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Abstract

Many software systems run on long-lifespan platforms that operate in diverse

and dynamic environments. As a result, significant time and effort are spent manu-

ally adapting software to operate effectively when hardware, resources and external

devices change. If software systems could automatically adapt to these changes, it

would significantly reduce the maintenance cost and enable more rapid upgrade.

As an important step towards building such long-lived, survivable software sys-

tems, we study the problem of how to automatically adapt to changes and failures

in sensors.

We address several adaptation scenarios, including adaptation to individual

sensor failure, compound sensor failure, individual sensor change, and compound

sensor change. We develop two levels of adaptation approaches: sensor-level adap-

tation that reconstructs original sensor values, and model-level adaptation that

directly adapts machine learning models built on sensor data. Sensor-level adapta-

tion is based on preserving sensor relationships after adaptation, while model-level

adaptation maps sensor data into a discriminative feature space that is invariant

with respect to changes.

Compared to existing work, our adaptation approaches have the following novel

capabilities: 1) adaptation to new sensors even when there is no overlapping period

between new and old sensors; 2) efficient adaptation by leveraging sensor-specific

x



transformations derived from sensor data; 3) scaling to a large number of sen-

sors; 4) learning robust adaptation functions by leveraging spatial and temporal

information of sensors; and 5) estimating the quality of adaptation.

Additionally, we present a constraint-based learning framework that performs

joint sensor failure detection and adaptation by leveraging sensor relationships.

Our framework learns sensor relationships from historical data and expresses them

as a set of constraints. These constraints then provide a joint view for detection

and adaptation: detection checks which constraints are violated, and adaptation

reconstructs failed sensor values. Our framework is capable of handling multi-

sensor failures which are challenging for existing methods.

To validate our approaches, we conduct empirical studies on sensor data from

the weather and UUV (Unmanned Underwater Vehicle) domains. The results

show that our approaches can automatically detect and adapt to sensor changes

and failures with higher accuracy and robustness compared to other alternative

approaches.
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Chapter 1

Introduction

1.1 Motivation

An increasing number of applications require long-term autonomy of software

systems and their capability to operate in dynamic environments. Maintaining

the quality, durability, and performance of these software systems is very chal-

lenging and labor-intensive. Failure to effectively and timely adapt to hardware

and resource changes can result in technically inferior and potentially vulnerable

systems [62]. For example, software systems based on sensor data can suffer from

sensor failures or changes caused by environmental conditions and technical errors

[37]. Occasionally, such failures can cause severe safety issues, e.g., faulty sensor

data caused the crash of a Lion Air Flight 610, killing all 189 people on board.1 If

software systems could automatically detect sensor failures, these types of catas-

trophes could be avoided. In addition, if software systems could adapt to sensor

failures and changes, we could significantly reduce the time and effort required

for software maintenance and promote the long-term use of quality software on

platforms that are under continuous change.

As an important step towards building such long-lived, survivable software sys-

tems, we study the problem of how to automatically adapt to failures and changes

in sensors. Sensor failure happens when a sensor stops generating normal sensor

1https://www.cnn.com/2018/11/28/asia/lion-air-preliminary-report-intl/index.
html

1
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values; sensor change happens when a sensor gets replaced by other sensor(s). Our

goal is to build machine-learning-based adapters that can largely reduce the effect

of sensor failures or changes on upper-layer software. We believe the solutions to

this problem can have broad impact since there is an increasing volume of sensors

that are deployed in real-world systems [36, 52].

1.2 Sensor-level and Model-level Adaptation

When sensor failures or changes happen, ideally, we would like an adapter to

recover the original sensor values. We consider this as sensor-level adaptation,

which aims at learning a reconstruction function by leveraging the relationships

among working sensors. The underlying assumption is that sensor values from

a subset of sensors are correlated, which is often the case in real-world systems

[39, 52]. For example, temperature, humidity and dew point measured by weather

sensors are inter-correlated [70], and any two of them can be used to predict the

third one well. If sensor-level adaptation can accurately reconstruct the original

sensor values, then the reconstructed values can be directly input to upper-layer

software, without additional change to the software. Fig. 1.1 shows an example of

weather sensors, continuously generating timestamp, latitude, longitude, pressure

and temperature values. In the second and third rows, the temperature sensor

fails to work properly. To address this, sensor-level adaptation reconstructs the

original temperature values by leveraging sensor values from the remaining sensors

and possibly new sensors.

However, sensor-level adaptation can be challenging or even impossible when

the remaining sensors are weakly correlated with the sensors we would like to

2
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2018-06-15 15:07   33.29  118.54  35.2    29.1 

2018-06-15 15:12   33.27  118.53  34.8 

2018-06-15 15:18   32.86  118.46  34.5

Reading

Reading

Reading

Location

timestamp

latitude longitude

temperature

pressure

New Sensors 

Reconstruction Function

28.4 

28.1

Adapt

Figure 1.1: Example of a compound weather sensor that consists of three individual
sensors. The reconstruction function f reconstructs failed temperature values from
the two remaining working sensors (blue arrows) and two new sensors (red arrows).

reconstruct. In such a case, we consider another level of adaptation called model-

level adaptation. Instead of reconstructing the original sensor values, model-level

adaptation aims at directly adapting software components that are built on the

original sensor values. In particular, we study how to automatically adapt machine

learning models (e.g., classifiers) built on sensor values. Model-level adaptation

can be viewed as an instance of domain adaptation or transfer learning [34, 77]

which adapts a machine learning model from a source domain to a similar but

different target domain. We can view sensor readings before and after sensor fail-

ures/changes as the source and target domains, respectively. It is easy to see that

model-level adaptation may be still feasible when sensor-level adaptation is not.

As an extreme example, if the model does not rely on the failed or changed sensor,

then model-level adaptation is always feasible - simply re-using the model.

3



1.3 Adaptation Scenarios

We examine four adaptation scenarios. These scenarios rely on the notion of a

compound sensor. A compound sensor consists of a set of individual or component

sensors, each measuring a certain type of signal. For example, a weather station

can be viewed as a compound sensor composed of individual sensors measuring

temperature, humidity, dew point, wind speed and wind gust, etc. For each sce-

nario, we discuss both sensor-level adaptation and model-level adaptation. The

four adaptation scenarios are described as follows (see Fig. 1.2 for an illustration).

• Individual Sensor Failure: some but not all of the individual sensors in a

compound sensor fail to produce normal values. The failed individual sensors

may simply stop working or produce abnormal values that cannot be used.

• Compound Sensor Failure: all individual sensors in a compound sensor fail

to produce normal values.

• Individual Sensor Change: some but not all of the individual sensors in a

compound sensor are replaced by another set of individual sensors. This cor-

responds to the cases where new individual sensors are plugged in manually

or automatically when sensor failures or sensor upgrades occur. Throughout

the thesis, we refer to sensors that are replaced by new sensors as replaced sen-

sors. Typically, sensor values of replaced sensors no longer exist after sensor

replacement. Therefore, no overlapping period exists between the replaced

and new sensors. This makes the adaptation very challenging because new

4



sensors can produce significantly different values2 compared to replaced sen-

sors. Furthermore, new sensors may measure additional types of signals that

do not exist before the sensor change.

• Compound Sensor Change: the entire compound sensor is replaced by a new

compound sensor. This happens in practice for the reason that replacing

the compound sensor is technically easier than replacing individual sensors

in certain systems. This scenario is more challenging than Individual Sensor

Change, since no individual sensor from the compound sensor can be used

to calibrate new sensors.

1


2


3

sensor
time  

1


2


3

sensor
time  

individual sensor failure  

compound sensor failure  

individual sensor change  

compound sensor change  

1


2


3

sensor
time  

1


2


3

sensor
time  

failed sensor new sensorsreplaced sensor

Figure 1.2: Four scenarios of sensor failures and changes.

2New sensors may also produce sensor values in different formats, which is not the focus of
this thesis.
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We propose a series of adaptation approaches to address these scenarios. For

sensor-level adaptation, our approaches learn reconstruction functions that recon-

struct original sensor values from all working sensors including the new ones. The

general methodology behind our approaches is to preserve sensor relationships

after reconstruction, where sensor relationships can be derived from historical sen-

sor values. Different from existing work on handling sensor failures and changes

[39, 36, 37], our approaches have two unique features. First and most importantly,

our approaches are capable of exploiting new sensors although there is no overlap-

ping period between the new sensors and the replaced ones. To the best of our

knowledge, this is the first work on such problem settings. Previous work that take

into account new sensors or input features [60, 103] invariably require ground-truth

labels. Second, our reconstruction functions can leverage sensor-specific transfor-

mations learned from historical sensor data. This reduces the number of parame-

ters in the reconstruction functions, which not only leads to better interpretability

of the learned functions but also makes the learning process more efficient. The

latter property enables more rapid adaptation during sensor changes. Part of this

work was published in our earlier paper [87].

For model-level adaptation, we propose a general domain adaptation approach

that learns a feature space where data in the source domain (before sensor change)

and target domain (after sensor change) are similarly distributed. Additionally, our

approach enforces the feature space discriminative, by optimizing an information-

theoretic metric as a proxy to the classification error on the target domain. Com-

pared to existing domain adaptation work [77], our approach can effectively adapt

to new sensors in an unsupervised way. Part of this work was also published in our

earlier paper [88].

6



We further improve our adaptation approaches in three directions. First, we

exploit the fact that additional information about sensors may be available. In

particular, we consider cases where spatial and temporal information about sensors

can be easily obtained [25, 36]. For example, when the temperature sensor fails,

a weather station may immediately access the same sensor from a nearby station

whose location is known. Also, the exact timestamps of the two temperature

sensors are often available, which can be used to calibrate their signals. We propose

an approach to learn calibration functions that can align signals from different

sensors based on their spatial and temporal information. Once such calibration

functions are learned, they can be used to pre-calibrate signals from new sensors

before learning actual adaptation functions. Such calibration makes new sensors

better aligned to replaced sensors and can improve the robustness and accuracy of

the learned adaptation functions.

Second, we scale our approaches to a large number of sensors when dealing

with sensor changes. Our method selects a subset of important sensors based on

correlations among sensor values, which can significantly reduce the overfitting

to noisy values as well as the overall computational cost. This also enables our

adaptation approaches to continuously exploit new sensors in an open environment.

Third, we propose a method to dynamically estimate the adaptation quality,

which enables upper-layer software components to determine whether or not to

accept an adaptation. This also provides a way to select an optimal adaptation

strategy when multiple adaptation strategies exist.

In the above adaptation approaches, we assume that sensor failures or changes

are known. In practice, however, such failures or changes need to be detected first.

Following our adaptation methodology, we can also use sensor relationships for

detection. To this end, we propose a novel computational framework that performs

7



detection and adaptation jointly. Our framework extracts sensor relationships

from historical data in the form of constraints, and uses these constraints for both

detection and adaptation.

• Detection checks each constraint, and identifies a sensor failure if one or

more constraints are violated. It then infers the likely failed sensor(s) from

the violated constraints.

• Adaptation reconstructs the failed sensor values from the remaining work-

ing sensor values by using the set of constraints. Tighter constraints corre-

spond to more accurate reconstruction relationships.

Compared to existing work [10, 53, 17, 79], our framework is capable of detecting

and adapting to multi-sensor failures where multiple sensors fail simultaneously.

To validate our proposed approaches, we have conducted empirical study on

weather sensor data3 and UUV (Unmanned Underwater Vehicle) data. Experimen-

tal results show that our approaches can automatically adapt to sensor failures and

changes, with higher accuracies than baseline methods.

To summarize, we have proposed a series of approaches for automatically adapt-

ing to sensor failures and changes. Our approaches have the following novel capa-

bilities.

• exploiting two levels of adaptation: sensor-level and model-level

• adaptation to new sensors when there is no overlapping period between the

new sensors and the replaced sensors

• efficient adaptation by leveraging sensor-specific transformations derived

from historical sensor data

3https://www.wunderground.com/

8
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• learning how to adapt robustly and accurately by leveraging spatial and

temporal information about sensors

• scaling to a large number of new sensors

• estimating the quality of adaptation

• performing joint detection and adaptation for sensor failures via a constraint-

based framework

The software and datasets associated with this thesis can be accessed at our Github

repository4.

Thesis Statement. This thesis proposes a series of machine learning approaches

for automatically adapting to sensor failures and changes. These approaches

exploit sensor relationships and can address failures/changes in both individual

sensors and compound sensors.

This thesis is of highest relevance to researchers and practitioners working in

the areas of Software Systems, Internet of Things and Machine Learning.

4https://github.com/usc-isi-i2/sensor-adaptation. For any questions or comments, please con-
tact the author at yuanshi@usc.edu.
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Chapter 2

Settings and Notations

2.1 Problem Settings

We study the general setting of sensor failures and changes in the context

of a compound sensor. Imagine that we have a compound sensor consisting of

multiple individual or component sensors. For example, a compound sensor can

be a weather station containing several weather sensors measuring temperature,

dew point, wind speed, etc. An instant of time at which some sensor(s) fail or

are replaced by new sensors is called a change point.1 As described in Section

1.3, we consider four scenarios: individual sensor failure, compound sensor failure,

individual sensor change, and compound sensor change.

The sensor change scenarios are more challenging than the sensor failure scenar-

ios since there is no overlapping period between the new sensors and the replaced

sensors. In individual sensor change, the remaining sensors are the key to link

the information between the new sensors and the replaced sensors. We call the

remaining sensors as reference sensors. Intuitively, if the reference sensors are cor-

related with both the new sensors and the replaced sensors, they can be helpful

for reconstructing the replaced sensor values from the new sensor values. For com-

pound sensor change, however, there are no reference sensors from the compound

sensor because all sensors are replaced. In this scenario, adaptation to new sensors

1We only address a single change point. Repeated invocation of our methods naturally handles
multiple change points as well.

10



is very challenging or even impossible. To enable reasonable adaptation, therefore,

we assume that we have access to some reference sensors outside the compound

sensor. For example, in the context of weather stations, we can use sensors in

other stations as reference sensors.

Using the notion of reference sensors, the four scenarios can be viewed in a

unified way:

• reference sensors always work properly

• replaced sensors are replaced by new sensors at the change point. In sensor

failure scenarios, there are no new sensors.

Fig. 2.1 visualizes this unified view and the corresponding notations (explained

below).

Time
1      2     3                    S     S+1  S+2               S+T  

1 
2 

K’ 
K’+1 

K 

…

…

…… ……

…… ……

P new sensors

Sensor

K’ reference  
sensors

K-K’ replaced  
sensors

change point

Figure 2.1: Settings and notations for sensor failures and changes.

2.2 Notations

Suppose we are given K individual sensors, among which K ′ sensors are refer-

ence sensors. We assume that

11



• All sensors generate sensor values at fixed time intervals, and sensor values

are temporally aligned;

• Sensor values start at time 1. At time S + 1, K − K ′ sensors are replaced

by P ≥ 0 new sensors (P = 0 corresponds to sensor failure). We have sensor

values until time S + T ;

• There is only a single change point, i.e., time S + 1, and it is already given.

