
Automated Generation of Control
Concepts Annotation Rules Using

Inductive Logic Programming
System Description

Basel Shbita1(B) and Abha Moitra2(B)

1 University of Southern California, Los Angeles, CA, USA
shbita@usc.edu

2 General Electric Research, Niskayuna, NY, USA

moitraa@ge.com

Abstract. Capturing domain knowledge is a time-consuming procedure
that usually requires the collaboration of a Subject Matter Expert (SME)
and a modeling expert to encode the knowledge. This situation is fur-
ther exacerbated in some domains and applications. The SME may find
it challenging to articulate the domain knowledge as a procedure or a
set of rules but may find it easier to classify instance data. In the cyber-
physical domain, inferring the implemented mathematical concepts in the
source code or a different form of representation, such as the Resource
Description Framework (RDF), is difficult for the SME, requiring par-
ticular expertise in low-level programming or knowledge in Semantic
Web technologies. To facilitate this knowledge elicitation from SMEs,
we developed a system that automatically generates classification and
annotation rules for control concepts in cyber-physical systems (CPS).
Our proposed approach leverages the RDF representation of CPS source
code and generates the rules using Inductive Logic Programming and
semantic technologies. The resulting rules require a small set of labeled
instance data that is provided interactively by the SME through a user
interface within our system. The generated rules can be inspected, iter-
ated and manually refined.

Keywords: Knowledge capture · Semantic model · Knowledge
graphs · Rules · Rule annotation · Cyber-physical systems

1 Introduction

Capturing domain knowledge is a critical task in many domains and applications.
This process may involve knowledge elicitation followed by knowledge represen-
tation to facilitate inferencing, reasoning, or integration in some decision sup-
port systems. Knowledge capture frequently poses a roadblock in developing and

B. Shbita—This work was done while the author was at GE Global Research.

c© Springer Nature Switzerland AG 2022
M. Hanus and A. Igarashi (Eds.): FLOPS 2022, LNCS 13215, pp. 171–185, 2022.
https://doi.org/10.1007/978-3-030-99461-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99461-7_10&domain=pdf
https://doi.org/10.1007/978-3-030-99461-7_10

172 B. Shbita and A. Moitra

deploying systems that automate processing or reasoning tasks. For instance, a
Subject Matter Expert (SME) might have deep domain knowledge but may not
be able to describe it in terms of concepts and relationships that can be used to
represent the knowledge. Also, at times, the SME may not describe the knowl-
edge at the right level of detail that may be needed for making automated deci-
sions. For example, in the cyber-physical domain, we are often required to ana-
lyze a legacy product without an adequate description of its software, imposing a
challenge on the system operator. In the same domain, we frequently require the
recovery of mathematical structures implemented without having the required
software proficiency. Considering the vast amount of code presently used in such
systems, the problem becomes intractable and tedious even for an SME and is
often susceptible to human error.

To overcome such issues, we use an Inductive Logic Programming (ILP) based
approach wherein the SME identifies positive and negative examples for describ-
ing a concept in the code. The ILP system uses these examples to derive logic
programming rules (i.e., annotation or classification rules) for formally defin-
ing those concepts. This allows the SME to quickly detect the desired software
modules in his task and route the software’s relevant components to designated
experts. Our approach is iterative in that the SME can refine the rules learned
by adding more positive and negative examples.

Our approach is based on a semantic model (consisting of an ontology and
rules), which first describes the basic concepts and relationships of the domain.
In order to learn the definition of more complex concepts, the SME provides
positive and negative examples that are automatically translated into a formal
representation using the basic semantic concepts and relationships.

Our approach tackles both issues described above. Since we automatically
translate the example data provided by the SME into a logical representation, the
SME does not need to have an understanding of the concepts and relationships
in the ontology. In addition, since the SME only identifies positive and negative
examples and repeats the learning approach until the acquired knowledge is
satisfactory, it provides a way to derive complete and accurate descriptions of
the concepts in the domain.

