
LEARNING THE SEMANTICS OF STRUCTURED DATA SOURCES

by

Mohsen Taheriyan

A Dissertation Presented to the

FACULTY OF THE GRADUATE SCHOOL

UNIVERSITY OF SOUTHERN CALIFORNIA

In Partial Fulfillment of the

Requirements for the Degree

DOCTOR OF PHILOSOPHY

(COMPUTER SCIENCE)

December 2015

Copyright 2015 Mohsen Taheriyan

To my wife, Shima, and my parents

for their encouragement, love, and patience.

ii

Acknowledgments

I would very much like to thank my thesis advisor Craig Knoblock for his support,

patience, and valuable feedback on every aspect of my research. Craig is a won-

derful mentor. He spent hours with me discussing research ideas and reviewing

my drafts. Through him, I learned how to present my research ideas and how to

write research papers. What I like about him the most is his ability to keep the

research direction aligned with the big picture. He always gave me the freedom to

explore my own paths toward solving problems, while at the same time helping me

to stay on the right track. I am very grateful to him to make my doctoral study

an enjoyable experience.

I would also like to thank the other members of both my proposal and disser-

tation committees for providing me valuable comments on my thesis: Professor

Pedro Szekely, Professor Jose Luis Ambite, Professor Cyrus Shahabi, Professor

Victor Prasanna, and Professor Dennis McLeod. Their feedback and support is

greatly appreciated. I would like to especially thank Pedro Szekely and Jose Luis

Ambite who contributed greatly to my research. They were present in my weekly

research meetings with Craig and suggested insightful ideas whenever I faced diffi-

culties in tackling hard problems. I have been lucky to have their advice over the

course of my research.

iii

I feel very fortunate to have been a member of the Intelligent Systems Division

(ISD) at the Information Sciences Institute (ISI), where I have had the great plea-

sure to work with a supportive and inspiring group of researchers. I want to thank

all of my colleagues in the Information Integration Group at ISI. Thanks to my

officemates Bo Wu and Jason Slepicka who were always available when I needed

help. Thank you Yinyi Chen for your help in creating the gold standard models

for my evaluation. Thank you Dipsy Kapoor for your help in programming the

Karma data integration system. Thank you Alma Nava for your administrative

help during my years at ISI.

I would like to thank my wonderful friends in LA who made my graduate

life fun. Thanks to Payman for being a challenging opponent in playing Mortal

Kombat, and thanks to Reza, Amirsoheil, Nima, and Jalal for being easy to beat

in playing FIFA. Thank you Soheil for being a great gym companion. Thank

you Marjan and Sepideh for being such great friends. Thank you Farshad for the

exciting billiard games we had in our coffee breaks at ISI. I would like to thank

you all for the amazing time we had together.

I am thankful to my family for always supporting me in my academic pursuits.

Thank you Mom and Dad for your love and patience during my studies. Thank

you my brother, Mehran, and my sister, Nahid, for your support.

Finally, I would like to thank my lovely wife Shima. The patience, love, and

compassion you have shown me goes beyond words. I cherish all the moments we

spend together and I feel incredibly lucky to share my life with you.

This research was supported in part by the National Science Foundation under

Grant No. 1117913, in part by the Intelligence Advanced Research Projects Activ-

ity (IARPA) via Air Force Research Laboratory (AFRL) contract number FA8650-

10-C-7058, and in part by Defense Advanced Research Projects Agency (DARPA)

iv

via AFRL contract number FA8750-14-C-0240. The U.S. Government is authorized

to reproduce and distribute reprints for Governmental purposes notwithstanding

any copyright annotation thereon. The views and conclusions contained herein

are those of the authors and should not be interpreted as necessarily representing

the official policies or endorsements, either expressed or implied, of NSF, IARPA,

DARPA, AFRL, or the U.S. Government.

v

Table of Contents

Dedication ii

Acknowledgments iii

List of Tables viii

List of Figures ix

Abstract xi

1 Introduction 1
1.1 Motivation . 3
1.2 Thesis Statement . 7
1.3 Proposed Approach . 7
1.4 Contributions of the Research . 9
1.5 Outline of the Thesis . 9

2 Semi-Automatically Building Semantic Models of Data Sources 10
2.1 Problem Formulation . 11
2.2 Learning Semantic Types of Source Attributes 12
2.3 A Graph-Based Approach to Extract the Implicit Relationships . . 14