(Detecting the change point will be addressed in Chapter 6.)

Let x1,x2, · · · ,xS be sensor values before the change point, where xs ∈ RK repre-

sents sensor values at time s ∈ {1, 2, · · · , S}, and xs,k represents the corresponding

sensor value from sensor k ∈ {1, 2, · · · , K}. Additionally, let the replaced sensors

be sensors K ′ + 1, K ′ + 2, · · · , K. Let z1, z2, · · · , zT denote sensor values after

the change point, where zt ∈ RK′+P represents sensor values at time S + t, for

t ∈ {1, 2, · · · , T}. Note that we use s to index x and t to index z. Based on this

setting, {xs,k} and {zt,k} for k ∈ {1, 2, · · · , K ′} represent sensor values of reference

sensors, and {zt,k}, for k ∈ {K ′ + 1, K ′ + 2, · · · , K ′ + P} represent sensor values

of the P new sensors. Fig. 2.1 illustrates the above notations.

In the following chapters, we often refer to sensor values before the change

point as the source domain, and sensor values after the change point as the target

domain. Similar notions are used in the domain adaptation and transfer learning

communities [77].

2.3 Datasets

In the following chapters, we conduct empirical studies on sensor data from

two domains.
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surge, heave, sway, pitch, roll, depth, heading

Figure 2.2: UUV Sensors (RPM, Waterspeed, DVL).

• Weather data: the dataset consists of weather sensor data collected from

Weather Underground2. The dataset involves a number of personal weather

stations, and each station (compound sensor) contains a set of individ-

ual sensors including temperature, dew point, humidity, wind speed, wind

gust, pressure, etc. These weather stations are selected from a set of clus-

ters/regions (e.g., Los Angeles, San Francisco, Austin, Chicago, etc.), each

with 3 stations. Stations within a cluster tend to produce more similar sensor

values than those across clusters. Sensor values are sampled every 5 or 10

minutes. We temporally align sensor values as a preprocessing step.

• UUV data: the dataset is collected by letting a UUV travel from a starting

point to an end point in a simulated environment. The UUV contains pro-

peller RPM sensor, waterspeed sensor and a compound sensor called Doppler

Velocity Log (DVL) sensor. The DVL sensor consists of seven individual sen-

sors including surge, heave, sway, pitch, roll, depth, and heading. Figure 2.2

2https://www.wunderground.com/
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shows the locations of these sensors on a UUV. Each sensor produces a sen-

sor value every second. We simulate 20 trips and collect sensor values at

each second. The trajectory of the UUV varies in each trip due to different

starting/end points and water currents. The total number of samples in each

trip varies between 500 and 2000.
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Chapter 3

Adaptation to Sensor Failures

In this chapter, we address individual sensor failures and present sensor-level

and model-level adaptation approaches. The problem setting follows Chapter 2.

3.1 Sensor-level Adaptation

For sensor-level adaptation, we would like to not only learn accurate recon-

struction functions to recover failed sensor values but also discover meaningful

transformations that can be applied to sensor values. We propose to gather such

transformations into a library and later apply them to sensor data whose sensor

types are known or can be recognized. This is particularly useful when we deal

with sensor changes, since these transformations help generate meaningful feature

representations for new sensors. Motivated by the above arguments, we adopt a

nonlinear regression approach called Fast Function Extraction (FFX) [73], which

is capable of learning nonlinear functions in compact forms. Sensor-specific trans-

formations can be easily derived from these learned forms.

Sensor-level adaptation attempts to reconstruct failed sensor values after time

S based on the reference sensors. The underlying assumption is that sensor values

in real-world systems are often correlated [41].

To reconstruct the failed sensors K ′ + 1, K ′ + 2, · · · , K, we learn a separate

reconstruction function for each one. For example, we can learn the following
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function to reconstruct sensorK from reference sensors 1, 2, · · · , K ′ based on sensor

values before the sensor failure:

f(xs,1,xs,2, · · · ,xs,K′)→ xs,K (3.1)

Once f is learned, it can be used to reconstruct sensor K’s values at time S+ t by

computing f(zt,1, zt,2, · · · , zt,K′).

Learning Eq.(3.1) is a classical regression problem [43], where a number of

regression methods such as linear regression [43], kernel ridge regression [75] and

neural networks [4] can be applied. Previous work [37, 36, 39] explored linear

relationships among sensors, which lacks the power to model the nonlinearity of

sensor data. In our implementation, we explore two regression methods, feedfor-

ward neural networks [4] and Fast Function Extraction (FFX) [73]. We explore

FFX because of its capability of learning compact nonlinear function forms effi-

ciently and leveraging sensor-specific transformations derived from domain knowl-

edge. Experimental results below show that FFX performs comparably to neural

networks with significantly fewer parameters.

Specifically, to learn a function that maps a vector x to real value u, FFX uses

a linear form

u = w0 +
Nh∑
i

wihi(x) (3.2)

where {hi()} are pre-defined basis functions, and {wi} are linear coefficients to

learn. FFX first generates a massive set of basis functions based on various non-

linear transformations, and then applies a machine learning technique called path-

wise regularized learning [106] to efficiently select a small set of most useful basis
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functions. As a result, FFX is able to learn compact functions that are more inter-

pretable than black-box methods like neural networks [73]. At the same time, FFX

can learn highly nonlinear functions and achieve comparable performance to neural

networks [73]. This gives FFX an attractive benefit: it helps identify useful and

interpretable basis functions associated with sensor types. These sensor-specific

transformations can be stored in a library and later applied to corresponding sen-

sors to extract meaningful features.

Note that when generating basis functions in FFX, it is easy to incorporate

sensor-specific transformations derived from domain knowledge. For example, in

the weather domain, the relationship between temperature, dew point and humid-

ity has been well studied [2]. Let TP,DP and HU denote temperature (◦C), dew

point (◦C) and humidity (%), respectively. HU can be approximated by TP and

DP in the following way [2]

HU = 100
exp( aDP

b+DP
)

exp( aTP

b+ TP
)

(3.3)

where a and b are constants. Based on this domain knowledge, we can treat

sensor-specific transformations exp( aDP

b+DP
), exp( aTP

b+ TP
) and

exp( aDP

b+DP
)

exp( aTP

b+ TP
)
as

basis functions in FFX, which potentially leads to more compact functions.

In our implementation, we use the following basis functions: ax +

b, xa, exp(x), log(x),min(0, x− a), where a and b are coefficients with many possi-

ble values. Note that these basis functions can be applied recursively to a single

variable (e.g, exp(2x + 3)) or interacting variables (e.g., x2 log(y)). Moreover, by
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using the rational function technique [73], we enable our method to incorporate

basis functions such as
exp( ax

b+ x
)

exp( ay

b+ y
)
.

Compound Sensor Failures. For compound sensor failures, there are no

reference sensors from the compound sensor itself because all sensors fail. In this

scenario, adaptation is very challenging or even impossible. To enable reasonable

adaptation, we assume that we have access to some reference sensors outside the

compound sensor. For example, in the context of weather stations, we can use

sensors in other stations as reference sensors. This reduces to the scenario of

individual sensor failure although reference sensors tend to correlate less with the

failed sensors. We can then apply the same adaptation approach developed for

individual sensor failures.

3.1.1 Experiments

We evaluate our adaptation approach on sensor data from the weather and

UUV domains. We compare the following methods:

• Replace: non-adaptation method that substitutes each failed sensor with a

sensor that has the closest mean and variance in sensor values. The closeness

is measured on sensor values before the sensor failure;

• Refer-Neu: our adaptation approach that reconstructs sensor values of

failed sensors using reference sensors. The reconstruction function is learned

via neural networks [4];

• Refer-FFX: our adaptation approach with the reconstruction function

learned via FFX [73];
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Reconstruction errors of each method are measured by RMSE (Root Mean

Square Error) between reconstructed sensor values and the ground truth.

Results on weather data

Following the dataset description in Chapter 2.3, we use 30 weather stations

from 10 clusters and generate random pairs across clusters. We generate each

random pair in the following way: 1) randomly select two clusters/regions; 2)

randomly select one station from the first cluster (denoted as station A) and one

station from the second cluster (denoted as station B). We generate 100 random

pairs across 8 clusters. For each pair, we use one year (2016) of sensor data as the

source domain and one year (2017) of sensor data as the target domain.

Individual sensor failure. For each random pair, we treat each sensor in

station A as the failed sensor and the remaining sensors in station A plus all sen-

sors in station B as reference sensors. Table 3.1 reports reconstruction errors on

each failed sensor. We can see that in all cases, Refer-Neu and Refer-FFX per-

form significantly better than Replace, demonstrating that sensor relationships

are very helpful in reconstructing failed sensor values. The relatively poor perfor-

mance of Replace reveals that the same sensor from nearby stations (i.e., within a

cluster) can generate sensor values with significant deviation. The reconstruction

errors on wind speed, wind gust and pressure are relatively large because these

sensor values are not strongly correlated with other sensor values. We also observe

that Refer-Neu and Refer-FFX perform comparably, although Refer-Neu uses

more parameters.

Compound sensor failure. We treat all sensors in station A as failed sensors,

and all sensors in station B as reference sensors. Table 3.2 reports reconstruction
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Table 3.1: Reconstruction errors (RMSE) on weather data for individual sensor
failures. Each entry shows the average reconstruction error and the corresponding
standard error. The best performing method(s) (statistically significant up to one
standard error) are in bold font.

Failed Sensor Replace Refer-Neu Refer-FFX
temperature (◦F) 3.94 ± 0.024 0.58 ± 0.013 0.61 ± 0.011
humidity (%) 5.73 ± 0.023 0.69 ± 0.015 0.72 ± 0.016
dew point (◦F) 3.89 ± 0.027 0.68 ± 0.012 0.70 ± 0.010

wind speed (mph) 8.24 ± 0.084 5.24 ± 0.054 5.20 ± 0.063
wind gust (mph) 10.81 ± 0.073 6.71 ± 0.057 6.65 ± 0.052
pressure (Pa) 7.82 ± 0.16 3.39 ± 0.19 3.42 ± 0.17

errors on each failed sensor separately. Here too, Refer-Neu andRefer-FFX out-

perform Replace with large margins. Wind speed, wind gust and pressure are dif-

ficult to reconstruct well but Refer-Neu and Refer-FFX are significantly better

than Replace. Refer-FFX performs comparably to Refer-Neu.

Table 3.2: Reconstruction errors (RMSE) on weather data for compound sensor
failures. Each entry shows the average reconstruction error and the corresponding
standard error. The best performing method(s) (statistically significant up to one
standard error) are in bold font.

Failed Sensor Replace Refer-Neu Refer-FFX
temperature (◦F) 3.94 ± 0.024 0.69 ± 0.020 0.73 ± 0.018
humidity (%) 5.73 ± 0.023 0.82 ± 0.019 0.87 ± 0.021
dew point (◦F) 3.89 ± 0.027 0.71 ± 0.018 0.75 ± 0.018

wind speed (mph) 8.24 ± 0.084 6.13 ± 0.072 6.07 ± 0.080
wind gust (mph) 10.81 ± 0.073 7.35 ± 0.073 7.24 ± 0.069
pressure (Pa) 7.82 ± 0.16 3.71 ± 0.22 3.82 ± 0.21

On average, the number of parameters used in Refer-FFX ({wi} in Eq.(3.2))

is 65% less than that in Refer-Neu (weights in the neural networks).

Results on UUV data

Following the dataset description in Chapter 2.3, we use the concatenated sen-

sor values in 10 trips as the source domain, and the remaining 10 trips are used
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as the target domain. We examine reconstruction errors on surge, heave and sway

whose sensor values are crucial for higher-layer software.

Individual sensor change. We treat each of the surge, heave and sway sen-

sors as the failed sensor, and the remaining sensors as reference sensors. Table

3.3 compares reconstruction errors of different methods, where Refer-Neu and

Refer-FFX significantly outperform Replace. This shows that sensor relation-

ships are helpful in reconstructing failed sensors. We present more detailed analysis

in Section 6.5 where the efficacy of our adaptation is demonstrated in an end-to-end

evaluation.

Table 3.3: Reconstruction errors (RMSE) on UUV data for individual sensor fail-
ures. Each entry shows the average reconstruction error and the corresponding
standard error. The best performing method(s) (statistically significant up to one
standard error) are in bold font.

Failed Sensor Replace Refer-Neu Refer-FFX
surge (m/s) 2.47 ± 0.14 0.60 ± 0.075 0.66 ± 0.071
heave (m/s) 0.13 ± 0.0068 0.024 ± 0.0051 0.020 ± 0.0062
sway (m/s) 2.31 ± 0.13 0.71 ± 0.068 0.74 ± 0.065

Compound sensor change. We treat all sensors in {surge, heave, sway} as

failed sensors, and the propeller RPM and waterspeed sensors as reference sensors.

Table 3.4 reports the results. Here too, Refer-Neu and Refer-FFX show clear

advantages over Replace.

Table 3.4: Reconstruction errors (RMSE) on UUV data for compound sensor fail-
ures. Each entry shows the average reconstruction error and the corresponding
standard error. The best performing method(s) (statistically significant up to one
standard error) are in bold font.

Failed Sensor Replace Refer-Neu Refer-FFX
surge (m/s) 2.47 ± 0.14 0.67 ± 0.081 0.71 ± 0.084
heave (m/s) 0.094 ± 0.0063 0.027 ± 0.0067 0.026 ± 0.0073
sway (m/s) 2.31 ± 0.13 0.75 ± 0.072 0.78 ± 0.079
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For both individual and compound sensor changes, Refer-Neu and Refer-

FFX perform comparably. On average, the number of parameters used in Refer-

FFX is 72% less than that in Refer-Neu.

3.2 Model-level Adaptation

Model-level adaptation attempts to adapt a model that is trained on the original

sensor values. Suppose y1, y2, · · · , yS are the corresponding labels before sensor

failure. It is easy to see that model-level adaptation is simply the task of re-

training a model using reference sensors and labels: {(xs,1:K′ , ys)}S
s=1. We will

present an empirical study on model-level adaptation in Chapter 5.
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Chapter 4

Sensor-level Adaptation to Sensor

Changes

Sensor changes often happen in real-world systems due to situations like

replacement of failed sensors, sensor upgrade and energy optimization [94, 69, 62].

When sensor changes happen, a set of sensors, namely, the replaced sensors, are

replaced by new sensors. When changing to new sensors, sensor values may not be

consistent with old values. For example, a new sensor may measure a different type

of signal compared to the sensor it replaces. Even when measuring the same type

of signal, inconsistencies may still exist due to mis-calibration of the new sensors

with respect to the replaced sensors. Existing work mainly focuses on detecting

sensor changes but rarely addresses how to adapt to these changes [10, 53, 17, 3].

One adaptation approach is to simply ignore the new sensors and reconstruct

the replaced sensors using reference sensors. This reduces to our approach in

Chapter 3. However, new sensors may contain complementary information over

reference sensors, which may help us better reconstruct the replaced sensors. As an

extreme example, if the new sensors are exactly the same as the replaced sensors,

then using their sensor values definitely aids reconstruction.