1.1 Inductive Logic Programming

Inductive Logic Programming (ILP) [8] is a branch of Machine Learning that
deals with learning theories in logic programs where there is a uniform represen-
tation for examples, background knowledge, and hypotheses.

Given background knowledge (B) in the form of a logic program, and positive
and negative examples as conjunctions E+ and E− of positive and negative
literals respectively, an ILP system derives a logic program H such that:

– All the examples in E+ can be logically derived from B ∧ H, and
– No negative example in E− can be logically derived from B ∧ H.

ILP has been successfully used in applications such as Bioinformatics and
Natural Language Processing [1,2,5]. A number of ILP implementations are

Automated Generation of CPS Annotation Rules Using ILP 173

available. In our work we use Aleph [10] and run it using SWI-Prolog [11].
Aleph bounds the hypothesis space from the most general hypothesis to the
most specific one. It starts the search from the most general hypothesis and
specialises it by adding literals from the bottom clause until it finds the best
hypothesis.

Aleph requires three files to construct theories:

– Text file with a .b extension containing background knowledge in the form of
logic clauses that encode information relevant to the domain and the instance
data.

– Text file with a .f extension that includes the positive ground facts of the
concept to be learned.

– Text file with a .n extension that includes the negative ground facts of the
concept to be learned.

As an example, consider an ILP task with the following sets of background
knowledge, positive examples, and negative examples:

B =

⎧
⎪⎨

⎪⎩

builder(alice).

builder(bob).

enjoys lego(alice).

enjoys lego(claire).

⎫
⎪⎬

⎪⎭
E+ = {happy(alice).}E− =

{
happy(bob).

happy(claire).

}

Given these three sets, ILP induces the following hypothesis (written in
reverse implication form, as usually done in logic programs):

H =
{
happy(X) :- builder(X),enjoys lego(X).

}

This hypothesis contains one rule that says: if builder(X) and
enjoys lego(X) are true, then happy(X) must also be true for all X. In other
words, this rule says that if persons are builders and enjoy lego then they are
happy. Having induced a rule, we can deduce knowledge from it. Cropper et al.
[4] provides a comprehensive survey of ILP along with various applications.

1.2 Cyber-Physical Systems

Cyber-Physical System (CPS) is a term describing a broad range of complex,
multi-disciplinary, physically-aware engineered systems that integrate embedded
computing technologies and software into the physical world. The control aspect
of the physical phenomena and the theory behind control systems are the basis
for all state-of-the-art continuous time dynamical systems and thus have a cru-
cial role in CPS design. In control theory, SMEs describe a system using a set
of primitive and higher-level concepts that represent and govern the system’s
signals and enforce its desired behavior. Table 1 presents several math primi-
tives and higher-level control concepts that are widely used in industrial control
systems and a variety of other applications requiring continuously modulated
control (e.g., water systems, robotics systems).

174 B. Shbita and A. Moitra

Table 1. A partial list of control concepts and math primitives employed in control
mechanisms in cyber-physical systems and their description

Concept Description and associated properties

Constant Variables that are initialized and not updated

Reference signal Variable/signal that represent desired behavior or setpoint

Output signal Variable/signal that goes as output from a control block

Difference Control block generating a subtraction of two signals

Sum Control block generating an addition of two signals

Error signal Variable/signal that is an output of a difference operation
with a reference and measured (output) signal

Gain Control block generating a multiplication between signals
and/or scalars

Division Control block generating a division between signals
and/or scalars (often includes some divide by zero
protection)

Switch Control block that selects an input to be an output based
on a condition or discrete/boolean input

Magnitude saturation Control block that limits the input signal to the upper
and lower saturation values, where the limit values are
pre-defined constants

PI controller Control block that continuously calculates an error signal
and applies a correction based on proportional and
integral terms

PID controller Control block that continuously calculates an error signal
and applies a correction based on proportional, integral,
and derivative terms

