
CSC: Criticality-Sensitive Coordination ∗

Pedro Szekely†, Marcel Becker‡, Stephen Fitzpatrick‡, Gergely Gati?,
David Hanak?, Jing Jin†, Gabor Karsai?, Rajiv T. Maheswaran†,

Bob Neches†, Craig M. Rogers†, Romeo Sanchez†, Chris van Buskirk?
† Information Sciences Institute, University of Southern California, 4676 Admiralty Way - Suite 1001, Marina Del Rey, CA 90292

‡ Kestrel Institute, 3260 Hillview Avenue, Palo Alto, CA 94304
? Institute for Software Integrated Systems, Vanderbilt University, Box 1829, Station B, Nashville, TN 37235

szekely@isi.edu, becker@kestrel.edu, fitzpatrick@kestrel.edu, gergely@isis.vanderbilt.edu,

dhanak@isis.vanderbilt.edu, jingjin@isi.edu, gabor.karsai@vanderbilt.edu, maheswar@isi.edu,

rneches@isi.edu, rogers@isi.edu, rsanchez@isi.edu, chris.vanbuskirk@vanderbilt.edu

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
multiagent systems, coherence and coordination

General Terms
Algorithms, Design Experimentation, Performance

Keywords
Reasoning Under Uncertainty, Large-Scale Systems, Visualization

1. INTRODUCTION
Our Criticality-Sensitive Coordination (CSC) agents are designed

to enhance the performance of a human-team working together in
uncertain and dynamic settings by monitoring and adapting their
plans as dictated by the evolution of the environment. Such situ-
ations model military scenarios such as a coordinated joint opera-
tions or enterprise settings such as multiple-project management.
Among the many challenges in these situations are the large space
of possible states due to uncertainty, the distributed / partial knowl-
edge of current state and plan among the agents and the need to
react in a timely manner to events that may not be in the original
model. In fact, reaction alone is often insufficient as in environ-
ments where success depends on completing sequences of coupled
actions, one needs to anticipate future difficulties and enable con-
tingencies to alleviate potential hazards.

2. SYSTEM DESCRIPTION
∗The work presented here is funded by the DARPA COOR-
DINATORS Program under contract FA8750-05-C-0032. The
U.S.Government is authorized to reproduce and distribute reports
for Governmental purposes notwithstanding any copyright annota-
tion thereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed or
implied, of any of the above organizations or any person connected
with them.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’06 May 8–12 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

To deal with these challenges, the CSC agents are constructed
with components that interact in a multi-tiered manner with func-
tionalities that operate in various time-scales and reasoning do-
mains. The system architecture is depicted in Figure 1. The high-
est level of reasoning is performed by three components: (1) the
deliberative scheduler, (2) the opportunistic scheduler, and (3) the
downgrader. The deliberative scheduler is triggered when it has
been determined that a portion of the existing plan is anticipated to
fall below a certain likelihood of success. It then performs dynamic
partial-centralization of the relevant agents and nodes in the plan,
extracts potential solutions and proposes schedule modifications to
remedy the problem. Due to the complexity of this task and the
nature of the anticipated failure, this process occurs over several
decision epochs with decision windows that begins slightly in the
future. The opportunistic scheduler performs schedule modifica-
tions in the near-term. Using only local information, it is capable
of making decisions on a faster time-scale, and buffers the exist-
ing plan by utilizing free resources. This provides robustness by
increasing the probability of success and generating opportunities
to obtain higher quality outcomes. The downgrader complements
the previous two components by freeing resources both in the near-
term and the future based on the evolution of the system up to the
present. The schedule, estimates of system state and metrics of un-
certainty are kept in the state manager which communicates with
the state managers of other agents to distribute and collect locally
visible and locally relevant information. The profiles capture the
probability of success (p) and the importance (α) for the activities
in the plan and are propagated in a decentralized manner. Each
agent has profiles and schedules both for itself, for remote agents
that affect it directly and for plan components for which it is re-
sponsible. The local schedule information is sent to an execution
controller which interacts with the environment. This component is
isolated such that it can operate at a much faster time-scale than the
decision epoch intervals, such that the agent can continue to func-
tion even under high computational burdens in other components
of the system.

3. DEMO DESCRIPTION
The capabilities of the system and the complexities of the prob-

lem are illustrated in a scenario where two subteams, represented
by CSC agents Alpha and Bravo, participate in a three-phase joint
project/operation. Intiially, they agree to engage in Plan A, which
involve each agent’s subteam performing certain activities at each
phase. However, they can fall back to Plan B, which involves differ-
ent activities at each phase, if needed. The activities are not inde-
pendent as one may need to perform a certain activity in an earlier

 1441

Figure 2: Two-Agent Three-Phase Example

Figure 1: CSC Agent Architecture

P, α

P, α

P, α

Downgrader

Options

Local
State

Remote

Schedule

Deliberative
Scheduler

Opportunistic
Scheduler

P, α

P, α
P, α

Coordination
Reasoners

State Manager

Execution Controller

Environment

phase to have the option of performing an activity in a later phase.
Thus, the necessity of anticipation in the presence of uncertainty.
A depiction of an evolution is shown and discussed in Figure 2.

Without CSC, the initial plan can be undermined in many ways.
A delay of an activity in Phase 1 cascades the delay on to Phase
2 implying a high chance of failure. While Phase 2 might succeed
despite the failure of a single activity within it, Phase 3 will be com-
pletely damaged due to dependencies of activities across multiple
phases. However, the various components of CSC interact to allow
adverse circumstances to be ameliorated with ease. The state man-
ager for the agent will detect in Phase 1 itself that the probability
of success for activities in Phase 3 have fallen below critical levels
and will instantiate dynamic partial-centralization by calling the de-
liberative scheduler. The deliberative scheduler will then consider
alternatives, in this case Plan B, and install new activities in the sec-
ond phase and third phase. The downgrader frees up the resources
in Phase 2 that were operating under the directives of Plan A, such
that they are available for Plan B to execute. Finally, the oppor-
tunistic scheduler utilizes resources that were freed up in Phase 3
(by the downgrader) to add an activity that enhances the quality of
the solution.

Figure 3: CSC Starfields

4. STARFIELDS
One of the unique and extremely beneficial aspects of CSC is the

vast suite of tools (referred to as starfields) available for visualizing
various components and the evolution of the system. These tools
offer the ability to observe behavior at a macro-level. This helps
a user quickly and accurately gauge system behavior and also pro-
vides the ability to isolate individual components at particular in-
stants in time which is an invaluable aid in debugging. A snapshot
of selected starfields is displayed in Figure 3. A key functionality of
starfields is the ability to play back any evolution in time to observe
the system at chosen instants. This allows a user to identify exactly
when and how the system identifies and resolves problems. An-
other key feature is the ability to search and cross-reference activi-
ties and plan components, which offers the capability to isolate an
activity in multiple starfields and see how it couples with activities
in other phases of the plan. The starfields facilitated rapid modifi-
cation, development and debugging in addition to aiding in the un-
derstanding of the underlying problem which becomes difficult to
grasp as the scale becomes large. A movie of the demonstration can
be downloaded from http://www.isi.edu/∼szekely/csc/aamas06/csc-
demo-v01.html.

 1442