Learning a reconstruction function that exploits the new sensors poses unique

challenges, since there is no overlapping period of time between the replaced and

the new sensors. Classical regression methods cannot be directly applied. To

address this challenge, we propose an approach called ASC (Adaptation to Sensor
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Changes) that learns a reconstruction function to preserve sensor value distribu-

tions before and after the sensor change.

4.1 Approach

Assumptions and Intuition. Our approach reconstructs sensor values of the

replaced sensors from time S + 1 to S + T based on the reference sensors and the

new sensors. The underlying assumptions are:

• Sensor values from reference sensors are correlated with those from replaced

sensors;

• Sensor values from reference sensors are correlated with those from new sen-

sors.

Such assumptions typically hold in real-world systems because sensor values of

different sensors are often correlated [41].

Our approach is based on the following intuition: New sensors may contain com-

plementary information over reference sensors, useful for reconstructing replaced

sensors. Fig. 4.1 illustrates this intuition, where the reference sensor, replaced sen-

sor, and the new sensor are temperature, humidity, and dew point, respectively.

The left plot shows two selected samples from historical data. We can see that

for the same temperature value, humidity can take different values. The middle

plot shows that if we attempt to reconstruct humidity from temperature alone,

via the g function, then the reconstructed humidity values become exactly the

same, since the temperature information alone is insufficient for the reconstruc-

tion. The right plot shows that by incorporating dew point as a new signal, the

reconstructed humidity values are distributed similarly to those in the left plot.
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Figure 4.1: Illustration of the intuition behind ASC.

This is expected because dew point contains complementary information over tem-

perature for reconstructing humidity. The above intuition leads to the key idea of

our approach: to learn a reconstruction function that preserves the sensor value

distributions before and after the sensor change.

Formulation. We follow the notations in Chapter 2. We refer to sensor values

before the sensor change as the source domain, and sensor values after the sensor

change as the target domain. Specifically, we aim to learn a reconstruction func-

tion fΘ(z) that maps sensor values after the sensor change to values before the

sensor change, where Θ denotes the parameters of the function. Note that the

output of fΘ(z) is a matrix when there are more than one replaced sensor. In our

implementation, we use the form

fΘ(z) = ΘTh(z) (4.1)

where h() is a nonlinear feature mapping, e.g., quadratic features, or features

derived from FFX [73].
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We are interested in fΘ(z) such that distributions of sensor values are similar

across domains after the reconstruction. This motivates us to seek fΘ(z) such that

the two sets of samples {xs} and {[zt,1:K′ ; fΘ(zt)]} (i.e., reconstructed samples in

the target domain)1 are “mixed” as much as possible. When this happens, each

source-domain sample xs becomes close to its k-nearest neighbors in the target

domain, and vice versa. Therefore we propose the following objective function to

minimize the cross-domain k-nearest neighbor distances

min
Θ

S∑
s=1

∑
t∈N k

T (s)
D(xs, [zt,1:K′ ; fΘ(zt)])

+
T∑

t=1

∑
s∈N k

S (t)
D([zt,1:K′ ; fΘ(zt)],xs) + λ‖Θ‖2

2 (4.2)

where D(·, ·) is the distance function defined in the space x ∈ RK . N k
T (s) denotes

the set of indices corresponding to xs’s k-nearest neighbors in the target domain,

and N k
S (t) denotes the set of indices corresponding to [zt,1:K′ ; fΘ(zt)]’s k-nearest

neighbors in the source domain. Here, nearest neighbors are determined based on

the distance function D. ‖Θ‖2
2 is the regularization term on Θ with λ ≥ 0 as the

regularization parameter.

For simplicity, we set D to be the squared Euclidean distance2

D(xs, [zt,1:K′ ; fΘ(zt)]) = ‖xs,1:K′ − zt,1:K′‖2
2

+ ‖xs,K′+1:K − fΘ(zt)‖2
2 (4.3)

1We use the notation 1 : K ′ to denote a set of indices from 1 to K ′.
2In our implementation, each dimension is normalized into the same scale.
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Letting v2
st = ‖xs,1:K′ − zt,1:K′‖2

2, we can write (4.2) as

min
Θ

S∑
s=1

∑
t∈N k

T (s)

(
v2

st + ‖xs,K′+1:K − fΘ(zt)‖2
2

)
(4.4)

+
T∑

t=1

∑
s∈N k

S (t)

(
v2

st + ‖xs,K′+1:K − fΘ(zt)‖2
2

)
+ λ‖Θ‖2

2

In Eq. (4.4), N k
T (s) and N k

S (t) are dependent on Θ, making Eq. (4.4) non-

smooth and non-convex in Θ.

Optimization. For the ease of optimization, we introduce a set of auxiliary

variables to decouple the dependency of N k
T (s) and N k

S (t) on Θ. Let Vk
T (s) index

xs’s any (not necessarily the nearest) k neighbors in the target domain, and Vk
S(t)

index [zt,1:K′ ; fΘ(zt)]’s any k neighbors in the source domain. It is easy to see that

∑
t∈N k

T (s)

(
v2

st + ‖xs,K′+1:K − fΘ(zt)‖2
2

)
(4.5)

= min
Vk

T (s)

∑
t∈Vk

T (s)

(
v2

st + ‖xs,K′+1:K − fΘ(zt)‖2
2

)
(4.6)

and that the same relationship holds for Vk
S(t) and N k

S (t). Thus (4.4) is equivalent

to

min
Θ,{Vk

T (s)},{Vk
S(t)}

S∑
s=1

∑
t∈Vk

T (s)

(
v2

st + ‖xs,K′+1:K − fΘ(zt)‖2
2

)
(4.7)

+
T∑

t=1

∑
s∈Vk

S(t)

(
v2

st + ‖xs,K′+1:K − fΘ(zt)‖2
2

)
+ λ‖Θ‖2

2.
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(4.7) can be efficiently optimized via a procedure with two alternating steps. When

Θ is fixed, we update {Vk
T (s)} and {Vk

S(t)} based on nearest neighbor search. When

{Vk
T (s)} and {Vk

S(t)} are fixed, we optimize Θ by solving

min
Θ

S∑
s=1

∑
t∈Vk

T (s)
‖xs,K′+1:K − fΘ(zt)‖2

2 (4.8)

+
T∑

t=1

∑
s∈Vk

S(t)
‖xs,K′+1:K − fΘ(zt)‖2

2 + λ‖Θ‖2
2 (4.9)

which can be easier than solving (4.4) when fΘ is smooth in Θ. When fΘ(zt) is

linear in Θ, the optimal Θ can be computed analytically.

The above procedure decreases the value of the objective function in (4.7) in

each alternating step, and converges to a local minimum of (4.4). Empirically, the

procedure converges quickly (usually within 50 iterations).

Initialization. The quality of the solution depends on how we initialize Θ. Sup-

pose we have a way to accurately predict the values of new sensors using xs,1:K′ .

Let us denote the predicted values of the new sensors. We can initialize Θ by

solving

min
Θ

∑
s

‖xs,1:K − fΘ([xs,1:K′ ; us])‖2
2. (4.10)

Although estimating us can be very challenging when the correlations between the

replaced sensors and the new sensors are weak, we can still estimate a candidate

set for us based on target-domain data as follows: For each xs,1:K′ , we find a set

of its nearest neighbors in {zt,1:K′}, and use the corresponding zt,K′+1:K′+P to form
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a candidate set Us. We then minimize the model error by optimizing both Θ and

{ûs}:

min
Θ,{ûs}

∑
s

min
ûs∈Us

‖xs,K′+1:K − fΘ([xs,1:K′ , ûs])‖2
2 (4.11)

where ûs is allowed to be any element of Us. (4.11) essentially relaxes the depen-

dency between the replaced sensors and the new sensors, and uses the optimal Θ

for the relaxed setting as an initialization. By setting {Us} to different sizes, we

can get different initial solutions for Θ.

Parameter Tuning. For tuning the regularization parameter λ, we use a spe-

cial leave-one-out cross-validation strategy. We synthesize a set of sensor change

scenarios by treating each sensor in the source domain as the replaced sensor, and

using a biased version3 of that sensor as the new sensor. We then select the opti-

mal λ such that the average reconstruction error on these synthesized scenarios is

minimized.

4.2 Empirical Study

We evaluate ASC on sensor data from the weather and UUV domains. We

compare ASC to three baseline methods:

• Replace: non-adaptation method that substitutes each replaced sensor with

a new sensor that has the closest mean and variance in sensor values.

• Refer: adaptation method that reconstructs sensor values of replaced sensors

using reference sensors, without exploiting any new sensor.

3The biased version is created by offsetting each sensor value by the same bias.
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• ReferZ: adaptation method that works in the following three steps:

1. Learn a regression model on the target domain to reconstruct new sen-

sors from reference sensors;

2. Use the learned regression model to reconstruct new sensors on the

source domain;

3. Learn a reconstruction function on the source domain to reconstruct

replaced sensors from reference sensors and reconstructed new sensors.

This method can work well if new sensors and reference sensors are strongly

correlated, which may not hold in real-world applications.

The reconstruction error of each method is measured by RMSE (Root Mean

Square Error) between the reconstructed sensor values and the ground truth.

4.2.1 Results on Weather Data

Following the dataset description in Chapter 2.3, we use 30 weather stations

from 10 geographical clusters. We generate random triplets across clusters. We

generate each triplet in the following way: 1) randomly select two clusters; 2)

randomly select two stations from the first cluster (denoted as the station A1 and

A2), and one station from the second cluster (denoted as the station B). We use

sensors in A1 as the compound sensor, sensors in A2 as new sensors, and sensors

in B as reference sensors. We generate 100 random triplets, and report averaged

results.

Each station consists of six sensors including temperature (◦F), humidity (%),

dew point (◦F), wind speed (mph), wind gust (mph), and pressure (Pa). Sensor

values are collected every 5 minutes and are temporally aligned. Sensor values
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from A1 and A2 are more correlated than those from A1(A2) and B. We use two

years of data, with data in 2016 as the source domain and data in 2017 as the

target domain.

Individual sensor changes. We treat each sensor in A1 as the replaced

sensor, the remaining sensors in A1 plus all sensors in B as reference sensors,

and all sensors in A2 as new sensors. Table 4.1 reports average reconstruction

errors and the corresponding standard errors, with Imp. showing the average

improvement (in %) of ASC over the best baseline method. We can see that

ASC achieves an average improvement of 6.4% over baselines. This shows high

robustness of ASC. In general, ASC shows more statistically significant improve-

ment on sensors whose values exhibit large variances (e.g., wind gust and pres-

sure). Replace always underperforms compared to Refer, revealing that directly

using new sensors can cause significant differences in sensor values. ReferZ per-

forms better than Refer by leveraging new sensors. ASC further improves over

ReferZ because it better exploits information from new sensors.

Table 4.1: Reconstruction errors (RMSE) on weather data for individual sensor
changes. Each entry shows the average reconstruction error and the corresponding
standard error. Imp. shows the average improvement (in %) of ASC over the best
baseline method. The best performing method(s) (statistically significant up to
one standard error) are in bold font.

Sensor Replace Refer ReferZ ASC Imp.
temperature 3.94 ± 0.024 0.61 ± 0.011 0.59 ± 0.009 0.57 ± 0.010 4.1
humidity 5.73 ± 0.023 0.72 ± 0.016 0.71 ± 0.015 0.72 ± 0.015 -1.7
dew point 3.89 ± 0.027 0.70 ± 0.010 0.68 ± 0.009 0.67 ± 0.010 2.8
wind speed 8.24 ± 0.084 5.20 ± 0.063 5.21 ± 0.064 5.11 ± 0.060 1.7
wind gust 10.81 ± 0.073 6.65 ± 0.052 6.65 ± 0.048 6.31 ± 0.046 5.0
pressure 7.82 ± 0.16 3.42 ± 0.19 2.48 ± 0.17 1.83 ± 0.17 26.2

Figure 4.2 visualizes the joint distributions over wind speed and reconstructed

pressure, on a station in San Francisco (x-axis: wind speed, y-axis: reconstructed

pressure). Figure 4.2 (a) is the ground-truth distribution that we would like to
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approximate after adaptation. As we can observe, Replace generates a signifi-

cantly different joint distribution compared to the ground-truth, while ASC pro-

duces a much closer distribution by leveraging new sensors.
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Figure 4.2: Visualization of wind speed and reconstructed pressure on a weather
station in San Francisco (x-axis: wind speed, y-axis: reconstructed pressure pro-
duced by different approaches). Ground truth corresponds to the true pressure
values. Values are in normalized scales.

Compound sensor changes. We treat all sensors in A1 as the replaced

sensors, all sensors in B as reference sensors, and all sensors in A2 as new

sensors. Table 4.2 reports reconstruction errors on each replaced sensor sepa-

rately. ASC statistically outperforms baselines in three cases, achieving an average
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improvement of 5.7%. Compared to Table 4.1, ASC produces larger reconstruc-

tion errors mainly because reference sensors have lower correlations with replaced

sensors in this case.

Table 4.2: Reconstruction errors (RMSE) on weather data for compound sensor
changes. Each entry shows the average reconstruction error and the corresponding
standard error. Imp. shows the average improvement (in %) of ASC over the best
baseline method. The best performing method(s) (statistically significant up to
one standard error) are in bold font.

Sensor Replace Refer ReferZ ASC Imp.
temperature 3.94 ± 0.024 0.73 ± 0.018 0.71 ± 0.013 0.68 ± 0.014 4.2
humidity 5.73 ± 0.023 0.87 ± 0.021 0.88 ± 0.020 0.87 ± 0.022 0
dew point 3.89 ± 0.027 0.75 ± 0.018 0.74 ± 0.012 0.72 ± 0.011 2.6
wind speed 8.24 ± 0.084 6.07 ± 0.080 6.11 ± 0.074 6.13 ± 0.082 -1.8
wind gust 10.81 ± 0.073 7.24 ± 0.069 7.08 ± 0.072 6.83 ± 0.070 3.5
pressure 7.82 ± 0.16 3.82 ± 0.21 2.83 ± 0.20 2.26 ± 0.18 20.1

4.2.2 Results on UUV Data

Following the dataset description in Chapter 2.3, we use the concatenated sen-

sor values in 10 trips as the source domain, and the remaining as the target domain.

We examine reconstruction errors on surge (m/s), heave (m/s) and sway (m/s)

whose sensor values are crucial for higher-layer software. To simulate new sensors,

we use a biased version for the surge, heave and sway sensors. The biased version

offsets the original sensor values by a sensor-specific bias. We set the bias to 3σ,

where σ is the standard deviation of the original sensor values.

Individual sensor changes. We treat each of the surge, heave and sway sen-

sors as the replaced sensor, and the remaining sensors as reference sensors. Table

4.3 compares reconstruction errors of different methods, where ASC improves over
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the best baseline by an average of 8.8%. The improvement on surge is the most sta-

tistically significant. Refer and ReferZ always outperform Replace, consistent

with our observations on weather data.