Conventionally, control-policy software are completely separate from the sys-
tem infrastructure and implemented after manufacturing the system prototype.
This presents a challenge for SMEs who are proficient with the required mathe-
matical knowledge and control theory background but are not equipped with a
sufficient knowledge in low-level programming or software design. Locating the
appropriate code blocks that correspond to a specific control concept (e.g., an
integrator) that is of interest to the SME, either for the purpose of validation
or reverse engineering, imposes a significant challenge. It is extremely difficult
for the SME to recover mathematical structures implemented in the software.
Further, the SME can find it challenging to articulate their domain knowledge
in a form of code or the formalism required to address their task.

1.3 From Source Code to a Knowledge Graph

Knowledge Graphs (KGs), in the form of RDF statements, are the appropri-
ate representations to store and link complex data. KGs combine expressivity,

Automated Generation of CPS Annotation Rules Using ILP 175

interoperability, and standardization in the Semantic Web stack, thus providing
a strong foundation for querying and analysis.

The RDF representation of the desired CPS system source code is obtained
in two steps. First, from the source code a JSON file is extracted with the
method of Pyarelal et al. [9] to describe the function networks and expression
trees (i.e., representations of arithmetic expressions). Next, the RDF data is pro-
duced by generating RDF triples following a pre-defined semantic model using
the materialized JSON instance data. Listing 1.1 shows a portion of the pre-
defined semantic model that is used to model the instance data into RDF,
expressed in SADL [3] (Semantic Application Design Language). SADL is an
open-sourced domain-independent language that provides a formal yet easily
understandable representation of models. The SADL tool, which is available as
a plugin to Eclipse1, automatically translates statements in SADL to a Web
Ontology Language (OWL) [6] file, which contains the RDF statements (i.e.,
triples). For example, in our model (as shown in Listing 1.1), a HyperEdge is
related to a single Function via the property function, and has multiple input
and output of type Variable. It is important to note that this pre-defined model
does not vary and is similar for any given code input; it is merely required to
define the ontological elements needed to describe code in an RDF form.

Finally, the resulting RDF contains representations of basic code elements
found in a given source code. Listing 1.2 shows an excerpt from the resulting
knowledge graph of the file simple PI controller.c shown in Appendix A,
expressed in SADL as well.

1 HyperEdge is a type of Node
2 described by inputs with values of type Variable
3 described by function with a single value of type Function
4 described by outputs with values of type Variable.
5 Function is a type of Node
6 described by ftype with a single value of type string
7 described by lambda with a single value of type string
8 described by expression tree with a single value of type ExpressionTree.
9 Variable is a type of ExpNode

10 described by object ref with a single value of type string
11 described by data type with a single value of type string.

Listing 1.1. A portion of the semantic model used to model the data (written in
SADL). A Function is a Node with the relations ftype (function type) and lambda

with a range of type string and an expression tree of type ExpressionTree

1 21df3f15-1763-9632-e936-8aca2281a699 is a grfnem:Function,

2 has grfnem:metadata (a grfnem:Metadata with grfnem:line begin 12),

3 has grfnem:ftype "ASSIGN",

4 has grfnem:lambda "lambda error,Kp_M,Ki_M,integrator_state: ((error * Kp_M) + (Ki_M *

↪→ integrator_state))".

5 d4000e07-fe4a-aa23-b882-1030d655eee0 is a grfnem:Variable,

6 has grfnem:metadata (a grfnem:Metadata with grfnem:line begin 27, with grfnem:from source true),

7 has grfnem:identifier "simple_PI_controller::simple_PI_controller.main::Kp_M::0".