2.3.1 Building A Graph from the Semantic Types and Domain
Ontology . 15

2.3.2 Generating an Initial Semantic Model 19
2.4 Refining Semantic Models . 20
2.5 Evaluation . 23

3 Learning Semantic Models of Data Sources 28
3.1 Example . 29
3.2 Learning Semantic Models . 32

3.2.1 Learning Semantic Types of Source Attributes 33
3.2.2 Building A Graph from Known Semantic Models, Semantic

Types, and Domain Ontology 35

vi

3.2.3 Mapping Source Attributes to the Graph 45
3.2.4 Generating and Ranking Semantic Models 50

3.3 Evaluation . 54
3.3.1 Scenario 1 . 60
3.3.2 Scenario 2 . 62
3.3.3 User Effort . 66

4 Leveraging Linked Data to Infer Semantic Relations 69
4.1 Example . 70
4.2 Inferring Semantic Relations . 73

4.2.1 Extracting Patterns from Linked Open Data 73
4.2.2 Merging LOD Patterns into a Graph 75
4.2.3 Mapping Source Attributes to the Graph 76
4.2.4 Generating and Ranking Semantic Models 77

4.3 Evaluation . 77

5 Related Work 82

6 Discussion 91
6.1 Contributions . 91
6.2 Applications . 96
6.3 Limitations . 99
6.4 Future Work . 100

Bibliography 103

vii

List of Tables

2.1 The evaluation datasets. 25
2.2 Evaluation results for modeling the evaluation dataset using Karma. 26

3.1 Top two learned semantic types for the attributes of the source dia. 34
3.2 The evaluation datasets dsedm and dscrm. 55
3.3 The overlap between the pairs of the semantic models in the datasets

dsedm and dscrm. 59
3.4 The evaluation results for modeling the dataset dsedm using Karma. 68

4.1 The evaluation results for modeling the dataset dscrm. The correct
semantic types are given as input. 78

viii

List of Figures

1.1 An example ontology. 2
1.2 The semantic model of a sample data source. 2
1.3 Semantic models of s1, s2, and s3. 6

2.1 Semantic model of the source s. 11
2.2 The graph G after adding the semantic types. 16
2.3 The graphG after adding the closure and connecting the class nodes.

The properties nearby and isPartOf of the ontology are ignored to
make the figure more readable. 18

2.4 The initial Steiner tree (semantic model) suggested by the system
(blue color). Our algorithm incorrectly suggests that Person is CEO
of Organization and City is where Organization is located. 20

2.5 The initial Steiner tree in Karma. 21
2.6 The user can refine the model by changing the relationships. The

system changes the weights of the user-selected links (red links) to
ε and re-computes the Steiner tree. 23

2.7 The visualization of the correct semantic model in Karma. 24

3.1 Sample data from three museum sources: (a) Dallas Museum of Art,
(b) National Portrait Gallery, and (c) Detroit Institute of Art. . . . 30

3.2 Semantic models of the example data sources created by experts in
the museum domain. 31

3.3 The graph G after adding the known semantic models sm(dma) and
sm(npg). 37

3.4 The graph G after adding the nodes and the links corresponding to
the semantic types (shown in blue). 40

3.5 The final graph G after adding the paths from the domain ontolo-
gies. For legibility, only a few of all the possible paths between the
class nodes are shown (drawn with the red color). 44

3.6 A small part of an example graph constructed using three known
models. 51

3.7 These two semantic models are not equivalent. 58

ix

3.8 Average precision and recall for the learned semantic models when
the attributes are labeled with their correct semantic types. 62

3.9 Average semantic model learning time when the attributes are labeled
with their correct semantic types. 62

3.10 MRR value of the learned semantic types when only the top learned
semantic types are considered (k=1); and the top four suggested
types are considered (k=4). 63

3.11 Average precision and recall for the learned semantic models for
k=1 and k=4. 63

3.12 Average semantic model learning time when the attributes are labeled
with their correct semantic types. 65

3.13 impact of branching factor on precision, recall, and running time for
k=4 and M28. 66

4.1 Sample data from the Crystal Bridges Museum of American Art. . . 71
4.2 The semantic model of the source s. 72
4.3 Sample graph patterns connecting the classes c1, c2, and c3 using

the ontology properties p1, p2, and p3. 74

x

Abstract

Information sources such as relational databases, spreadsheets, XML, JSON, and

Web APIs contain a tremendous amount of structured data, however, they rarely

provide a semantic model to describe their contents. Semantic models of data

sources capture the intended meaning of data sources by mapping them to the

concepts and relationships defined by a domain ontology. Such models are the

key ingredients to automate many tasks such as source discovery, data integration,

and publishing semantic content on the Web. Manually modeling the semantics

of data sources requires significant effort and expertise, and although desirable,

building these models automatically is a challenging problem. Most of the effort

to automatically build semantic models is focused on labeling the data fields (source

attributes) with ontology classes and/or properties, e.g., annotating the first col-

umn of a table with the class Person and the second one with the class Movie.