Table 4.3: Reconstruction errors (RMSE) on UUV data for individual sensor
changes. Each entry shows the average reconstruction error and the corresponding
standard error. Imp. shows the average improvement (in %) of ASC over the best
baseline method. The best performing method(s) (statistically significant up to
one standard error) are in bold font.

Sensor Replace Refer ReferZ ASC Imp.
surge 2.47 ± 0.14 0.66 ± 0.071 0.58 ± 0.048 0.47 ± 0.051 18.9
heave 0.13 ± 0.0068 0.020 ± 0.0062 0.020 ± 0.0046 0.019 ± 0.0049 6.5
sway 2.31 ± 0.13 0.74 ± 0.065 0.72 ± 0.059 0.71 ± 0.063 1.1

Compound sensor changes. We treat all sensors in the DVL compound

sensor as the replaced sensors, and the propeller RPM and waterspeed sensors

as reference sensors. Table 4.4 reports the results. ASC improves over the best

baseline by an average of 3.0%. Compared to Table 4.3, the improvement decreases

for each sensor because fewer reference sensors are used.

Table 4.4: Reconstruction errors (RMSE) on UUV data for compound sensor
changes. Each entry shows the average reconstruction error and the corresponding
standard error. Imp. shows the average improvement (in %) of ASC over the best
baseline method. The best performing method(s) (statistically significant up to
one standard error) are in bold font.

Sensor Replace Refer ReferZ ASC Imp.
surge 2.47 ± 0.14 0.71 ± 0.084 0.67 ± 0.078 0.62 ± 0.081 6.0
heave 0.094 ± 0.0063 0.026 ± 0.0073 0.026 ± 0.0070 0.024 ± 0.0073 3.4
sway 2.31 ± 0.13 0.78 ± 0.079 0.75 ± 0.080 0.75 ± 0.076 -0.5

4.3 Evaluation in BRASS Project

In the evaluation of the BRASS Project [62] Phase 1, we conducted extensive

experiments on Weather Underground Data. We organize data into 13 clusters,
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covering 13 regions in Los Angeles, San Francisco, Austin and Chicago. In each

cluster, there are 3 weather stations, each containing 2 years of weather data. Five

individual sensors (temperature, humidity, dew point, wind speed and wind gust)

are used in all stations.

We evaluate our adaptation algorithms over randomly chosen clusters, stations,

sensors, and time periods. Once a random cluster is chosen, we randomly pick

two stations (A1 and A2). Since the two stations are from the same cluster,

their sensor values are relatively similar. We further randomly pick an individual

sensor from station A1, and replace it with the same individual sensor from station

A2. To enable adaptation, we use training data from a 2-month time period

(without sensor change), 1-month data for the adaptation period (sensor change

happens in the beginning), and 1-month data for the evaluation period. The

four-month data are consecutive, as shown in Fig. 4.3. The goal is to learn an

adaptation function based on the data in the training and adaptation periods, and

then evaluate adaptation performance in the evaluation period.

Figure 4.3: Illustration of training, adaptation and evaluation periods in the
BRASS project evaluation.

To determine whether an adaptation succeeds or not, we introduce a benchmark

called reference error. It defines an error bound that our system can tolerate. If

adaptation error is less than reference error, we consider the adaptation successful.
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In our implementation, we estimate reference error by averaging the errors between

every pair of weather stations in a cluster over the evaluation period.

Table 4.5 summaries adaptation performance on random tests described above.

Our evaluation is performed on cases where the error of no adaptation (i.e., direct

use of the new sensor) exceeds the reference error. ASC achieves high success

rate on temperature, humidity, dew point and wind speed. On wind gust, the

success rate is relatively low, because wind gust is hard to reconstruct due to large

variance. Despite some chances of failures, ASC shows positive improvement over

reference error on all individual sensors.

Table 4.5: Adaptation performance on random tests in the BRASS project evalu-
ation.

Sensor Success rate (%) Avg. Imp. over ref error (%)
temperature 95.4 61.6
humidity 96 65.8
dew point 100 71.1
wind speed 84.6 28.7
wind gust 66.7 24.0

Fig. 4.4 shows the reconstructed wind gust in one random test. The blue curve

presents the wind gust from a target station and a nearby station. The red curve

presents the wind gust after adaptation, which is much more similar to the original

signal in the training period.

4.4 Estimating Adaptation Quality

To build survivable software, estimating the quality of adaptation is also impor-

tant since it enables higher-layer software components to determine whether or not
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Figure 4.4: Visualization of reconstructed wind gust by ASC. Blue curve repre-
sents observed sensor values and red curve represents reconstructed sensor values.

to accept a proposed adaptation. Towards this end, we develop a method to esti-

mate an error interval for the gap between the reconstructed sensor value and the

ground truth.

We would like to obtain such an error interval for each reconstructed sensor

value and for each sample in the target domain. Given a reconstructed sample

in the target domain [zt,1:K′ ; fΘ(zt)], we estimate its error interval for a given

reconstructed sensor value from similar samples in the source domain:

1. Find its κ nearest neighbors in the source domain according to distances

defined in Eq. (4.3);
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2. Compute the standard deviation σ on the given reconstructed sensor value

among the κ neighbors found in Step 1;

3. Set the estimated error interval to be [−ασ, ασ], where α > 0 is a scaling

factor. An ideal α makes the error interval as tight as possible. α can be

tuned on source-domain samples by optimizing the “excess error” notion

defined below.

Excess Error of the Error Interval. To quantify the tightness of the esti-

mated error interval, we use the notion of excess error. It is defined as the gap

between the ground-truth value and the closest endpoint of the error interval, when

the interval contains the ground-truth value. Fig. 4.5 illustrates this notion. If the

interval does not contain the ground-truth value, we consider the interval invalid.

In practice, we can tolerate a small failure rate of the estimated error interval by

setting a recall parameter (e.g., 90%). We can then find the smallest α to achieve

the given recall and compute the corresponding excess error. Clearly, we favor a

smaller excess error as it results in a tighter error interval. We present the results

of excess errors in the next section.

reconstruction error 

excess error of 

error interval

reconstructed value y

ground-truth value

y + ɛ 

y - ɛ 

error interval

Figure 4.5: Notion of excess error of the error interval.
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4.5 Ability to Exploit Many Sensors

As an increasing number of sensors are deployed in real-world systems, it is

crucial forASC to be able to exploit many sensors. This also enables our approach

to be deployed in an open environment where new sensors continuously emerge.

Dealing with a large number of sensors is challenging in two aspects:

• Noisy sensors are likely to be involved and can degrade adaptation perfor-

mance. For example, if some reference sensors produce highly noisy values,

the nearest neighbor distances can suffer from the noise. Also, noisy values

in reference or new sensors can cause the optimization algorithm to get stuck

in poor local minima;

• Large number of sensors leads to a large parameter space of Θ, which signif-

icantly increases the computational cost.

In addressing these issues, we develop a two-step procedure to select a subset of

useful sensors:

1. Selecting a subset of reference sensors: for each reference sensor, compute the

average correlation between its sensor values and those from each replaced

sensor, and then select Nref reference sensors with the largest average corre-

lation scores;

2. Selecting a subset of new sensors: for each new sensor, compute the average

correlation between its sensor values and those from each replaced sensor as

well as each selected reference sensor in Step 1, and then select Nnew new

sensors with the largest average correlation scores.

Here, Nref and Nnew are set by the user in specific applications. We denote this

improved approach as ASCSEL.
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Experiments. We use the same triplets in Section 4.2.1. For each triplet, we

use A1 as the compound sensor, and simulate reference sensors and new sensors

from the remaining 29 stations. Specifically, sensors from 15 randomly selected

stations are used as reference sensors, and sensors from the other 14 stations are

used as new sensors. This makes the total number of sensors exceed 200.4 Table 4.6

reports the results for individual sensor changes, whereASCSEL usesNref = Nnew =

10. In terms of reconstruction errors, ASCSEL achieves statistically significant

improvement over ASC in all cases. Note that ASCSEL outperforms ASC from

Table 4.1, which reveals that a large pool of reference and new sensors actually

help. In contrast, ASC from Table 4.6 performs worse than itself from Table 4.1

due to overfitting. This demonstrates the efficacy of our sensor selection procedure

when the number of sensors is large. In terms of excess errors, ASCSEL achieves

smaller values than ASC, consistent with the fact that ASCSEL learns better

reconstruction functions. The excess errors on wind speed and wind gust are

relatively large, because these sensor values exhibit large variances and are difficult

to reconstruct. We observe similar trends in the scenario of compound sensor

changes.

4.6 Leveraging Spatial and Temporal Informa-

tion

One way to improve adaptation performance is to exploit additional information

about sensors. In particular, we are interested in leveraging spatial and temporal

information about sensors which can be easily obtained in practice [25, 36]. In the

context of weather stations, suppose one station accesses the temperature sensor

4Some stations have additional types of sensors, e.g., precipitation.
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Table 4.6: Individual sensor changes on weather data with many sensors. Each
entry shows the average reconstruction error and the corresponding standard error.
The best performing method(s) (statistically significant up to one standard error)
are in bold font.

replaced sensor Reconstruction Error Excess Error
ASC ASCSEL ASC ASCSEL

temperature (◦F) 0.47 ± 0.012 0.38 ± 0.009 0.34 ± 0.010 0.22 ± 0.009
humidity (%) 0.53 ± 0.016 0.47 ± 0.014 0.42 ± 0.014 0.31 ± 0.011
dew point (◦F) 0.47 ± 0.012 0.44 ± 0.009 0.37 ± 0.010 0.25 ± 0.009

wind speed (mph) 5.04 ± 0.061 4.83 ± 0.059 4.36 ± 0.052 3.71 ± 0.055
wind gust (mph) 6.28 ± 0.052 5.61 ± 0.045 4.75 ± 0.041 3.96 ± 0.042
pressure (Pa) 3.17 ± 0.19 1.68 ± 0.18 2.68 ± 0.19 1.04 ± 0.18

from another station. We can access the location information (e.g., latitude, longi-

tude, altitude) about both sensors, as well as the exact timestamps of their sensor

values. We are interested in learning calibration functions that can align sen-

sor values from different sensors based on their spatial and temporal information.

Once such calibration functions are learned, they can be used to pre-calibrate new

sensors before learning adaptation functions. Intuitively, such calibration makes

new sensors better aligned to old sensors and may improve the robustness and

accuracy of the learned adaptation functions.

Suppose we focus on adapting sensors from station A and would like to calibrate

sensor values from station B. Let xA be a sensor value from station A, and xB be

a sensor value from station B. Note that xA, xB are from the same type of sensor,

and xB needs to be the closest to xA in terms of timestamp. Let δtB be the time

difference between xB and xA’s timestamps. For example, δtB = 2 if xB is received

2 time units before xA. Additionally, let laA, loA, alA and laB, loB, alB denote the
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latitude, longitude and altitude of stations A and B, respectively. We can then

learn a calibration function g() in the following form:

xA ≈ g(laA, loA, alA, laB, loB, alB, xB, δtB) (4.12)

We can further expand g() to include M sensor values from station B and their

time differences to xA:

g(laA, loA, alA, laB, loB, alB, x1B, δt1B, x2B, δt2B, · · · , xMB, δtMB) (4.13)

By using more sensor values, the learned g() can be more accurate and robust.

We can learn g() from historical data using regression methods such as neural

networks. In our implementation, we use historical data covering stations from a

number of different regions, so that the learned function can be highly robust. We

set M = 5.

We apply the learned calibration function to both reference sensors and new

sensors, so that their calibrated sensor values are more consistent with those values

from the replaced sensors. Intuitively, this makes the overall adaptation easier,

which may reduce the reconstruction error. Therefore, we can also view the overall

approach as a two-step adaptation approach: the calibration as the first step, and

ASC as the second step.

We report the adaptation results in Tables 4.7 and 4.8, where ASCCALI is

ASC applied after the calibration. ASCCALI shows statistically significant

improvement over ASC on wind speed and wind gust. These two sensors have
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larger variances in sensor values and the calibration effectively reduces their vari-

ances across stations before the adaptation. We also observe that the improve-

ment on compound sensor changes is slightly larger than that on individual sensor

changes.

Table 4.7: Reconstruction errors (RMSE) on weather data for individual sensor
changes. Each entry shows the average reconstruction error and the corresponding
standard error. Imp. shows the average improvement (in %) of ASCCALI overASC.
The best performing method(s) (statistically significant up to one standard error)
are in bold font.

Sensor ASC ASCCALI Imp.
temperature 0.57 ± 0.010 0.57 ± 0.009 0.3
humidity 0.72 ± 0.015 0.71 ± 0.015 1.4
dew point 0.67 ± 0.010 0.67 ± 0.009 0.0
wind speed 5.11 ± 0.060 4.98 ± 0.061 2.6
wind gust 6.31 ± 0.046 6.18 ± 0.050 2.1
pressure 1.83 ± 0.17 1.80 ± 0.15 1.5

Table 4.8: Reconstruction errors (RMSE) on weather data for compound sensor
changes. Each entry shows the average reconstruction error and the corresponding
standard error. Imp. shows the average improvement (in %) of ASCCALI overASC.
The best performing method(s) (statistically significant up to one standard error)
are in bold font.

Sensor ASC ASCCALI Imp.
temperature 0.68 ± 0.014 0.67 ± 0.012 0.9
humidity 0.87 ± 0.022 0.86 ± 0.018 1.5
dew point 0.72 ± 0.011 0.72 ± 0.010 0.2
wind speed 6.13 ± 0.082 5.94 ± 0.083 3.2
wind gust 6.83 ± 0.070 6.65 ± 0.068 2.7
pressure 2.26 ± 0.18 2.23 ± 0.19 1.3
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Chapter 5

Model-level Adaptation to Sensor

Changes

5.1 Problem Setting

Model-level adaptation attempts to adapt a model trained on the source domain

to the target domain. In this chapter, we follow the same problem setting in

Chapter 2, except that we further assume the availability of class labels for source-

domain samples. We denote ys as the label of xs, s = 1, · · · , S. Note that there is

no label in the target domain.

The above problem setting is typically referred to as unsupervised domain adap-

tation. It is especially challenging as the target domain does not explicitly provide

any information on how to optimize classifiers.

5.2 Approach

Most of the existing approaches [89, 14, 61, 78, 49] follow a two-stage learn-

ing paradigm. They first identify a domain-invariant feature space such that the

marginal distributions of the two domains are the same in the new feature space.

Then, these approaches learn classifiers in the new space and expect the learned

classifiers to perform equally well in both domains. Theoretical analyses have

showed that the loss on the target domain for any labeling function depends on
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the difference between the marginal distributions, thus justifying the need to iden-

tify a feature space such that the two domains look alike [13, 71].

We hypothesize that this view and practice of two-stage learning are restrictive.

One possible fallacy is that maximizing the similarity in marginal distributions

bears no direct consequence on (dis)similarities between posterior distributions.