Listing 1.2. An excerpt from the resulting knowledge graph representation (written
in SADL) of the file simple PI controller.c (see Appendix A). The Function shown
above is of type ASSIGN and starts at line 12. This is the resulting instance data that
is automatically generated from the c source code

1 https://www.eclipse.org/.

https://www.eclipse.org/

176 B. Shbita and A. Moitra

2 Integrated Control-Concept Induction Platform

The question we are addressing is how can we streamline and leverage the CPS
program knowledge graph data to capture domain-knowledge and assist the SME
with additional knowledge discovery? Knowledge discovery in data is the non-
trivial extraction of implicit, previously unknown, and potentially useful infor-
mation from data.

As we mentioned earlier, and in order to overcome this challenge, we use an
ILP-based approach wherein the SME essentially identifies positive and negative
examples for describing a concept. The ILP system uses them to derive logic
programming rules for formally defining that concept.

2.1 Problem Definition

The task we address here is as follows: Given an input in the form of an OWL file
containing RDF triples that represent basic code elements found in the source
code (as seen in Listing 1.2 in SADL format), we want to generate logic pro-
gramming rules for formally defining control concepts and math primitives (e.g.,
a Constant, see Table 1) that are provided as example instances interactively
by the SME. The rules should be expressed with Horn logic clauses, similarly to
the example we have shown in Sect. 1.1. We require the solution to be iterative
in the sense that the SME can refine the learned rules by adding more positive
and negative examples.

2.2 Overview of Our Approach: An ILP Platform

As described in Sect. 1.3, the knowledge graph, constructed from the function
networks and expression trees, is materialized in an OWL format. Our suggested
platform and approach consists of several steps and components, as illustrated
in Fig. 1. The platform consists of a module (owl2aleph) that automatically
translates the OWL data into background knowledge (clauses and instances),
namely B, in a format required by Aleph, the ILP system. The module then
invokes an interactive user interface in which the SME selects positive and neg-
ative instances, namely E+ and E− respectively. Lastly, Aleph is invoked using
SWI-Prolog to produce a hypothesized clause H (i.e., the learned rule) and pro-
vide a list of new positive instances that adhere to H, so that the SME can
evaluate the accuracy of the learned rule and select new examples to refine it.

Since we automatically translate the example data provided by the SME into
a logical representation (i.e., “Aleph format”), the SME is not required to have
knowledge of the concepts and relationships in the ontology. Also, since the SME
only identifies positive and negative examples and repeats the learning approach
until the knowledge learned is satisfactory, it provides a convenient and fast way
for deriving complete and accurate descriptions of the concepts in the domain.
The iterative nature of the approach is illustrated via the loop seen in the lower
right side of Fig. 1. The loop runs through the SME (i.e., User), the Examples
Selection UI (producing E+ and E−), then through Aleph to produce a new
learned rule (i.e., H) then back to the SME.

Automated Generation of CPS Annotation Rules Using ILP 177

Fig. 1. The integrated control-concept induction platform for deriving math primitives
and control concepts classification rules

2.3 Generating the ILP Data

The owl2aleph module, which generates the ILP data, consists of two main
components (as seen previously in Fig. 1). The architecture of the module is
detailed in Fig. 2. We construct the ILP instances based on hyperedges, function
nodes, variable nodes, and expression trees based on the semantic model that
describes the basic concepts and relationships of the domain (Listing 1.1) and
executed over the instance data (Listing 1.2).

Fig. 2. Architecture of the owl2aleph module, generator of the ILP data files

As seen in Fig. 2, there are several sub-components, each one is designed to
tackle a different task:

– Triples Graph Data Manager reads the OWL data and provides an easy
serialization functionality over the given RDF statements. The manager clas-
sifies each statement by their functionality to serve other components (i.e.,
Functions Manager, Variables Manager, HyperEdges).

– Variables Manager performs variables disambiguation to enable linking
variable nodes (explicit and implicit variables in the source code) and is
also responsible for generating attributes regarding their usage (assignments,
updates, usage inside other blocks, etc...).

178 B. Shbita and A. Moitra

– Functions Manager generates the relevant information about the code
statement (hyperedge) functionality, the arithmetic operations (expression
tree attributes such as multiplication, division, etc...) present in the code
statement, and block level attributes (e.g., in a loop call).