However, a precise semantic model needs to explicitly represent the relationships

between the attributes in addition to their semantic types, e.g., stating that the

person is the director of the movie. Automatically constructing such precise models

is a difficult task.

We present a novel approach that exploits the knowledge from a domain ontol-

ogy, the semantic models of previously modeled sources, and the vast amount of

data available in the Linked Open Data (LOD) cloud to automatically learn a rich

xi

semantic model for a new source. This model represents the semantics of the new

source in terms of the concepts and relationships defined by the domain ontol-

ogy. Given some sample data from the new source, we leverage the knowledge in

the domain ontology and either the known semantic models or the LOD cloud to

construct a weighted graph that represents the space of plausible semantic mod-

els for the new source. Then, we compute the top k candidate semantic models

and suggest to the user a ranked list of the semantic models for the new source.

The approach takes into account user corrections to learn more accurate semantic

models on future data sources. Our evaluation shows that our method generates

expressive semantic models for data sources and services with minimal user input.

These precise models make it possible to automatically integrate the data across

sources and provide rich support for source discovery and service composition.

They also make it possible to automatically publish semantic data into knowledge

graphs.

xii

Chapter 1

Introduction

Today, information sources such as relational databases and Web services pro-

vide a vast amount of structured data. Given all the structured data available,

we would like to combine the data to answer specific user queries. A common

approach to integrate sources involves building a domain model and constructing

source descriptions that represent the intended meaning of the data by specifying

mappings between the sources and the domain model [Doan et al., 2012].

In the traditional data integration approaches, source descriptions are specified

as global-as-view (GAV) or local-as-view (LAV) descriptions. In the Semantic

Web, the domain model is an ontology that formally represents concepts within a

domain and properties and interrelationships of those concepts. In this context,

what is meant by a source description is a schema mapping from the source to

an ontology. We can represent this mapping as a semantic network with ontology

classes as the nodes and ontology properties as the links between the nodes. This

network, also called a semantic model, describes the source in terms of the concepts

and relationships defined by the domain ontology. Considering the ontology shown

in Figure 1.1 as the domain ontology, Figure 1.2 depicts the semantic model of a

sample data source as a mapping between the source and this ontology.

One step in building a semantic model of a data source is semantic labeling,

determining the semantic types1 of its data fields, or source attributes. That is,

each source attribute is labeled with a class and/or a data property of the domain

1In this dissertation, the terms semantic type and semantic label are used interchangeably.

1

name

titlestartDate endDate

name

name

postalCode

birthDate

phone email

Event

Place
Person

Organization

StateCity

: subclass

: object property

: data property
bornIn

livesIn nearby isPartOf

location

locatio
n

ceo

state

worksFor
organizer

Figure 1.1: An example ontology.

name name

Los Angeles

Fred Collins

Richard Smith
New York

Seattle
Tina Peterson

CityPerson
bornIn

Column 1 Column 2

Figure 1.2: The semantic model of a sample data source.

ontology. In our example in Figure 1.2, the semantic types of the first and second

columns are name of Person and name of City respectively. However, simply

annotating the attributes is not sufficient. Unless the relationship between the

columns is explicitly specified, we do not know whether the city is the place where

the person was born or it is the place where the person lives in. To build a

semantic model that fully recovers the semantics of the data, we need a second

step that determines the relationships between the source attributes in terms of

the properties in the ontology.

Manually constructing semantic models requires significant effort and exper-

tise. Although desirable, generating these models automatically is a challenging

problem. In Semantic Web research, there are many studies on mapping data

sources to ontologies [Han et al., 2008; Sheth et al., 2008; Langegger and Wöß,

2

2009; Sahoo et al., 2009; Polfliet and Ichise, 2010; Limaye et al., 2010; Vavliakis

et al., 2010; Ding et al., 2010; Saquicela et al., 2011; Venetis et al., 2011; Wang

et al., 2012; Mulwad et al., 2013], but most focus on semantic labeling or are very

limited in automatically inferring the relationships. In this work, we introduce a

novel approach to construct semantic models that not only include the semantic

types of the source attributes, but also describe the relationships between them.

1.1 Motivation

Semantic models of data sources are beneficial to automate tasks such as source

discovery and information integration. We illustrate this by giving a concrete

example. Suppose that we want to develop an intelligent system to answer queries

about people and organizations in Los Angeles. Examples of the questions the

system should be able to answer are: (a) Who is the CEO of a given company?

