault tolerant algorithms in distributed systems.
In 24th ACM Symposium on Theory of Computing, pp. 593–602.

Collins, J.; Sundareswara, R.; Tsvetovat, M.; Gini, M.; and Mobasher, B. 1999. Search
strategies for bid selection in multiagent contracting. In JCAI-99 Workshop on Agent-
mediated Electronic Commerce (AmEC-99).

Ferguson, D.; Nikolaou, C.; Sairamesh, J.; and Yemini, Y. 1996. Economic models for
allocating resources in computer systems. In S. Clearwater (Ed.), Market-Based Control:
A Paradigm for Distributed Resource Allocation. Hong Kong: World Scientific.

Frank, M.; Bugacov, A.; Chen, J.; Dakin, G.; Szekely, P.; and Neches, R. "The Marbles
Manifesto: A Definition and Comparison of Cooperative Negotiation Schemes for
Distributed Resource Allocation," Proceedings of the 2001 AAAI Fall Symposium on
Negotiation Methods for Autonomous Cooperative Systems, November 2-4, 2001, North
Falmouth, Massachusetts.

Garey, M., and Johnson, D. 1979. Computers and Intractability: A Guide to the Theory of
NP-Completeness. San Francisco, CA: W.H. Freeman and Company.
Gent, I., and Walsh, T. 1993. Towards an Understanding of Hill-Climbing Procedures for
SAT. In Proceedings of AAAI-93, pp. 28-33.

 47

Jackson. We used Dr. D. Jackson’s Java implementation of WSAT available at
http://sdg.lcs.mit.edu/walksat

Kirkpatrick, S.; Gelatt, C.; and Vecchi, M. 1983. Optimization by Simulated Annealing.
Science, 220, 671-680.

Milgrom, P. 2000. Putting auction theory to work: The simultaneous ascending auction.
Journal of Political Economy.

Sandholm, T., and Lesser, V. 1997. Issues in Automated Negotiation and Electronic
Commerce: Extending the Contract Net Framework. Readings in Agents, pp. 66-73,
Morgan Kaufmann.

Selman, B.; Kautz, H.; and Cohen, B. 1996. Local search strategies for satisfiability
testing. AAAI-92, DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, American Mathematical Society, 26:521-532.

Smith, R. 1980. The Contract Net Protocol: High-Level Communication and Control in a
Distributed Problem Solver. IEEE Transactions on Computers 29(12):1104-1113.

Waldspurger, C., and Weihl, W. 1994. Lottery scheduling: Flexible proportional-share
resource management. In Proceedings of the First Symposium on Operating Systems
Design and Implementation, pp. 1–11.

Walsh, W.; Wellman, M.; Wurman, P.; and MacKie-Mason, J. 1998. Auction protocols
for decentralized scheduling. In Eighteenth International Conference on Distributed
Computing Systems, Amsterdam, The Netherlands.

Walsh, W.; Wellman, M. 1998. Market SAT: An extremely decentralized (but really
slow) algorithm for prepositional satisfiability. In Seventh National Conference
inartificial Intelligence, 303-309, 2000.

Wellman, M. 1996. The economic approach to artificial intelligence. ACM Computing
Surveys 28 (4es):14–15.