– HyperEdges is a database of hyperedges, each one represents a code state-
ment. Each hyperedge corresponds to zero or more variable nodes and a single
function node. Hyperedges are the primary instances we use to aggregate the
information about the math primitives and the control concepts we would
like to form logic programs about. In the final pre-inference stage (upon
selection of the positive and negative examples), a hyperedge is named as
“newfeature” for each example, so that the same process and structure can
be used for generating rules for any given concept.

– Aleph Data Manager generates the background knowledge in an Aleph
format (.b file). This also includes the construction of definite clauses and
additional constraints (rules about predicates and their inputs and outputs)
from the source code and materializes the instance data.

– ILP Flask Server Runs a Flask2 application (local HTTP server) to enable
an interaction with the SME (User) via a web browser. The application pro-
vides a user-friendly interface to inspect and select the hyperedge instances
that are positive and negative and to generate them in the required Aleph
format (.f and .n files).

Fig. 3. An excerpt of a resulting background knowledge (.b) file

In Fig. 3, we show an excerpt from a background knowledge (.b) file. The
file includes four different sections of encoded knowledge. First, the modeh clause
2 https://flask.palletsprojects.com/.

https://flask.palletsprojects.com/

Automated Generation of CPS Annotation Rules Using ILP 179

defines the hypothesis and takes a hyperedge as an input (highlighted with yel-
low). Second, the modeb clauses define the signatures of the predicate functions.
Third, the determination clauses specify what concepts can be used in rules
and how many arguments each one takes. The last section includes the instance
data describing the entire CPS program in a logic formalism. All of the above is
generated automatically from the RDF data.

The example files (.f/.n) we provide as input to Aleph simply list a collec-
tion of positive or negative hyperedges that correspond to the desired concept
we want to learn. These files are generated automatically using the Examples
Selection User Interface by simply inspecting their attributes and then adding
them either as positives or negatives.

A snapshot of the user interface (UI) is shown in Fig. 4. It is fairly straight-
forward to operate the UI. The system lists all available hyperedges with their
relevant information (line numbers, functionality types, etc...). The user can add
a hyperedge as a positive or negative example or simply ignore it. Once ready,
the user can generate the example files to trigger the next step in the pipeline.

Fig. 4. The examples selection user interface for generating Aleph example files

By automating the translation and modeling of the semantic data into ILP
rules, clauses, and instances, and by enabling a straightforward process of exam-
ple files creation, we can quickly generate classification rules for formally identi-
fying math primitives and control concepts in an iterative, fast, and interactive
fashion.

2.4 Rule Generation from ILP Data via an Illustrative Example

Given the ILP data (B, E+, E−) in Aleph format, we can now trigger the
execution of the ILP platform using SWI-Prolog to induce the learned rule, i.e.,
the hypothesis (H). The outcome is classification rules, expressed in domain

180 B. Shbita and A. Moitra

terms, for formally identifying math primitives and control concepts. The SME
identifies positive and negative examples and repeats the learning approach until
the knowledge learned rule is satisfactory.

Fig. 5. An illustrative example of the learning of the control concept of “Constant”
(Color figure online)

In Fig. 5, we illustrate the working of the developed ILP infrastructure to
learn a simple classification rule to identify the mathematical concept of “Con-
stant” (i.e., an expression with a variable assignment that is initialized and not
updated in the code). The selected examples in Fig. 5, and the ones discussed in
this section, correspond to code statements in the file simple PI controller.c
shown in Appendix A. In the first iteration in this scenario, the SME selects two
positive examples and a single negative example (upper orange box in Fig. 5)
corresponding to the code statements in lines 26 and 27 as positives, and line
8 as a negative. As explained in Sect. 1.1, the ILP system constructs the most
specific clause (given B and entailing E+), which is shown highlighted in blue.
The generated rule in this execution produces the rule (also seen highlighted in
yellow inside the lower orange box):

newfeature(A) :- xfunction(A,B), xliteral(B).