(b) In what cities does a particular person work?2 In order to answer the queries,

the system needs to look for sources that are relevant. In this case, relevant sources

might be:

• s1 = personalInfo(name, birthdate, city, state, workplace)

• s2 = businessInfo(company,manager, postalcode)

• s3 = postalCodeLookup(zipcode, city, state)

s1 is a table in a remote database providing information about people who live

in Los Angeles including their name, birthdate, birthplace, and the organization

they are currently working for; s2 is a spreadsheet on the Web containing name,

2A system capable of generating a plan to answer such queries is called an Information Medi-
ator[Wiederhold, 1992].

3

CEO, and location of the Los Angeles companies; and s3 is a Web service that

returns the city and state of a given ZIP code.

For the system to know which sources are relevant, it needs to know what

information each source provides. While syntactic information about data sources

such as attribute names or attribute types (string, int, date, ...) may give the

system some hints to discover relevant sources, they are often not sufficient, e.g.,

name of the first field in s1 is name and we do not know whether this is an

organization’s name or a person’s name. Moreover, different sources may have

different terms as names of the attributes that actually represent the same meaning,

e.g., workplace in s1 and company in s2 both represent names of organizations.

Therefore, the system cannot rely only on names of attributes to automatically

combine the data from different sources.

Knowing the semantic types of the source attributes, to some extent, empow-

ers the system to discover relevant sources. Assume that the system knows the

mapping from the source attributes to the types defined in the ontology given in

Figure 1.1. Now, to answer the query (a),“Who is the CEO of a given company?”,

the system finds the sources including Organization.name and Person.name in

their semantic types, namely s1 and s2.

Semantic types partially reveal the meaning of the data, however, because the

relationships between the attributes are not specified, there is uncertainty about

where to extract and how to combine the required data to answer a query. In

our example, s1 contains work place of people and s2 contains CEO of companies.

Thus, the link worksFor is the appropriate link to model the relationship between

Person and Orgnization in s1 and the link ceo is the correct one to express the

relationship between the same semantic types is s2. Given such information, now

the system will be able to provide an answer to the query (a) by looking up the

4

query input in the values of the first column in s2 (company) and returning the

corresponding value in the second column (manager).

Hence, to be able to automatically discover relevant sources and integrate them

to answer queries, we need a precise model of each source describing the semantic

types and the relationships according to the domain ontology. This expressive

model is what we call a semantic model. Semantic models of s1, s2, and s3 are

shown in Figure 1.3. Having these semantic models, the system computes the

answer to the query (b), “In what cities does a particular person work?”, by first

finding the person’s name in s1 to get the company where he or she is working,

then looking up the company name in s2 to extract its postal code, and finally

invoking the Web service s3 using the extracted postal code as input and returning

the output city as the answer to the query.

Semantic models of structured sources can be exploited to automatically pub-

lish data into knowledge graphs. Knowledge graphs have recently emerged as a

rich and flexible representation of domain knowledge. Nodes in this graph repre-

sent the entities and edges show the relationships between the entities. Associating

semantics with data provides support for better search, interoperability and inte-

gration. Large companies such as Google and Microsoft employ knowledge graphs

as a complement for their traditional search methods to enhance the search results

with semantic information.

Semantic models of data sources enable us to easily transform the data into

semantic formats such as RDF and publish it on the Web. Once data of a source is

converted to RDF, the published data can be linked to the semantic data already

published from other datasets, making a huge cloud of linked data available on

the Web, which is called Linked Open Data (LOD) [Bizer et al., 2009]. LOD is an

ongoing effort in the Semantic Web community to build a massive public knowledge

5

bornIn

worksFor

state
Person OrganizationStateCity

name name name namebirthDate

name birthdate city state workplace

(a) s1 =personalInfo(name, birthdate, city, state, workplace)

ceo

location

PersonOrganization
Place

name
postalCode

name

manager postalcodecompany

(b) s2 =businessInfo(company, manager, postalcode)

isPartOf state
Place StateCity

postalCode name name

zipcode city state

(c) s3 =postalCodeLookup(zipcode, city, state)

Figure 1.3: Semantic models of s1, s2, and s3.

graph. The goal is to extend the Web by publishing various open datasets as RDF

on the Web and then linking data items to other useful information from different

data sources. With linked data, starting from a certain point in the graph, a person

or machine can explore the graph to find other related data. Our work plays an

important role in the first step of publishing linked data, automatically publishing

datasets as RDF using a common domain ontology.