Thus, if there are multiple feature spaces where the source and the target domains

have similar marginals, there is no reason to believe that a classifier trained on an

arbitrarily chosen one would necessarily perform well on the target domain. As an

extreme case, projecting features onto irrelevant feature dimensions would make

the two domains look very much alike!

Hence, the caveat is to retain discriminative information for constructing clas-

sifiers while we search for the domain-invariant feature space. This seems relatively

straightforward to achieve if all we care is the discriminative information about the

labels in the source domain. However, our main goal is to have good classifiers

for the target domain. Thus, our challenge is about how to be discriminative

without labels.

To address this challenge, we propose a novel learning algorithm for unsuper-

vised domain adaptation as an extension of our previous work [88], which is also

described in this chapter. As opposed to the existing two-stage approaches where

new feature spaces and classifiers are separately optimized, our approach combines

the two in a single stage. Moreover, the new feature space is discriminative with

respect to the target domain.

Main Idea. We assume that discriminative clustering is possible. In other

words, we assume that data in both the source and target domains are tightly

clustered and clusters correspond to classes. We also assume that for the same

class, the clusters from the two domains are geometrically close to each other. Fig.
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5.1 illustrates these two assumptions and how they can be exploited for adapta-

tion. Leveraging these assumptions, our formulation of learning the optimal feature

space balances two forces: maximizing domain similarity that makes the source and

target domains look alike, and (approximately) minimizing expected classification

error on the target domain. We define these two forces with information-theoretic

quantities: the domain similarity being the negated mutual information between

all data and their binary domain labels (source versus target) and the expected

classification error being the negated mutual information between the target data

and its cluster (i.e., class) labels estimated from the source data. These two quan-

tities are directly motivated by the nearest neighbor classifiers we use in the new

feature space.

Our adaptation approach can be applied to both scenarios of individual sen-

sor changes and compound sensor changes. It jointly learns two transformation

matrices, one for the source domain and one for the target domain. In the special

case that both domains have the same number of individual sensors, our approach

learns one common transformation matrix.

Our objective is to construct a target-domain classifier f : z ∈ RK′+P → y.

We would like the classifier to perform well on the target domain from which zt

is sampled. This is inherently an ill-posed problem as we do not have any labels

from the target domain.

To overcome this difficulty, we leverage the discriminative clustering assump-

tions which previously described. We assume that there is a latent feature space

such that i) data in the source and target domains form well-separated clusters and

the clusters correspond to labels; and ii) the clusters from the source domain are

geometrically close to those from the target domain if they have the same labels.
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Figure 5.1: Schematic illustration of our main idea on exploiting discriminative
clustering for unsupervised domain adaptation. Data in the source domain (within
circles) and the target domain (within ovals) are tightly clustered, corresponding
to their class labels. Moreover, clusters from the two domains are “aligned” if they
correspond to the same class. Assuming and exploiting such structures in the data,
classifier boundaries for the source domain (dashed lines in the left diagram) are
adapted discriminatively to the target domain (dashed lines in the right diagram),
minimizing the expected classification errors on the target domain. The target
data is then classified with adapted classifiers.

We show how these assumptions can be used to derive information-theoretic

quantities which reflect data characteristics in each domain. These quantities are

parameterized in terms of the latent feature space which is in turn a linear transfor-

mation of the original feature space. We then show how to combine these quantities

so that the optimal linear transformations can be learned from data. We begin by

describing a few key notions.

Conditional Models In the Feature Space. Let the dimensionality of the

latent feature space be d. Consider the latent feature space induced by a linear

transformation L ∈ Rd×K on x and a linear transformation B ∈ Rd×(K′+P ) on z.

In the new feature space, we use k-nearest neighbors (kNN) for classification since

we assume that data form well-separated clusters. Moreover, we choose k = 1 to

avoid cross-validating this parameter.
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Let u be a point in the latent feature space. Let us = Lxs and ut = Bzt. The

squared distance between two points ui and uj in this feature space is thus given

by d2
ij = ‖ui − uj‖2

2.

Given a point ui and a set of data points {uj} that do not contain ui, we use

the following model

pij = e−d2
ij∑

j e
−d2

ij

(5.1)

to define the conditional probability of having uj as ui’s nearest neighbor.

The above conditional model has been used in many contexts, including metric

learning [46], dimensionality reduction [59], etc. Characterizing how close a point

ui is to other points, this model gives rise to an estimate of the posterior p(yi = c|ui)

for labeling ui with the class label c, assuming the class labels of {uj} are known,

p̂ic =
∑
j 6=i

pijδjc (5.2)

where δjc is 1 if uj’s label is c, and 0 otherwise. Since pij is a normalized probability,

p̂ic is normalized as well. For example, if the label of ui is known,
∑

c p̂icδic would

be the probability of correctly classifying ui.

Discriminative Clustering in the Source. To derive a classifier that can

perform well on the target domain, we would certainly need the classifier to perform

well on the source domain because we assume that the two domains share similar

clustering structures. Thus, our first desideratum is to minimize the expected

classification error on the source domain, when we classify it using 1-NN. This error
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is estimated using 1 minus the empirical average of the leave-one-out accuracy for

any given point us in the source domain:

εs = 1− 1
N
∑

s

∑
c

p̂scδsc (5.3)

Note that, if we minimize this error alone and ignore the target domain, we arrive

at the metric learning technique in [46].

Discriminative clustering in the target. Since we do not have labels on the

target domain, we cannot define the expected classification error as we did in

Eq. (5.3) for the source domain. The challenge, therefore, is how to be discrim-

inative without using labels.

Consider an instance ut from the target domain and all the instances {us}

from the source domain. The conditional model pts of Eq. (5.1) gives rise to

the probability of having a particular us as the nearest neighbor of ut. Using this

conditional model in conjunction with the source labels to compute the posterior as

in Eq. (5.2) would be incorrect for the target domain. However, if our assumptions

about the two sets of clusters being geometrically close to each other indeed hold

in the dataset, then the estimate p̂tc should be close to the true posterior.

If p̂tc approximates the true posterior well and our assumption that the target

data are well clustered holds, then we can reasonably expect the C-dimensional

probability vector p̂t = [p̂t1, p̂t2, . . . , p̂tC] to look like an ideal posterior probability

vector [0, 0, . . . , 1, . . . , 0] where the only nonzero element 1 occurs at the position

corresponding to the correct label.

Since we do not know the true label, we cannot directly measure the similarity

of p̂t to the correct and ideal posterior vector. Nonetheless, we can express our
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desideratum as reducing the entropy of p̂t such that it contains the least amount

of confusing labels.

Let H[p] denote the entropy of a probability vector p. If we minimize ∑t H[p̂t]

alone, we could arrive at a degenerate solution where every point xt is assigned

to the same class. To avoid this, we instead maximize the mutual information

between the projected data U in the latent feature space and the estimated label

Ŷ using p̂,

It(U ; Ŷ ) = H[p̂0]−
1
T

∑
t

H[p̂t] (5.4)

and the prior distribution p̂0 is given by p̂0 = 1/T (∑t p̂t). Note that using the

empirical distribution of the labels in the source domain to estimate the prior p̂0

could still lead to degenerate solutions when the labels are uniformly distributed.

Minimizing the entropy (or similarly, maximizing the mutual information) has

been previously studied in the context of (discriminative) clustering [47, 38]. This

criterion identifies a feature representation that classifiers can use to achieve a

lower-bound of misclassification error, due to Fano’s inequality [42].

Discriminability: source versus target domains. The previous discussion

on discriminative clustering in the target domain hinges on the assumption that

clusters for the source and the target domains are not too far from each other. We

quantify this notion more precisely in the following paragraphs. Conceptually, it

is similar to the idea in existing work that makes marginal distributions similar

across domains.

Why is such a notion desirable? In order to use the source domain’s labels as a

proxy to estimate the posterior probabilities for the target data (as in Eq. (5.2)),

we would like the source and the target domains to share some common probability

supports in the feature space. In particular, consider the case where we classify two
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instances ut and ut′ from the target domain. They are deemed to have the same

label c if there are plenty of labeled source data in class c in their neighborhoods.

We would then expect that, with high likelihood, ut and ut′ are in each other’s

set of nearest neighbors too; otherwise, the cluster corresponding to class c in the

target domain would not be very “tight”.

Having instances from both domains in ut’s set of nearest neighbors thus entails

the following. If we create a binary classification problem and assign qi = 1 when

ui is from the source domain and qi = 0 when ui is from the target domain, then

given ui, we are unable to determine well above chance level where this instance

comes from.

Instead of constructing an actual binary classifier, we express our desideratum

as minimizing the mutual information between the data sample U in the latent

feature space and its (binary) domain label Q. Analogous to Eq. (5.4), the mutual

information is given by,

Ist(U ;Q) = H[q̂0]−
1

S + T

∑
i

H[q̂i] (5.5)

where q̂i is the two-dimensional posterior probability vector of assigning ui to

either the source or the target domains, given all other data points from the two

domains. Concretely, the probability is computed according to Eq. (5.2), except

for the class label δjc being replaced by the domain label of uj. The estimated

prior distribution q̂0 is computed as 1/(S + T )(∑i q̂i).

One might wonder why we do not compute and minimize the expected error

as in the source domain classification Eq. (5.3). This is because we would like to

leave some room for the possibility that a certain portion of the data in one domain

could be “outliers” to the other domain. Minimizing domain classification error
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would have the adverse effect of forcing the two domains to be exactly the same.

For instance, a degenerate solution would be to map every point to the origin of

the feature space.

We mention in passing that the accuracy of a binary domain classifier reflects

similarities between domains [15], thus approximating the original intractable com-

binatorial measure of similarities [13].

Learning and model selection. We have described three information-theoretic

quantities: classification accuracies on the source domain εS of Eq. (5.3), discrim-

inative clustering on the target domain It(U ; Ŷ ) of Eq. (5.4), and discriminability

between the source and the target domains Ist(U ;Q) of Eq. (5.5).

These quantities have been derived from our assumptions about the source and

target domains, specifically, the discriminative clustering structures. They are all

parameterized in the linear transformations L and B.

We learn the optimal L and B by balancing these quantities in the following

optimization problem

minimize − It(U ; Ŷ ) + λIst(U ;Q)

subject to Trace(LTL) ≤ K, Trace(BTB) ≤ K ′ + P
(5.6)

where the constraints are used to control the scale of distances computed using L

and B.

The regularization coefficient λ needs to be cross-validated. We choose the

optimal λ that attains the minimum value of εS. Intuitively, εS is defined on the

source domain with labeled data and is therefore more sensible to be used for

model selection. Other ways of combining these quantities were also experimented

with, although the above performs the best in practice.
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We comment briefly on the difference between our formulation and the entropy

minimization framework for semi-supervised learning [50]. Their goal is to reduce

uncertainty of labeling the unlabeled data. Thus, they use only the entropy term

Eq. (5.2). More distinctively, they do not need to make the two domains look alike

and thus there is no need for them to learn a feature space, nor to include a term

to minimize the discriminability between the domains.

Numerical Optimization. Eq. (5.6) is a non-convex optimization problem. We

use gradient-based methods to optimize the objective function. We use the PCA

of the source-domain data to initialize L and the PCA of the target-domain data

to initialize B.

5.3 Empirical Study

In this section, we first evaluate our adaptation method on object recognition

and sentiment analysis tasks. For these two tasks, the source and target domains

share the same feature space; thus we have L = B, and only optimize one matrix.

These experimental results are in our earlier publication [88]. We later evaluate

our method in the context of model-level adaptation to sensor changes, where the

number of individual sensors in the source and target domains can be different. In

this case, we learn both L and B jointly.

5.3.1 Object Recognition and Sentiment Analysis

Object recognition. We use four databases of object images: Caltech-

256 [51], Amazon (images from online merchants’s catalogues), Webcam (low-

resolution images by web cameras), and DSLR (high-resolution images by digital
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SLR cameras). The last three datasets were studied in [49, 85]. Caltech-256 is

added to increase the diversity of the domains.

We treat each dataset as a domain. There are 10 common object cate-

gories: backpack, coffee-mug, calculator, computer-keyboard, computer-monitor,

computer-mouse, head-phones, laptop-101, touring-bike, and video-projector.

There are 2533 images in total, with 8 to 151 images per category per domain.

Following the experimental protocols in previous work [85], we extract SURF

features [11] and encode each image with a 800-bin histogram (the codebook is

trained from a subset of Amazon images). The histograms are first normalized to

have zero mean and unit standard deviation in each dimension.

For each pair of source and target domains, we conduct experiments in 20

random trials. In each trial, we randomly sample labeled data in the source domain

as the training set, and unlabeled data in the target domain as the testing set.

Sentiment analysis. We use the dataset that consists of Amazon product

reviews on four product types: kitchen appliances, DVDs, books and electron-

ics [15]. Each product type is used as a separate domain. Each domain has 1,000

positive and 1,000 negative reviews. To reduce computational cost, we select the

top 400 words of the largest mutual information with the labels. We then repre-

sent each review with a 400-dimensional vector of term counts (ie, bag-of-words).

The vectors are normalized to have zero mean and unit standard deviation in each

dimension.

For each pair of source and target domains, we conduct experiments in 10

random trials. In each trial, we randomly sample 1,600 labeled data in the source

domain as the training set, and all data in the target domain as the testing set.

Classification. We learn the feature transformation L by solving the opti-

mization problem Eq. (5.6). We then transform all the data using the matrix
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and apply 1-nearest neighbor (1-NN) to classify instances from the target domain.

1-NN is used to avoid tuning the number of nearest neighbors.

Hyperparameter tuning. Our method has two hyper-parameters: the

dimensionality of the latent feature space and the regularization coefficient λ in

Eq. (5.6). We cross-validate them using the model selection procedure described in

Section 5.2. The range of search for the dimensionality is {20, 40, 70, 100} and for

λ is {0, 0.25, 1, 4, 16, 64}. For baselines we compare to, we follow their procedures

for tuning hyper-parameters.

We compare extensively to several methods.

• PCA, where we project all data into the PCA directions computed on the

target domain.

• LMNN [99], where we train a large margin nearest neighbor classifier using

only the source-domain labeled data.

• Transfer Component Analysis (TCA) [78]. This method finds a low-

dimensional linear projection such that the source and the target domains

have similar marginal distributions, regularized by preserving variances in all

the data. To measure similarities in marginals, the method maps data to a

kernel feature space. We use Gaussian RBF kernels.

• Geodesic Flow Subspaces (GFS) [49]. This method interpolates (on Grass-

man manifold) between the PCA subspaces computed on the source and the

target domains respectively. The interpolated subspaces are then used to

transform the original features to form super-vectors. The dimensionality of

the super-vectors is then reduced before applying 1-NN for classification.
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• Structural Correspondence Learning (SCL) [16]. This method augments

original features with linearly transformed features. The linear transforma-

tion is computed as the principal directions of parameters in binary classifiers

predicting whether pivot features are present or not. In our experiments, we

have used all 400 features as pivot features. We then train SVMs with the

augmented feature vectors on the source domains and apply the resulting

classifiers to the target domains.