Which basically means that hyperedge A corresponds to a “Constant” (the
newfeature) if A has a function B that is an assignment to a literal.

Automated Generation of CPS Annotation Rules Using ILP 181

Upon query of the instances that adhere to the generated rule, the SME can
add more examples, either as a positive or a negative. The SME then selects an
additional positive and negative example in a second iteration (upper green box
in Fig. 5) corresponding to the code statement in line 29 as a positive, and line
38 as a negative. The generated rule in this execution produces the rule (also
seen highlighted in yellow inside the lower green box):

newfeature(A) :- outputs(A,B), var assigned once(B),

xfunction(A,C), func not in loop block(C).

Which means that hyperedge A corresponds to a “Constant” if A has a variable
B that is assigned only once and the hyperedge A has a function C in which the
assignment is not inside any loop, as we would have expected.

The ILP infrastructure enables an automatic, iterative, and fast process for
capturing domain knowledge for math primitives and control concepts in the
form of classification rules. The resulting rules are used as feedback for the SME
and can be further utilized to learn additional levels of knowledge.

3 Evaluation and Discussion

We evaluate the ILP-based approach for learning classification rules for control
and math primitives on a dataset consisting of three OWL files originating from
three source code files driving proportional-integral (PI) controllers with a sim-
ple plant model. The dataset consists of 8974 triples pertaining to 61 different
instances of math and control concepts.

We have been successful in generating classification rules for simple math
primitives and several control concepts. Table 2 shows a summary of the results.
For each concept, we show the size of the training data (number of positive
and negative examples provided), the number of bottom clause literals before
the learning, the total number of reduced clause literals after the learning, the
learning time, number of true positives, number of false positives, number of
false negatives, precision, recall, and the F1 score. We note that the concepts of
“Switch”, “Magnitude saturation”, and “PID controller” could not be learned
due to an insufficient number of positive examples. We require at least two
positive examples per concept to generate the most specific clause that initiates
the ILP process.

As seen in Table 2, for 7 out of the applicable 9 concepts, the resulting
generated rules had a perfect F1 score (maximum precision and recall) and a
significant reduction in the number of literals in the generated rule (from bottom
clause, pre-learning, to reduced clause, post-learning). Additionally, the process
took less than a second to complete for all concepts shown in the table, which
is a crucial and important ability to have in such a problem setting. Further,
it required no more than two positive examples (and no more than 5 negatives,
depending on the complexity of the concept in our data) to generate the final
rule for all concepts.

182 B. Shbita and A. Moitra

Table 2. Results summary for the ILP generated rules for our targeted math and
control concepts

Concept (E+,

E−)

Bottom

clause

size

Reduced

clause

size

Time

[sec-

onds]

True

posi-

tives

False

posi-

tives

False

nega-

tives

Precision Recall F1

Difference (2, 1) 24 3 0.063 4 0 0 1.0 1.0 1.0

Sum (2, 2) 29 3 0.063 9 0 0 1.0 1.0 1.0

Gain (2, 1) 23 3 0.047 9 0 0 1.0 1.0 1.0

Division (2, 2) 24 3 0.094 3 0 0 1.0 1.0 1.0

Constant (2, 5) 11 6 0.125 23 0 0 1.0 1.0 1.0

Error signal (2, 5) 24 6 0.859 2 0 0 1.0 1.0 1.0

PI controller (2, 5) 45 5 0.453 3 0 0 1.0 1.0 1.0

Output signal (2, 3) 12 12 0.859 3 3 0 0.50 1.0 0.67

Reference signal (2, 2) 11 11 0.375 3 17 0 0.15 1.0 0.26

Switch Not enough positives (E+)

Magnitude

saturation

PID controller

One must note that the number of iterations needed is dependent on how
many and which positive and negative examples are selected by the SME. For
example, suppose a user chooses similar positive or negative examples. In that
case, it could be not very meaningful in converging towards a more reduced
clause, requiring the user to pick additional and substantially different examples.