6

1.2 Thesis Statement

The knowledge of previously modeled sources as well as the semantic

data available in the Linked Open Data cloud can be leveraged to learn

accurate semantic models of structured data sources, enabling auto-

mated source discovery and data integration.

1.3 Proposed Approach

Our work on learning semantic models of structured sources is divided into three

parts. First, we present an algorithm to semi-automatically construct a semantic

model for a new source given samples of the source data and the domain ontology

as inputs [Knoblock et al., 2012]. The algorithm learns candidate semantic types

by employing the technique proposed by Krishnamurthy et al. [Krishnamurthy

et al., 2015] and then extracts the relationships by computing a minimal tree in

a graph derived from the domain ontology and the semantic types. In the first

part, learning the semantic types, if the correct semantic type is not among the

suggested types, users can browse the ontology through a user-friendly interface to

select the appropriate type and the system learns from these manual assignments.

In the second part, extracting the relationships, if the suggested tree is not the

correct model of the data, users can refine the relationships through a graphical

user interface to build the correct model. However, users need to go through this

refinement process for each source even if they have already modeled some similar

sources. The reason is that the algorithm does not learn the changes done by the

user in relationships.

In the second part of our work, we exploit the knowledge of previously modeled

sources to make the process of constructing semantic models more automated

7

[Taheriyan et al., 2013, 2014, 2015a]. The insight of our approach is that different

sources in the same domain often provide similar or overlapping data. Thus, we use

the already modeled sources to learn the patterns that more likely represent the

intended meaning of a new source. Once we learned the candidate semantic types

for the source attributes, we construct a graph using the known semantic models,

the semantic types, and the domain ontology. This graph represents the space of

plausible semantic models. Next, we produce mappings from the source attributes

to the nodes of the graph, and for each mapping we generate a candidate model by

computing the minimal tree that connects the mapped nodes. Then, we score the

models to prefer the ones formed with more coherent and frequent patterns and

generate a ranked list of semantic models for the given source. We can put users in

the loop by allowing them to select the correct model or refine one of the suggested

models. The graph will be updated with the final semantic model yielding more

accurate models for future data sources.

Finally, we present an approach that leverages the significant amount of

semantic content available in Linked Open Data (LOD) to infer semantic mod-

els [Taheriyan et al., 2015b]. This part, complements the second part of our work

in cases where few known semantic models are available. The LOD cloud contains

a vast amount of semantic data that can be used to learn how instances of different

classes are linked to each other. First, we extract small graph patterns occurring

in the linked data. Next, we combine these patterns into one graph and expand

the resulting graph using the paths inferred from the domain ontology. Then, we

map the source attributes to the nodes of the graph and compute top k candidate

models.

8

1.4 Contributions of the Research

The main contribution of our work are the techniques to leverage attribute rela-

tionships in a domain ontology, known semantic models, and the LOD cloud to

hypothesize relationships among attributes for new sources and capture them in

source models. Such source models are key to automating tasks such as source

discovery, information integration, and service composition. They also make it

possible to publish data sources into knowledge graphs, e.g., converting data to

RDF and publishing it into the LOD cloud. Overall, in this thesis, we make the

following contributions:

• Introduce a graph-based approach to semi-automatically model the relation-

ships within structured data

• Learn semantic models of data sources from the semantic models of the

previously modeled sources (known semantic models)

• Leverage Linked Open Data to infer semantic relations within data sources

1.5 Outline of the Thesis

The rest of this thesis is organized as follows. In Chapter 2, we introduce our graph-

based approach to semi-automatically build a semantic model for structured data

sources. Chapter 3 presents our approach to automatically learn a semantic model

for a new unknown source from the known semantic models. Chapter 4 describes

our technique leveraging Linked Open Data to learn semantic models. Chapter 5

includes the related work and Chapter 6 concludes the dissertation.

9

Chapter 2

Semi-Automatically Building

Semantic Models of Data Sources

In this chapter, we introduce a semi-automatic approach to model the semantics

of a structured data source [Knoblock et al., 2012]. The inputs to the approach

are the domain ontology and some sample data from the source and the output

is a graph model that includes the semantic types of the source attributes and

explicitly represents their relationships.

We provide an example to clarify the problem of building semantic models. This

example will be used throughout this chapter to explain our approach to solve the

problem. Suppose that we have a table in a relational database that contains

five columns: name, birthdate, city, state, and workplace. The signature of this

data source can be written as: s(name, birthdate, city, state, workplace). Given

the ontology in Figure 1.1, our goal is to build a semantic model that characterizes

the source s in terms of the concepts and relationships defined by the ontology.

Automatically building a semantic model of an unknown source is difficult.