Table 5.1 and Table 5.2 summarize the classification accuracies as well as stan-

dard errors of all the above methods, including Ours (we did not apply SCL to

object recognition as it is difficult to define what pivot features are for those types

of data). We chose a subset of all pairs for reducing experimentation time. The

best performing algorithm(s) (statistically significant up to one standard error) for

each pair are in bold font.

In Table 5.1 on object recognition, Ours performs the best on 5 out of 6 pairs,

outperforming other competing methods by a large margin. On the DSLR-Amazon

pair, Ours performs worse than LMNN, but still significantly better than others.

Of particular interest is that LMNN outperforms other methods specifically

designed for domain adaptation (excluding Ours). This confirms our hypothesis:

the two-stage learning schemes adopted by TCA and GFS suffer from the fallacy

that maximizing marginal similarity does not necessarily lead to well-performing

classifiers on the target domain. In particular, we believe that such methods could

actually destroy discriminative information by forcing the domains to be similar.

The results thus support our argument that one-stage learning, namely identi-

fying jointly discriminative clustering and low-dimensional feature spaces, is crucial

for domain adaptation.
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Table 5.1: Classification accuracies on target domains (object recognition task).
Each entry shows the average reconstruction error and the corresponding standard
error. Imp. shows the average improvement (in %) of Ours over the best base-
line method. The best performing method(s) (statistically significant up to one
standard error) are in bold font.

Source → Target PCA TCA GFS LMNN Ours
DSLR → Webcam 80.6±0.5 66.2±0.5 75.5±0.4 81.3±0.4 83.6±0.5
DSLR → Amazon 35.1±0.3 31.4±0.2 35.7±0.5 42.3±0.3 39.6±0.4
Caltech → DSLR 36.6±1.2 33.1±0.8 36.5±0.9 37.2±1.1 44.4±1.2
Caltech → Amazon 37.7±0.5 34.9±0.4 37.9±0.5 43.2±0.4 49.2±0.6
Amazon → Webcam 33.1±0.6 26.5±0.8 32.8±0.7 35.2±0.8 38.5±1.3
Amazon → Caltech 35.9±0.3 29.3±0.3 36.1±0.5 37.6±0.4 40.0±0.4

Table 5.2: Classification accuracies on target domains (sentiment analysis task)
Each entry shows the average reconstruction error and the corresponding standard
error. Imp. shows the average improvement (in %) of Ours over the best base-
line method. The best performing method(s) (statistically significant up to one
standard error) are in bold font.

Source → Target PCA SCL TCA GFS LMNN Ours
Kitchen → DVD 66.1±0.7 73.2±0.6 64.9±0.5 67.9±1.0 70.8±0.5 75.4±0.6
DVD → Books 66.4±0.4 79.2±0.4 64±0.7 70.8±0.6 71.7±0.6 78.4±0.5
Books → Elec. 63.6±0.9 75.6±0.6 62.7±0.7 67.2±1.0 69.2±0.6 79.2±0.9
Elec. → Kitchen 71.8±0.4 84.5±0.5 69.5±0.7 75.8±1.2 77.3±0.6 82.9±0.5

The results on sentiment analysis in Table 5.2 also strongly support similar

conclusions. Note that both SCL and our methods outperform other methods

significantly. Our methods perform better on 2 out of 4 pairs, though slightly

worse than SCL on the other two.

5.3.2 Weather Condition Classification

We evaluate our model-level approach on a weather condition classification task

based on Weather Underground data. We use the weather condition as the class

label, which is one of three possibilities: cloudy, clear and rainy. We consider six

pairs of source and target domains (LA→ SF, SF→ LA, LA→ AU, AU→ LA, SF

57



→ AU, AU → SF). For each pair, we conduct experiments in 10 random trials. In

each trial, we randomly select 3,000 samples in the source domain as the training

set and 3,000 samples in the target domain as the test set.

Classification. We learn the feature transformations L and B by solving the

optimization problem Eq. (5.6). We then transform all the data using the learned

matrices and apply 1-nearest neighbor (1-NN) to classify instances from the target

domain.

Hyperparameter tuning. We set the range of search for the dimensionality

as {4, 5, 6} and for λ as {0, 0.25, 1, 4, 16, 64}.

We compare our method to baseline methods PCA, TCA and GFS described

above. We report the results in Table 5.3. On 5 out of 6 pairs, Ours improves

over the best baseline method. Ours performs comparably to TCA and GFS

only on the pair SF → AU. The results demonstrate the efficacy of our approach

for model-level adaptation.

Table 5.3: Classification accuracies on target domains with model-level adapta-
tion. Each entry shows the average reconstruction error and the corresponding
standard error. Imp. shows the average improvement (in %) of Ours over the best
baseline method. The best performing method(s) (statistically significant up to
one standard error) are in bold font.

Source → Target PCA TCA GFS Ours Imp.
LA → SF 81.2 ± 0.5 78.3 ± 0.6 80.7 ± 0.5 84.6 ± 0.6 4.2
SF → LA 81.0 ± 0.5 80.6 ± 0.5 81.4 ± 0.4 85.2 ± 0.4 4.7
LA → AU 69.4 ± 0.7 68.5 ± 0.8 70.5 ± 0.6 72.4 ± 0.7 2.8
AU → LA 70.3 ± 0.4 71.2 ± 0.4 71.6 ± 0.5 74.3 ± 0.4 3.8
SF → AU 73.7 ± 0.6 74.8 ± 0.6 75.9 ± 0.5 75.8 ± 0.6 -0.2
AU → SF 72.1 ± 0.3 72.4 ± 0.4 73.2 ± 0.4 75.1 ± 0.3 2.6
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Chapter 6

Joint Detection and Adaptation

to Sensor Failures

6.1 Overview

In Chapters 3 and 4, we assumed that failures are known and focused on sensor-

level adaptation. In practice, however, sensor failures are often unknown. In

this chapter, we present a novel machine learning framework called JDA (Joint

Detection and Adaptation) that performs sensor failure detection and adaptation

jointly.

Similar to our sensor-level adaptation approach in Chapter 3, the key of JDA is

to exploit the reconstruction relationships among sensors, i.e., how one sensor value

can be reconstructed from other sensor values. This is based on the observation

that, in real-world systems, sensor values are often correlated [41]. Taking weather

sensors as an example, temperature, dew point and humidity are highly corre-

lated [2]; and each sensor value can be efficiently reconstructed from the other

two. While reconstruction relationships can be generally complex, our framework

decomposes this complexity into a set of simpler constraints. In particular, it uses

a substrate of inequality constraints that resemble

(temperature− f(dew point, humidity))2 ≤ ε2, (6.1)
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where f() is a function that captures known sensor relationships, and ε2 is the

corresponding error bound. These constraints provide a joint view for sensor failure

detection and adaptation when new sensor value readings come in.

• Detection: Our framework checks each constraint, and a sensor failure is

reported if one or more constraints are violated. We then infer the likely

failed sensor(s) from the violated constraints.

• Adaptation: Once the failed sensors are identified, our framework recon-

structs the failed sensor values from the remaining working sensor values

by solving the set of constraints. Tighter constraints correspond to more

accurate reconstruction relationships.

By using the same set of constraints for both detection and adaptation, our

approach provides an extensible way to address the interrelated problems in one

unified framework.

One important challenge in our framework is that the functions f() are not

necessarily given to us beforehand. Thus, a second operating idea in our framework

is to extract them from historical sensor data. The extraction procedure considers

different combinations of sensors and derives the functions f() using nonlinear

regression methods [73]. Compared to existing detection methods that extract

only linear relationships [36], our extraction procedure not only enables learning

more complex functions f() but also results in lower reconstruction errors produced

by the entire framework.

To enhance the usefulness of the proposed framework for practical applications,

we provide one additional feature: when a sensor failure occurs, we not only detect

it but also identify its mode of failure. This enables our detection procedure to

provide additional information to higher layers of the software system, which in
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turn facilitates faster recovery operations. We extract features from both observed

and reconstructed sensor values within a time window and classify them into five

common modes of failure (Outlier, Spike, Stuck-at, High-noise and Miscalibra-

tion) [76].

An empirical study of sensor data from the weather, appliances energy and

UUV domains shows that our framework detects sensor failures more accurately

than other competing methods. The results also demonstrate the overall efficacy

of our constraint-based framework in: (a) successfully identifying different modes

of sensor failures, (b) adapting to failures by efficiently reconstructing the required

sensor values, and (c) estimating the qualities of the reconstructed sensor values

for higher-level decisions.

6.2 Approach

Our framework exploits the observation that real-world systems are often

equipped with sensors that are correlated with each other. Such correlations

could exist either between different sensor types (e.g., temperature, dew point

and humidity from the same weather station) or within the same sensor type (e.g.,

wind speed in nearby weather stations). In this chapter, we explore a specific type

of relationship between sensor values that can be characterized by a reconstruction

function f(). A simple example illustrates this concept. Consider humidity HU

in %. It is well known that it can be accurately determined by temperature TP

in ◦C and dew point DP in ◦C [2]:

HU ≈ f(TP,DP ) = 100 exp( aDP

b+DP
− aTP

b+ TP
). (6.2)
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Here, f serves as a reconstruction function that takes input sensor values TP and

DP and outputs sensor value HU . a and b are constants. In practice, the following

constraint holds between the different sensor values.

(HU − f(TP,DP ))2 ≤ ε2, (6.3)

where ε2 is an error bound that intrinsically measures the reconstruction quality

of HU via f(TP,DP ). In addition, ε2 can be derived from historical sensor data.

For instance, we can set ε2 to be the minimum value such that 95% of historical

sensor values satisfy Eq. (6.3).

Assuming that the sensors for TP and DP work correctly, a failure in the

sensor for HU is characterized by the violation of the constraint in Eq. (6.3). In

fact, in such a case, we can even adapt to the failure by reconstructing HU via

f(TP,DP ); and doing so automatically satisfies Eq. (6.3). Additionally, ε2 in

Eq. (6.3) provides an estimate of the adaptation quality (discussed in Section 4.4).

However, the general challenge is that the sensors for TP and DP may not always

work correctly either. If one or more of them fail in addition to the failure of the

sensor for HU , Eq. (6.3) can neither be used to detect this failure nor can it be

used to reconstruct the value of HU . This problem persists whether or not f() is

explicitly known and whether or not it is learned using state-of-the-art machine

learning methods. Our framework therefore uses an additional layer of reasoning

beyond just a direct application of machine learning methods to learn relationships

between sensor values. In particular, it builds a substrate of constraints that retain

enough simplicity individually and yet capture enough complexity and redundancy

collectively. Our constraint-based framework can therefore be effectively used to
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first address the problem of sensor failure detection and then address the problem

of failed sensor value reconstruction.

We assume that any sensor value can be accessed at any time. In the first step

that addresses sensor failure detection, we are interested in detecting the possible

failure of sensor k at a desired time t, i.e., determining whether or not xt,k should

be deemed as being reliable. Of course, doing so allows us to detect sensor failures

instantly, without having to wait for a time window of sensor values. We also

assume that we are given N inequality constraints with reconstruction functions.

(We discuss how to actually derive such reconstruction functions in Section 6.2.3.)

Each such inequality constraint describes the relationship between a set of input

sensor values and an output sensor value. Specifically, the nth constraint is as

follows.

(yn − fn(γn))2 ≤ ε2
n, (6.4)

• yn: output sensor value at some time t, e.g., yn = x1,t;

• γn: input sensor values at time ≤ t, e.g., γn = [x2,t,x3,t]. Note that γn can

also involve input sensor values at time≤ t, e.g., γn = [x2,t,x3,t,x1,t−1,x2,t−1],

where x1,t−1 and x2,t−1 can be treated as additional input sensor values;

• fn(): reconstruction function that attempts to reconstruct yn from γn derived

from historical sensor data;

• ε2
n: a reconstruction error bound derived from historical sensor data.
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6.2.1 Detecting Sensor Failures

As the system receives sensor readings, it can check each constraint and identify

the violated ones at any given time t. If the nth constraint is violated, then at least

one sensor involved in that constraint has likely failed. Furthermore, the system

can infer the set of failed sensors from the set of violated constraints. To do this,

we first introduce K Boolean variables {vk}, for k = 1, 2, · · · , K, where vk is 1 if

sensor k has failed, and is 0 otherwise. The existence of at least one failed sensor

corresponding to each violated constraint translates to a set of linear constraints

on {vk}. For instance, if a violated constraint involves sensor 1 and sensor 3, then

the corresponding linear constraint is v1 +v3 ≥ 1, since at least one of v1, v3 should

have value 1. More generally, if the nth constraint is violated, then the sum of all

vk involved in [γn, yn] should be greater than or equal to 1.

∑
k∈[γn,yn]

vk ≥ 1 (6.5)

Our goal is to find an assignment of Boolean values to the variables {vk} so that

it represents the best possible explanation for the observed sensor values. Clearly,

such an assignment should satisfy all linear constraints of the form Eq. (6.5). But,

of course, this requirement alone is incomplete since it admits a vacuous solution,

e.g., vk = 1 for all k. Therefore, we further qualify our solution with the require-

ment that it has to minimize the total number of failed sensors. This formalization

is based on the intuition that sensors behave nominally most of the time and their

failure probabilities are typically much smaller than 0.5. Our formalization also

matches the ones popularly used in model-based diagnosis [23]. Of course, richer

formalizations can be developed with more information on the prior failure prob-

abilities of individual sensors and physical models of how they interact with each
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other. Importantly, any preferred formalization can be seamlessly incorporated in

our framework.

Overall, we now have the following combinatorial optimization problem for

sensor failure detection.

min
∑

k∈[1,K]
vk

s.t.
∑

k∈[γn,yn]
vk ≥ 1,∀n ∈ V (6.6)

vk ∈ {0, 1},∀k ∈ {1, 2, · · · , K}

where V denotes the set of indices of violated constraints. This problem is a specific

kind of a 0-1 Integer Linear Program (ILP), called the Hitting Set Problem, and

is NP-hard to solve in general. However, there are a number of heuristic and

approximation algorithms to solve it efficiently. In our implementation, we use

the cutting plane method [72] to convert it into a series of Linear Program (LP)

relaxations. The basic idea of the cutting plane method is to cut off parts of the

feasible region of the LP relaxation, so that the optimal integer solution becomes

an extreme point and therefore can be found by the simplex method [92]. It starts

by solving the following LP relaxation of (6.6):

min
∑

k∈[1,K]
vk

s.t.
∑

k∈[γn,yn]
vk ≥ 1,∀n ∈ V (6.7)

0 ≤ vk ≤ 1,∀k ∈ {1, 2, · · · , K}

Denote the optimal solution to (6.7) as v∗. For each element in v∗, if its value is

already an integer (0 or 1), then we fix its value in the subsequent LP relaxations;
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otherwise we treat it as a variable. Now we can solve a new LP relaxation which

only contains the variables with fractional values in the solution of the previous

LP relaxation. We iterate until all elements of v∗ are integers.