The remaining two concepts out of the applicable 9 concepts (“Output Sig-
nal” and “Reference Signal”) did not achieve a high F1 score (or any reduction
in the size of the clause literals) since there is not enough data to separate the
positive examples from the negative examples in these concepts. The training
data must have a sufficient number of positive examples with a certain amount
of “richness” (diversity in implementation and usage) to enable the separation
of the examples to generate an accurate and satisfying rule. This is an expected
requirement, as there are some concepts that can be coded in different approaches
(logic vs. arithmetic). Further, the code can have several mutations even if imple-
mented using the same “approach”. For example, the code could include pointers
that get allocated dynamically, imposing a difficulty in our approach, which relies
on a static semantic analysis.

One must note that these scores reflect the accuracy of the rules within our
dataset. The same rules, if executed on a different dataset, may not necessarily
produce similar results. We inspected the generated rules with the prefect F1
scores. We noticed that some of the rules are aligned with our expectations. For
example, the generated rule for the concept of “Gain” was:

gain(A) :- xfunction(A,B), has operator mult(B).

Which means the hyperedge A has a function B that includes the multiplication
operator, as expected.

Automated Generation of CPS Annotation Rules Using ILP 183

Other rules were not completely aligned to what we would expect the SME
to define. For example, the generated rule for the concept of “PI Controller”
was:

picontroller(A) :- outputs(A,B), var implicit(B),

xfunction(A,C), has operator add(C).

Which is not sufficient to capture the two control terms of proportional and
integral operations of addition and multiplication that are required to define a
PI controller, but it was sufficient to capture the 3 instances that exist in our
dataset accurately.

The quality of the ILP generated rules is dependent on the supplied input.
Sub-par rules result from inadequate input data that does not hold sufficient
information about the targeted concept. By providing additional code examples
and richer data, we provide better coverage and generate more accurate rules.

4 Related Work and Conclusions

Since a vast amount of domain knowledge has already been captured in text,
considerable effort has been made in extracting this written knowledge into for-
mal models. Wong et al. [12] provides a survey of various approaches. Most of
this effort has been in extracting concepts and relationships between the con-
cepts and representing it in a semantic model. We have also previously used ILP
in the domain of Design for Manufacturability (DFM) where the goal was to
design products that are easier to manufacture by providing early manufactura-
bility feedback in Moitra et al. [7].

In this work we have considered how we can automate the capture of Cyber-
Physical Systems (CPS) domain knowledge by applying Inductive Logic Pro-
gramming (ILP) to positive and negative instance data in RDF format, origi-
nating from a CPS program source code. We have shown this by developing an
Integrated Control-Concept Induction Platform for generating annotation and
classification rules for control concepts and math primitives. Our approach is fea-
sible and effective in terms of time, completeness, and robustness. These early
results we have shown are encouraging and provide promising opportunities and
applications.

Acknowledgements. Distribution Statement “A” (Approved for Public Release,
Distribution Unlimited). This material is based upon work supported by the
Defense Advanced Research Projects Agency (DARPA) under the Agreement No.
HR00112190017. The views, opinions and/or findings expressed are those of the authors
and should not be interpreted as representing the official views or policies of the Depart-
ment of Defense or the U.S. Government.

184 B. Shbita and A. Moitra

A simple PI controller.c

A PI controller simple PI controller.c used in Sect. 2.4 is shown below. The
selected examples in Fig. 5 correspond to code statements in this file.