First, the system must map the source attributes to the classes and data properties

in the ontology. For example, the attribute name should be mapped to the data

property name of the class Person and the attribute workplace should be mapped

to the data property name of the class Organization. Next, the system needs to

infer the relationships between the classes used to model the attributes. Our sample

ontology has two links between Person and Organization, namely worksFor and

10

sm : semantic
 model

source attributes

: data property: object property: data nodeX : data sources(x,y) X : class node

bornIn

worksFor

state
Person OrganizationStateCity

name name name namebirthDate

s = personalInfo(name, birthdate, city, state, workplace)

name birthdate city state workplace

Figure 2.1: Semantic model of the source s.

ceo. The system needs to select worksFor, which captures the intended meaning

of s. The problem is more complicated in cases where the relevant classes are not

directly connected in the ontology and there exist multiple paths connecting them

to each other. Figure 2.1 illustrates the desired semantic model of s.

2.1 Problem Formulation

Having given the example above, we state the problem of modeling a source for-

mally.

A source is a n-ary relation s(a1, · · · , an), with a set of attributes {a1, · · · , an},

denoted as attributes(s).

A semantic model of the source s, sm(s), is a directed graph containing two

types of nodes, class nodes and data nodes. Class nodes (ovals in Figure 2.1)

correspond to the classes in the ontology and are labeled with class URIs (v ∈

class nodes ⇒ lv = class uri). Data nodes (rectangles in Figure 2.1) correspond

to the source attributes and are labeled with the names of the attributes (v ∈

data nodes ⇒ lv = attribute name). The mapping from the source attributes to

11

the data nodes can be a partial mapping, i.e., only some of the attributes of s have

corresponding data nodes in sm(s).

The links in the graph correspond to the properties in the ontology and are

labeled with property URIs (e ∈ links ⇒ le = property uri). In general, a

semantic model may contain multiple nodes and links labeled with the same URI.

The semantic model can be written as a conjunctive query over the predicates

of the domain ontology O (in this work, we do not deal with source descriptions

involving more complex constructs such as aggregation, union, or negation).

The problem of building semantic models can be stated as follows. Let O be

the domain ontology. Given a new source s, our goal is to semi-automatically

compute sm(s) with minimal user input. Clearly, many models are well-formed

semantic models, but only one or a few capture the intended meaning of the data

contained in s.

In general, it is not always possible to automatically compute the desired map-

ping between a source and an ontology since there may not be enough information

in the source to determine the mapping. So, the automated process computes the

most succinct mapping (Section 2.2 and Section 2.3), and the user interface allows

the user to guide the process towards the desired interpretation (Section 2.4).

2.2 Learning Semantic Types of Source

Attributes

When presented with a new source s whose semantic model is unknown, the first

step is recognizing semantic types of its data. We formally define a semantic type

to be either an ontology class 〈class uri〉 or a pair consisting of a domain class and

one of its data properties 〈class uri, property uri〉. We use a class as a semantic

12

type for attributes whose values are URIs for instances of a class and for attributes

containing automatically-generated database keys that can also be modeled as

instances of a class. We use a domain/data property pair as a semantic type for

attributes containing literal values. For example, the semantic type for the first

attribute of s, name, is 〈Person, name〉. Semantic labeling is the task of assigning

semantic types to source attributes.

While syntactic information about data sources such as attribute names or

attribute types (string, int, date, ...) may give the system some hints to discover

semantic types, they are often not sufficient, e.g., the name of the first field in the

source s (Figure 2.1) is name and we do not know whether this is a name of a

person, organization, book, or a movie. Moreover, in many cases, attribute names

are used in abbreviated forms, e.g., dob rather than birthdate.

We employ the technique proposed by Krishnamurthy et al. [Krishnamurthy

et al., 2015] to learn semantic types of source attributes. Their approach focuses

on learning the semantic types from the data rather than the attribute names. It

learns a semantic labeling function from a set of sources that have been manually

labeled. When presented with a new source, the learned semantic labeling function

can automatically assign semantic types to each attribute of the new source. The

training data consists of a set of semantic types and each semantic type has a set

of data values and attribute names associated with it. Given a new set of data

values from a new source, the goal is to predict the top k candidate semantic types

along with confidence scores using the training data.

If the data values associated with a source attribute ai are textual data,

the labeling algorithm uses the cosine similarity between TF/IDF vectors of the

labeled documents and the input document to predict candidate semantic types.