6.2.2 Adapting to Sensor Failures

When sensor failures are detected, we would like the system to automatically

adapt to such failures. Our adaptation strategy is to reconstruct the sensor values

of the failed sensors from the sensor values of other working sensors. This essen-

tially replaces failed physical sensors with working virtual sensors that enable the

system to continue its operation. For reconstructing a failed sensor’s values, our

approach identifies a constraint in which the output sensor is the failed sensor and

all input sensors are working sensors. Then, the corresponding reconstruction func-

tion is used. When multiple constraints qualify to be chosen for reconstruction,

our procedure selects the constraint with the lowest reconstruction error bound for

more accurate results. Specifically, to reconstruct the values of a failed sensor k,

we do the following:

1. Find all constraints with working input sensors and output sensor k.

2. Select the constraint with the lowest reconstruction error bound from this

set of constraints.

3. Apply the corresponding reconstruction function on the working input sensor

values.
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6.2.3 Learning Reconstruction Functions from Historical

Data

The detection and adaptation procedures discussed above assume that the

reconstruction functions are already given. In practice, however, such functions

may not be directly available. Instead, we automatically extract them from his-

torical sensor data. Ideally, the learned relationships are expected to have the

following properties.

• Accuracy: Each relationship should give us the capability to reconstruct the

output sensor value with reasonably low reconstruction error.

• Comprehensiveness: The relationships should be rich enough to help us

detect and adapt to various kinds of sensor failures. That is, we would like

to extract various types of useful relationships. For example, temperature

can be reconstructed using dew point and humidity from the same weather

station, and it may also be reconstructed using temperature from nearby

weather stations.

• Compactness: The relationships should be easy to state and understand.

There are two levels of compactness. First, each relationship should involve

only a small number of sensors. The lower the number of sensors, the smaller

the chance the constraint is violated. Using a small number of sensors in each

relationship improves the overall robustness of our framework and makes the

learned relationships more interpretable by humans. Second, the number of

learned relationships should also be small since this affects the complexity of

our algorithms.
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To learn sensor relationships with the above properties, we developed a method

that groups input sensors into a number of subsets and then learns reconstruction

functions within each subset. The subsets have the following properties.

• Sparsity: Each subset is of small cardinality.

• Disjointness: Subsets tend to be disjoint from each other.

The above properties significantly reduce the number of constraints without com-

promising the span of what relationships can be represented. In effect, such a

subset selection method ensures the compactness and comprehensiveness proper-

ties.

Our grouping procedure works as follows. Suppose we want to learn relation-

ships from the input sensor values at the same timestamp xt,1,xt,2, · · · ,xt,K to the

output sensor value yt.1 To discover the group of input sensors to include in the

first constraint, we learn a sparse vector w1 ∈ RK that selects a small subset of

the input sensors. Mathematically, we solve the following LASSO problem [93].

min
w1

∑
t

(wT

1 xt − yt)2 + λ
∑

k

|w1k| (6.8)

where ∑k |w1k| enforces the sparsity of w1 and ∑
t(w

T
1 xt − yt)2 minimizes the

reconstruction error between the linear combination of selected xt and yt over

historical data. λ > 0 is a tradeoff parameter that can be tuned using cross

validation.

Once we learn w1 and identify the relevant subset of the input sensors, a recon-

struction function can be learned in many possible ways. To ensure a high quality,

1Learning sensor relationships across timestamps is a straightforward generalization.
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we apply state-of-the-art nonlinear regression methods (e.g., neural networks) to

learn the reconstruction functions from historical data.

min
f

∑
t

(yt − f(subset of xt))2 (6.9)

The subset of input sensors needed for the second constraint can be learned

using a new sparse vector w2 ∈ RK that is conditioned on w1. Specifically, we

have

min
w2

∑
t

(wT

2 xt − yt)2 + λ
∑

k

|w1k||w2k| (6.10)

where ∑k |w1k||w2k| encourages w2 and w1 to retain a disjoint set of input sensors.

As before, we can derive the second reconstruction function from w2 following

Eq. (6.9).

More generally, we can learn the pth vector wp that identifies the subset of

input sensors in the pth constraint by solving

min
wp

∑
t

(wT

p xt − yt)2 + λ
∑

k

uk|wpk| (6.11)

where uk = (∑p−1
i=1 |wik|)/(p − 1), and ∑k uk|wpk| encourages wp to pick sensors

different from the ones chosen in the previous p− 1 subsets. The procedure stops

when the reconstruction error in Eq. (6.9) exceeds a pre-defined threshold or p

exceeds an upper bound.

Acceleration of Sensor Grouping When the number of sensors K is large,

solving a series of Eq. (6.11) instances can be computationally very expensive. As

an acceleration strategy, we can first cluster the input sensors into several high-level
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clusters based on their correlation matrix [100]. After that, we can apply the above

grouping procedure within each high-level cluster. Although this strategy ignores

possible relationships across high-level clusters, it is computationally attractive

and performs well empirically.

6.3 Identifying Modes of Sensor Failures

We consider five common modes of sensor failure [76]:

• Outlier: One or more sensor values are far away from the normal values.

• Spike: A band of consecutive sensor values exhibits a greater-than-expected

rate of change.

• Stuck-at: There is zero variation in the sensor values for an unexpected

length of time.

• High-noise: There is an unexpectedly high variation in the sensor values in

a period of time.

• Miscalibration: There is a constant offset from the ground truth for the

sensor values in a period of time.

Identifying the modes of sensor failures is essentially a multi-class classification

problem where the input is a time window of sensor values and the output is

the identified mode of failure. For such a classification problem, it is important

to consider a time window of sensor values because most modes of failure are

defined and identifiable only through characteristics of sensor values over a period

of time. While existing studies have already explored machine learning techniques

like neural networks to classify different modes of failure [27, 80], these methods
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only capture information from the failed sensor itself. On the other hand, in

our approach, we are able to naturally leverage information from multiple related

sensors and improve the accuracy and robustness of classification. Specifically,

our approach extracts features from the observed sensor values as well as the

reconstructed sensor values for a failed sensor. Therefore, the extracted features

capture essential information from the failed sensor and the other related working

sensors.

Let W be the user-specified size of the time window; and let the

observed sensor values of a failed sensor k within such a time window be

[xt−W +1,k,xt−W +2,k, · · · ,xt,k]. Additionally, let the reconstructed sensor values

computed for this failed sensor be [x̂t−W +1,k, x̂t−W +2,k, · · · , x̂t,k]. We first compute

informative statistics like the mean, minimum, maximum and standard deviation

on both the observed sensor values and the reconstructed sensor values. We then

concatenate the raw sensor values and these informative statistics to constitute an

input feature vector that can be used to train a classifier. We note that the length

of our feature vector depends only on the window size W but not on the number

of sensors.

6.4 Results on Weather and Appliance Energy

Data

We evaluate our JDA framework on sensor data from the weather and appli-

ance energy domains. For both datasets, we use the first half of the time series as

historical data required for learning the sensor relationships and the second half of

the time series as test data for evaluation. For the weather dataset, the number of

sensor failures is fairly small and the modes of sensor failures are also not uniformly

71



distributed. The appliance energy dataset does not contain any sensor failures at

all. In order to better evaluate the performances of various algorithms, therefore,

we simulate sensor failures in both domains based on a prior history of failures for

each sensor. To simulate sensor failures, we run the following procedure multiple

times for each sensor.

1. Select any point in the time series with probability 0.01.

2. Starting from each selected point, generate a time window with length chosen

uniformly at random from the interval [1, 30]. The time window should not

overlap with already generated time windows.

3. Select one of the 5 modes of failure uniformly at random.

4. Simulate sensor failures based on the selected mode. Specifically, we generate

an instance of each mode of failure in the following ways.

• Outlier: Set the middle point in the time window to an arbitrary value

that significantly deviates from the mean (by more than 3 standard

deviations).

• Spike: Set the middle point in the time window as an outlier; and set the

remaining points in the time window using linear interpolation between

the middle point and the boundary points.

• Stuck-at: Set all points in the time window to a fixed arbitrary value.

• High-noise: Add significant Gaussian noise to all points in the time

window.

• Miscalibration: Offset all points in the time window with a fixed arbi-

trary bias.
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We note that this procedure allows for simultaneous multiple sensor failures win-

dows generated for different sensors can overlap.

Detection of Failures For sensor failure detection, we compare JDA to several

baseline algorithms.

• NN: Nearest Neighbor method, which identifies a sensor failure if the sensor

values are far away from normal [67]. This method can detect sensor failure at

a vector level (i.e., a group of sensors), but cannot identify which individual

sensor(s) actually fail. Therefore we use it for each individual sensor and

treat a time window of consecutive readings as a vector. The length of the

time window is tuned based on historical data.

• Subspace: Subspace method, which learns a set of bases from historical

data and then identifies sensor failures if the sensor values are difficult to

reconstruct via these bases [64]. Since Subspace only identifies sensor

failures at a vector level, we adopt the same strategy used in NN.

• Bayesian: Probabilistic method, which captures linear relationships

between sensors and is capable of modeling the working status of each sen-

sor [39].

We consider different values of recall (60% to 100%) and measure the corre-

sponding precision. For identifying the modes of failures, we compare JDA to the

following methods.

• Neural: neural networks trained on sensor values from a single sensor.

• Ground: The same as JDA, except that the reconstructed sensor values are

replaced by ground truth readings. Although this method is not realistic, it

provides an upper bound on the classification accuracy.

73



In all methods, to classify the mode of failure at time t, we use sensor values in the

time window [t− 10, t+ 10]. We compute the classification accuracy by comparing

the identified mode of failure to the actual mode of failure.

Adaptation to Failures For sensor failure adaptation, we measure both the

average reconstruction error and the average excess error of the adaptation error

interval. Reconstruction error is measured as the root mean square error (RMSE)

between the reconstructed and the ground truth sensor values. For comparison,

we introduce a baseline algorithm called Reference that uses a simple strategy

to reconstruct failed sensor values without using any machine learning techniques.

We discuss how Reference is implemented for each dataset later. The excess error

of the error interval is also measured using the RMSE. We compare the excess error

of JDA to that of a baseline algorithm called Const which uses the constant error

bound ε2
n in Eq. (6.4).
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Figure 6.1: Precision-recall curves on sensor data from the Austin weather stations.

Results on Weather Dataset We use the weather dataset described in Section

2.3. In our experiments, we study 3 nearby stations in San Francisco and 3 nearby
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Table 6.1: Accuracy of identifying different modes of sensor failures in the Austin
weather stations. Each entry shows the average accuracy and the corresponding standard
error. The best performing method between Neural and JDA (statistically significant
up to one standard error) is in bold font.

Sensor Neural JDA Ground
Temperature 92.4 ± 0.5 91.8 ± 0.4 96.4 ± 0.4
Humidity 89.3 ± 0.4 90.7 ± 0.5 96.3 ± 0.3
Dew Point 91.6 ± 0.4 91.3 ± 0.5 97.1 ± 0.4
Wind Speed 77.4 ± 1.1 82.6 ± 0.9 94.4 ± 0.6
Wind Gust 81.1 ± 1.2 83.4 ± 1.0 95.8 ± 0.8
Pressure 85.7 ± 1.0 87.2 ± 0.8 96.0 ± 0.6

Table 6.2: Adaptation performance on sensor data from the Austin weather stations.
Each entry shows the average reconstruction error and the corresponding standard error.
The best performing method(s) (statistically significant up to one standard error) are in
bold font.

Sensor Reconstruction Error Excess Error
Reference JDA Const JDA

Temperature 1.32 ± 0.018 0.23 ± 0.010 0.44 ± 0.014 0.19 ± 0.009
Humidity 5.28 ± 0.022 0.41 ± 0.019 0.93 ± 0.021 0.30 ± 0.016
Dew Point 1.15 ± 0.019 0.33 ± 0.010 1.21 ± 0.012 0.17 ± 0.009
Wind Speed 5.36 ± 0.067 3.81 ± 0.058 4.60 ± 0.057 3.12 ± 0.049
Wind Gust 5.12 ± 0.061 3.68 ± 0.050 5.09 ± 0.048 2.86 ± 0.042
Pressure 3.71 ± 0.18 2.25 ± 0.20 3.35 ± 0.16 1.84 ± 0.16

stations in Austin. For each station, we examine 6 sensors including temperature

( ◦F), humidity (%), dew point ( ◦F), wind speed (mph), wind gust (mph) and

pressure (Pa). Sensor values are collected every 5-10 minutes, and data collected

over 2 years are used in our experiments.

We only show experimental results on the 3 stations in Austin. An explicit dis-

cussion of the 3 stations in San Francisco is skipped since these results show very

similar trends. We select one station as the target station to evaluate our recon-

struction results on. Since there are 3 stations, each sensor type has 3 instances.

Due to the spatial proximity of the 3 stations, sensors of the same type are likely

to be correlated.
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Fig. 6.1 shows the average precision of failure detection on each sensor with

recall ranging from 60% to 100%. JDA performs the best on all sensors, with a

significant margin of improvement on temperature, humidity and dew point. The

improvement is less significant on wind speed and wind gust since these signals

have relatively large variances and are difficult to reconstruct from other sensor

values. When recall is 90%,2 JDA achieves an 8.3% average improvement in

precision over all sensors over the second best performer. Bayesian performs

better than NN and Subspace on most sensors, showing the benefit of reasoning

with multiple sensors. However, JDA outperforms Bayesian as it captures more

nonlinear relationships.

Table 6.1 reports on the accuracy of identifying different modes of sensor fail-

ures. Here, JDA performs significantly better than Neural on three sensors,

because JDA exploits information from multiple correlated sensors while Neu-

ral only uses information from a single sensor. JDA performs fairly close to

Ground (except in the case of wind speed and wind gust), highlighting its effi-

cacy in classifying the different modes of sensor failures.

The adaptation performance of JDA is given in Table 6.2 where Reference is

computed as the average RMSE between the sensor values of same sensors in nearby

stations. Here, the baseline algorithm is to replace a failed sensor with a similar

one from a nearby station. JDA achieves significantly lower reconstruction errors

than Reference, especially on sensors with small variances in their readings. The

excess error of JDA is consistently better than that of Const, which validates

our claim that dynamic estimation of error intervals is more accurate than static

estimation. It is also easy to see that the excess error of Const is relatively large

compared to the reconstruction error of JDA.

285-95% is a range often used in practice.
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Figure 6.2: Precision-recall curves on the appliance energy dataset.

Results on the Appliance Energy Dataset The appliance energy dataset

consists of 28 sensors measuring energy usage, in-house conditions, and outside
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Table 6.3: Accuracy of identifying different modes of sensor failures in the appliance
energy domain. Each entry shows the average accuracy and the corresponding standard
error. The best performing method between Neural and JDA (statistically significant
up to one standard error) is in bold font.