1 #include <stdio.h>
2
3 double integrator_state = 0.0;
4
5 /* Simple PI controller */
6 double PI_calc(double Input_dmd, double Input_sensed, double Kp_M, double Ki_M, double

↪→ timestep)
7 {
8 double error = Input_dmd - Input_sensed; // negative example for ILP (iteration 1)
9

10 integrator_state = integrator_state + timestep*error;
11
12 return error*Kp_M + integrator_state*Ki_M;
13 }
14
15 /* Proportional plant! */
16 double plant_model(double input, double gain)
17 {
18 return input*gain;
19 }
20
21 int main(int argc, char **argv)
22 {
23 double t_final = 100.5;
24 double time_step = 0.015;
25
26 double Ki_M = 20.0; // positive example for ILP (iteration 1)
27 double Kp_M = 75.0; // positive example for ILP (iteration 1)
28
29 int num_steps = t_final / time_step; // positive example for ILP (iteration 2)
30
31 double desired_output = 10.0;
32
33 double plant_command;
34 double sensed_output;
35
36 double plant_gain = 0.01;
37
38 sensed_output = 0.0; // negative example for ILP (iteration 2)
39
40 for (int i = 0; i < num_steps; i++)
41 {
42 plant_command = PI_calc(desired_output, sensed_output, Kp_M, Ki_M, time_step);
43
44 sensed_output = plant_model(plant_command, plant_gain);
45
46 printf("%f, %f, %f", (double)i*time_step, plant_command, sensed_output);
47 }
48
49 return 0;
50 }

Listing 1.3. simple PI controller.c

Automated Generation of CPS Annotation Rules Using ILP 185

References

1. Bratko, I., Muggleton, S.: Applications of inductive logic programming. Commun.
ACM 38(11), 65–70 (1995)

2. Chen, D., Mooney, R.: Learning to interpret natural language navigation instruc-
tions from observations. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 25 (2011)

3. Crapo, A., Moitra, A.: Toward a unified English-like representation of semantic
models, data, and graph patterns for subject matter experts. Int. J. Semant. Com-
put. 7(03), 215–236 (2013)

4. Cropper, A., Dumančić, S., Evans, R., Muggleton, S.H.: Inductive logic program-
ming at 30. Mach. Learn. 111(1), 147–172 (2022). Springer

5. Faruquie, T.A., Srinivasan, A., King, R.D.: Topic models with relational features
for drug design. In: Riguzzi, F., Železný, F. (eds.) ILP 2012. LNCS (LNAI), vol.
7842, pp. 45–57. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38812-5 4

6. McGuinness, D.L., Van Harmelen, F., et al.: Owl web ontology language overview.
W3C Recommend. 10(10), 2004 (2004)

7. Moitra, A., Palla, R., Rangarajan, A.: Automated capture and execution of man-
ufacturability rules using inductive logic programming. In: Twenty-Eighth IAAI
Conference (2016)

8. Muggleton, S.: Inductive logic programming. New Gener. Comput. 8(4), 295–318
(1991)

9. Pyarelal, A., et al.: Automates: automated model assembly from text, equations,
and software. arXiv preprint arXiv:2001.07295 (2020)

10. Srinivasan, A.: The aleph manual (2001)
11. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-prolog. Theory Pract.

Logic Program. 12(1–2), 67–96 (2012)
12. Wong, W., Liu, W., Bennamoun, M.: Ontology learning from text: a look back and

into the future. ACM Comput. Surv. (CSUR) 44(4), 1–36 (2012)

https://doi.org/10.1007/978-3-642-38812-5_4
https://doi.org/10.1007/978-3-642-38812-5_4
http://arxiv.org/abs/2001.07295

	Automated Generation of Control Concepts Annotation Rules Using Inductive Logic Programming
	1 Introduction
	1.1 Inductive Logic Programming
	1.2 Cyber-Physical Systems
	1.3 From Source Code to a Knowledge Graph

	2 Integrated Control-Concept Induction Platform
	2.1 Problem Definition
	2.2 Overview of Our Approach: An ILP Platform
	2.3 Generating the ILP Data
	2.4 Rule Generation from ILP Data via an Illustrative Example

	3 Evaluation and Discussion
	4 Related Work and Conclusions
	A simple_PI_controller.c
	References