The set of data values associated with each textual semantic type in the training

13

data is treated as a document, and the input document consists of the data values

associated with ai. For attributes with numeric data, the algorithm uses statisti-

cal hypothesis testing [Lehmann and Romano, 2005] to analyze the distribution of

numeric values. The intuition is that the distribution of values in each semantic

type is different. For example, the distribution of temperatures is likely to be dif-

ferent from the distribution of weights. The training data here consists of a set

of numeric semantic types and each semantic type has a sample of numeric data

values. At prediction time, given a new set of numeric data values (query sample),

the algorithm performs statistical hypothesis tests between the query sample and

each sample in the training data.

Once we apply this labeling method, it generates a set of candidate seman-

tic types for each source attribute, each with a confidence value. Our algo-

rithm then picks the top semantic type for each attribute as an input to the

next step of the process. Thus, if the new source s has n attributes denoted

by attributes(s) = {a1, · · · , an}, the output of the semantic labeling step is

types(s) = {t1, · · · , tn} where ti is the semantic type of ai. For example, for

s with attributes(s) = {name, birthdate, city, state, workplace}, we will have

types(s) = {〈Person, name〉, 〈Person, birthDate〉, 〈City, name〉, 〈State, name〉,

〈Organization, name〉}.

2.3 A Graph-Based Approach to Extract the

Implicit Relationships

The next step in modeling a source is to represent the relationships between the

source attributes in terms of the properties defined by the ontology. To extract the

relationships, we construct a graph that defines the space of all possible mappings

14

between the source and the ontology. At a high level, the nodes in the graph

represent classes in the ontology, and the edges represent properties that relate

these classes. The mapping from the ontology to the graph is not one-to-one given

that, for example, several columns may contain instances of the same class.

2.3.1 Building A Graph from the Semantic Types and

Domain Ontology

The central component of our method is a directed weighted graph G = (V,E)

built on top of the inferred semantic types types(s) and expanded using the domain

ontology O. Similar to a semantic model, G contains both class nodes (Vc) and

data nodes (Vd) and we have V = Vc ∪ Vd. The links in G correspond to the

properties in O and are weighted.

Before we describe the algorithm, we need to define the functions closure(c)

and relations(ci, cj). For every class c in O, we define closure(c) as the

set of classes that either are superclasses of c or can reach c or one of its

superclasses by a directed path whose links are object properties. For exam-

ple, closure(Person)={Organization, Event} because there are the links ceo and

organizer from Organization and Event to Person. As another example, clo-

sure(City)={Place, State, Person, Organization, Event}. Place is in the set

because it is a superclass of City and the other classes have a path to either

Place or City. We define relations(ci, cj) between two class nodes as the proper-

ties connecting ci to cj. It includes the subClassOf relation and also the properties

inherited from the class hierarchy. For instance, relations(Person, City)={bornIn,

livesIn} and relations(City, Place)={subClassOf, nearby, isPartOf}.

The algorithm for building the graph has three steps: adding semantic types,

adding closure of the class nodes, and connecting the class nodes.

15

Person OrganizationStateCity
name

name name namebirthDate

name birthdate city state workplace

11 1 11

: data property: class node : weight#: data node

Figure 2.2: The graph G after adding the semantic types.

Adding Semantic Types: We start with an empty graph G. A semantic

type, as aforementioned, is either 〈class uri〉 or 〈class uri, property uri〉. For each

semantic type of the former type in types(s), we add a class node u (lu = class uri),

a data node v (lv = attribute name), and a link e from u to v with a weight equal

to 1 and the label uri (le = “uri”, we = 1). For each semantic type of the latter

kind, we add a class node u (lu = class uri), a data node v (lv = attribute name),

and a link e with weight of 1 from u to v (le = property uri, we = 1). In both

cases, if G already includes a class node with the same label, we do not create a

new class node. For example, when adding the semantic type 〈Person, birthdate〉,

we do not add the class node Person, because it has already been added to G after

visiting the semantic type 〈Person, name〉. Figure 2.2 shows the graph G after

adding the semantic types.

Adding the Closure of the Class Nodes: In addition to the nodes that

are mapped from the semantic types, we find the nodes in the ontology that relate

those semantic types. We search the ontology and create a class node in the graph

for every class in the ontology having a path to the classes corresponding to the

semantic types. In other words, for every class node v, we compute closure(lv) and

then for each class uri in
⋃

v∈Vc
closure(lv), we add a new class node to G with

the label class uri. We ignore adding a class node if another class node with the

16

same label already exists in G. In the example, after computing the closure of the

class nodes, two new class nodes will be added to G: Place and Event. Place is

in the closure of both City and State, and Event is in the closure of Person, City,

and State.