Sensor Neural JDA Ground
T-kitchen 91.1 ± 0.5 92.5 ± 0.4 97.7 ± 0.5
H-kitchen 88.7 ± 0.7 93.4 ± 0.8 96.4 ± 0.4
T-living 90.3 ± 0.8 91.7 ± 0.7 96.8 ± 0.7
H-living 87.2 ± 0.6 90.6 ± 0.8 96.5 ± 0.7
T-bath 92.6 ± 0.7 93.8 ± 0.8 98.0 ± 0.6
H-bath 82.4 ± 0.9 86.2 ± 0.9 94.3 ± 0.7

Table 6.4: Adaptation performance on sensor data from the appliance energy dataset.
Each entry shows the average reconstruction error and the corresponding standard error.
The best performing method(s) (statistically significant up to one standard error) are in
bold font.

Sensor Reconstruction Error Excess Error
Reference JDA Const JDA

T-kitchen 1.36 ± 0.024 0.72 ± 0.021 0.75 ± 0.023 0.48 ± 0.020
H-kitchen 2.85 ± 0.031 1.01 ± 0.019 1.32 ± 0.022 0.83 ± 0.019
T-living 1.69 ± 0.027 0.80 ± 0.018 0.95 ± 0.023 0.66 ± 0.019
H-living 3.04 ± 0.036 1.12 ± 0.022 1.34 ± 0.021 0.91 ± 0.016
T-bath 0.69 ± 0.012 0.73 ± 0.014 0.85 ± 0.010 0.54 ± 0.011
H-bath 10.95 ± 0.068 8.19 ± 0.056 7.93 ± 0.058 6.32 ± 0.049

conditions.3 Sensor values are sampled every 10 minutes for about 4.5 months.

There are multiple temperature and humidity sensors in different rooms. Their

physical proximity leads to strong sensor correlations. In our experiments, we

used data from all sensors and report reconstruction results on 6 in-house sensors

which measure temperature (◦C) and humidity (%) in the kitchen, living room,

and bathroom, respectively.

Figure 6.2 shows the average precision of sensor failure detection by differ-

ent methods, with recall ranging from 60% to 100%. We observe that JDA and

Bayesian perform better than NN and Subspace in most cases, demonstrating

3http://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction
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that sensor relationships are helpful in detecting sensor failures. On the humid-

ity sensors, H-kitchen and H-living, JDA achieves significant improvement even

over Bayesian, demonstrating the benefit of reasoning with a substrate of con-

straints and nonlinear relationships proposed in our framework. When recall is

90%, JDA achieves a 5.2% average improvement in precision for all sensors over

the second best performer.

Table 6.3 reports the accuracy of identifying different modes of sensor failures

by different methods, where JDA achieves higher accuracy than Neural on four

sensors. This is because JDA exploits information from multiple sensors while

Neural only uses information from a single sensor.

Table 6.4 reports the adaptation performance, where the recall is set to 90%.

To compute Reference for a target sensor, we first find the most similar sensor in

terms of sensor values from historical data and then calculate the RMSE between

the two sensors in the evaluation data. This can be seen as a simple baseline

algorithm for adaptation to sensor failures. JDA achieves lower reconstruction

errors than Reference on 5 sensors. However, on the T-bath sensor, JDA per-

forms slightly worse than Reference due to overfitting. In terms of excess error,

JDA consistently outperforms Const.

6.5 Evaluation in BRASS Project: UUV Results

In BRASS Project [62] Phase 2, we consider the following scenario: a UUV

is engaged in a resupply mission to travel to a rendezvous point with a resupply

vessel. The evaluation aims to determine our system’s capability to adapt to a

range of perturbations that affect its ability to localize and determine its position,

which is necessary to conduct the resupply mission. These perturbations include
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failures of sensors used by the UUV as well as perturbations to the UUV environ-

ment. Given one or more perturbations, our system needs to adapt the appropriate

component. This may involve synthesizing a new data adapter for the sensor in

real time and/or reconfiguring higher-layer software components (developed by our

collaborator Charles River Analytics).

Test design for this challenge problem involves four failure scenarios:

1. Stuck-at: Consecutive sensor readings that have zero variance and are dif-

ferent from normal sensor readings.

2. High-noise: Consecutive sensor readings that have an unexpectedly high vari-

ance.

3. Miscalibration: A time window of sensor readings with a constant offset from

the ground-truth values.

4. Chaos: combination of all of the above 3 failures into one execution.

Note that every failure applies to the surge sensor and lasts until the end of the

test. Fig. 6.3 visualizes the stuck-at, high-noise, and miscalibration scenarios.

Since the parameter space is very large, we execute 10 tests for each of the

failure scenarios that we feel show a meaningful set of results.

To measure the success rate of our system, we define the verdict expression

based on how close the UUV comes to the destination. Specifically, if the UUV

is less than 75 meters from the destination, the verdict is Pass, else Fail. Thus, a

useful way to visualize the verdict is to graphically plot, for each complete test case,

the distance from the destination on the x-axis against the test group identifier

along the y-axis. We split the graphs into sub-graphs based on each failure scenario

(as described above). After running 40 tests (10 for each failure scenario), we plot
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Figure 6.3: Visualization of the stuck-at, high-noise, and miscalibration scenarios.

the results in Fig. 6.4. “Baseline” corresponds to the results without introducing

any sensor failure, “Perturbed” corresponds to the results without any adaptation,

and “Adapted” corresponds to the results with adaptation. From Fig. 6.4, we can

see that for the stuck-at, high-noise and chaos scenarios, Adapted performs better

than Perturbed and is within the required 75 meters (vertical blue line) in most

tests. For the high-noise scenario, Adapted performs very similarly to Perturbed,

and both are within the required 75 meters. Overall, the verdict is Pass in 90%

of the tests. This demonstrates that our system can adapt to sensor failures with

high efficacy and robustness.
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Figure 6.4: UUV distances for all tests separated by each failure scenario. The
vertical blue line indicates 75 meters, as required for a Pass verdict.
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Chapter 7

Related Work

7.1 Detecting Sensor Failures and Changes

Sensor failures and changes can be detected by identifying abrupt changes in

time series of sensor readings. This problem is often called change point detection

which attracted researchers in statistics and data mining communities for decades

[10, 53, 17, 3, 79]. Change point detection has broad applications in fraud detec-

tion, network intrusion detection, motion detection in vision, fault detection in

controlled systems, etc.

Change point detection methods can be categorized into two types: supervised

and unsupervised. Supervised methods treat change point detection as a clas-

sification problem and classify sensor readings into different states learned from

training data. Researchers have developed a number of supervised methods based

on support vector machines [83, 98], nearest neighbors [83, 104], Gaussian mixture

models [28, 54], etc.

The limitation of supervised methods is that they require training data for all

possible states or classes. Unsupervised methods, on the other hand, are capable of

handling a variety of different states without prior training for each state. Existing

unsupervised methods can be further classified into the following categories

• Distribution-based methods, which identify a change point if data distribu-

tions before and after that point are significantly different [65, 101, 55].
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• Reconstruction-based methods, which attempt to reconstruct a data point

using neural networks [29, 57, 90] or bases learned by subspace methods

[64, 74, 63, 20]. If a data point is hard to reconstruct well, then it is detected

as a change point.

• Probabilistic methods, which compute the likelihood of a data point through

Bayesian networks and identify a change point if the likelihood is below a

threshold [1, 84, 37, 39, 36].

• Distance-based methods, which identify a change point by examining its

distance to other points. Existing work explore nearest neighbor distances

[5, 12, 21], clustering structures [66, 9, 18] and graph structures [22] derived

from distances.

Some of the existing approaches work for a single sensor, without leveraging

other related sensors. For approaches that take advantage of multiple sensors,

reconstruction-based ones are most similar to our approach, conceptually. Our

approach attempts to reconstruct sensor readings by exploiting different types

of relationships among sensors, and detecting sensor failures or changes if the

observed readings are different from reconstructed ones. Exploiting different types

of sensor relationships makes our approach more accurate and robust. It can

identify exact failed or changed individual sensors from a group of sensors while

existing reconstruction-based approaches often detect changes at a group level.

Additionally, our approach can leverage available sensors in a dynamic manner,

without assuming that all sensors are always working in the training set.

Probabilistic approaches [58, 37, 39, 36] are capable of identifying changes in

individual sensors because they model states of each sensor using dynamic Bayesian
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networks [35]. However, existing work only model linear relationships among sen-

sors. In contrast, our work enables exploiting nonlinear relationships that often

exist in the real world.

7.2 Reconstruction of Sensor Readings

Existing work examining sensor failures and changes mainly focus on detect-

ing change points but rarely address the issue of adaptation to sensor failures or

changes. Typically, they rely on human experts to examine these change points

and make subsequent decisions. Our work, on the other hand, is motivated by

the notion of survivable software and aims at automatic adaptation to changes.

Although some of the existing detection methods [37, 39, 36] can be used to recon-

struct sensor readings because they infer the actual readings through their models,

they are not able to leverage any new sensor.

Our work adapts to sensor failures and changes by learning functions to recon-

struct the original sensor readings. When dealing with sensor failures, learn-

ing reconstruction functions is equivalent to regression problems where we use

a method called Fast Function Extraction (FFX) [73]. Compared to other meth-

ods to learn functions, such as linear regression [43], kernel ridge regression [75]

and neural networks [4], FFX is capable of learning compact nonlinear function

forms efficiently, and provides more human interpretation of the learned forms.

7.3 Domain Adaptation

Our model-level adaptation can be viewed in the framework of domain adapta-

tion [33, 77, 82] which addresses learning problems with mismatched distributions.

The source domain refers to the labeled training data, while the target domain
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refers to the test data. When there are no labeled data from the target domain

to help learning classifiers1, the problem setting is called unsupervised domain

adaptation. Over the past decade, a number of unsupervised domain adaptation

approaches have been developed and used in applications such as computer vision

[30], natural language processing [77], sensor data analysis [78], etc. Recently, the

work of Purushotham et al. [81] studies the adaptation problem in classifying time

series.

Unsupervised domain adaptation is especially challenging as the target domain

does not explicitly provide any information on how to optimize classifiers. Note

that the objective of domain adaptation is to derive a classifier for the unlabeled

(target) data from the labeled (source) data. This goal sets domain adaptation

apart from semi-supervised learning, whose primary goal is to improve the perfor-

mance on the labeled data with unlabeled data [19]. The difference is subtle yet

fundamental. For example, model selection or cross-validation using classification

accuracy on the target domain is generally impossible.

Most existing approaches [78, 49, 48, 24] for unsupervised domain adaptation

follow a two-stage learning paradigm: they first identify a domain-invariant feature

space such that the marginal distributions of the two domains are the same, and

then learn a classifier in that space. For example, in covariate shift [89, 14, 61], the

labeled instances from the source domain are first weighted so as to compensate

for the difference in marginal distributions. Then, a classifier is trained using

the labels and later applied to the unlabeled data. In structural correspondence

learning, the original features are first augmented with features that are more likely

to be domain-invariant; then a classifier is trained [16]. The augmenting features

1Most domain adaptation approaches involve learning classifiers, but the methodologies can
also be applied to regression models.
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are a linear transformation of the original features. Alternatively, in deep learning

architecture for domain adaptation, the augmenting features are a highly nonlinear

transformation of the original ones [45, 24].

Underlying these methods is the assumption that there exists a domain-

invariant feature space and that classifiers learned in the new space will perform

equally well on both domains. However, maximizing the similarity in marginal

distributions may not bear a direct consequence on (dis)similarities between pos-

terior distributions. As an extreme case, projecting features into irrelevant feature

dimensions would make the two domains look very much alike. This motivates

a single-stage learning paradigm that jointly learns the domain-invariant feature

space and the classifiers. For instance, the work in [31, 7, 8, 95, 44] optimize clas-

sification performance on the source domain while learning the domain-invariant

feature space. Different from existing single-stage approaches that optimize source-

domain classifiers, our work directly optimizes target-domain classifiers [88]. We

consider this as an important hallmark of our approach because optimizing classi-

fiers on the target domain is our primary objective, and purely optimizing classifiers

on the source domain may lead to overfitting.

Heterogeneous domain adaptation. When the feature spaces of the source

and target domains are different, the problem setting is called heterogeneous

domain adaptation. In the scenario of sensor changes, if one original sen-

sor is replaced with multiple new sensors, then model-level adaptation becomes

an instance of heterogeneous domain adaptation. Previous work on hetero-

geneous domain adaptation mainly consists of two types of approaches. One

type learns a transformation to map the features from one domain to the other

[32, 91, 105] by leveraging sample-level correspondences across domains (e.g.,
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an image and its tag). A second type of approach maps the source and tar-

get domains into a domain-invariant feature space in which their marginal dis-

tributions are similar, and then learns a model in that space using labeled

data [68, 96, 6, 40, 86, 56, 97, 102, 26]. As part of the thesis, we extend our

work [88] to heterogeneous feature spaces following the second type of approach.

Our sensor-level adaptation can also be viewed as an instance of heterogeneous

domain adaptation if we treat the replaced sensor readings as labels and the read-

ings of other sensors as features [87]. However, existing heterogeneous domain

adaptation approaches are not capable of solving our problem where the target

domain has new features that are unseen in the source domain, as discussed in

Chapter 3.
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Chapter 8

Conclusion

In this thesis, we studied how to automatically adapt to failures and changes

in sensors, which is an important problem in building survivable software. We

proposed a series of adaptation approaches for addressing failures and changes in

both individual and compound sensors. Our approaches have the following novel

capabilities.

• They enable two levels of adaptation: sensor-level and model-level.

• They enable adaptation to new sensors when there is no overlapping period

between the new sensors and the replaced sensors.

• They leverage sensor-specific transformations derived from historical sensor

data.

• They leverage spatial and temporal information about sensors to improve

the robustness and accuracy of adaptations.

• They can scale to a large number of reference sensors and new sensors.

• They estimate the quality of adaptation that is useful for higher-layer soft-

ware.

• They use a constraint-based framework for joint detection and adaptation to

sensor failures.

To validate our approaches, we conducted experiments on sensor data from the

weather and UUV domains. Our empirical results demonstrate that our approaches

90



can automatically detect and adapt to sensor failures and changes with higher

accuracy and robustness compared to other alternative approaches.

Our work is of highest relevance to researchers and practitioners working in the

areas of Software Systems, Internet of Things and Machine Learning.

Discussion. Note that for our sensor-level adaptation approaches, the underly-

ing assumption is that sensor values from a subset of sensors are well correlated.

Although this assumption often holds in real-world systems, it may not always be

the case. This can be viewed as a limitation of sensor-level adaptation when the

correlations among sensors are weak. However, such a limitation can often be over-

come in practice if we are allowed to access or install more reference sensors that

are better correlated with existing sensors. Also, when sensor-level adaptation is

challenging, model-level adaptation may still work if our goal is to directly adapt

software components built on the sensor values.

Future work. We would like to explore two directions in our future work. First

is to apply our approaches to new domains with larger volumes of sensor data.

For example, we plan to examine the helicopter domain where sensor values are

sampled in milliseconds. Second is to integrate our approaches into survivable

software systems that operate in real-world scenarios. We are in the process of

deploying our approaches into a real UUV and testing it in ocean waters.
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