Connecting the Class Nodes: The final step in constructing the graph is

adding the links to express the relationships among the nodes. We connect two

class nodes in the graph if there is an object property or subClassOf relationship

that connects their corresponding classes in the ontology. More precisely, for each

pair of nodes u, v ∈ Vc, we compute relations(lu, lv) from the ontology O, and then

for each property uri in the resulting set, a link with the label property uri will

be established from u to v in G.

To weight a link e from a class node u to another class node v, we look to the

corresponding property in the ontology O. Let cu and cv be the classes in O that

correspond to the class nodes u and v (cu = lu, cv = lv) and p be the property in

O that corresponds to the link e (p = le).

• If p is an object property and it is a direct property from cu to cv, we assign

a weight equal to 1 to the link e. The object property p is a direct object

property from cu to cv if its definition in O explicitly declares cu as domain

and cv as range.

• If p is an object property and it is an inherited property from cu to cv, we

assign a weight equal to 1 + ε to the link e. We say p is an inherited object

property if it is not a direct object property but its domain contains one of the

superclasses of cu (at any level) and its range contains one of the superclasses

of cv (at any level). We assign a slightly higher weight to inherited properties,

because we want to prioritize direct properties in the next step when we want

to generate semantic models.

17

Person

Organization

StatePlace

name

name

name

name

birthDate

name birthdate

city

state

workplace

City

Event

bo
rn
In

worksFor

organize
r

ceo

liv
es
In

state

locat
ion

loc
ati
on

bo
rn
In

liv
es
In

bor
nIn

live
sIn

loc
ati
on

location

subClassOf

location location

subClassOf

1+ε
1+ε

1+ε
1+ε

1+ε

1+ε

1+ε

1+ε

1/ε

1/ε

1

1

1 1

1

1

1

1
1

1

1

1

1

: data property

: subclass relation

: direct object property: class node : weight#

: data node : inherited object property

Figure 2.3: The graph G after adding the closure and connecting the class nodes.
The properties nearby and isPartOf of the ontology are ignored to make the figure
more readable.

• If p is a direct or inherited rdfs:subClassOf property from the cu to cv (cu

is subclass of cv), we assign a weight equal to 1/ε to e. Subclass links have

a large weight so that relationships mapped from object properties will be

preferred over the relationships through the class hierarchy.

In cases where G consists of more than one connected components, we add

a class node with the label owl:Thing to the graph and connect the class nodes

that do not have any parent to this root node using a rdfs:subClassOf link. This

converts the original graph to a graph with only one connected component. The

final graph is illustrated in Figure 2.3. Since this graph includes only one connected

component, we do not need to add any class node with the label owl:Thing.

18

2.3.2 Generating an Initial Semantic Model

The graph we constructed explicitly represents all possible relationships among the

semantic types. We construct a semantic model as the minimal tree that connects

the semantic types. The minimal tree corresponds to the most succinct model that

relates all the attributes in a source, and this is a good starting point for refining

the model. To compute the minimal tree, we use one of the variations of the well-

known Steiner Tree algorithm [Winter, 1987]. Given an edge-weighted graph and a

subset of the vertices, called Steiner nodes, the goal is to find the minimum-weight

tree in the graph that spans all Steiner nodes. In our graph, the Steiner nodes are

the data nodes (Vd).

The general Steiner tree problem is NP-complete, however, there are several

approximation algorithms [Winter, 1987; Takahashi and Matsuyama, 1980; Kou

et al., 1981; Mehlhorn, 1988] that can be used to gain a polynomial runtime com-

plexity. We use a heuristic algorithm [Kou et al., 1981] with an approximation

ratio bounded by 2(1− 1/l), where l is the number of leaves in the optimal Steiner

tree. The time complexity of the algorithm is O(|Vd||V |2) in which Vd is the set of

data nodes and Vc is the set of class nodes in G.

It is possible that multiple minimal trees exist, or that the correct interpretation

of the data is specified by a non-minimal tree. For example, the output of the

Steiner tree algorithm is the tree shown in Figure 2.4, which is not the correct

interpretation of the data (Figure 2.1). In these cases, the user imposes constraints

on the algorithms through a graphical user interface to create the correct semantic

model.

19

Person

Organization

StatePlace

name

name

name

name

birthDate

name birthdate

city

state

workplace

City

Event

bo
rn
In

worksFor

organize
r

ceo

liv
es
In

state

locat
ion

loc
ati
on

bo
rn
In

liv
es
In

bor
nIn

live
sIn

loc
ati
on

location

subClassOf

location location

subClassOf

1+ε

1+ε

1+ε
1+ε 1+ε

1+ε

1+ε

1/ε

1/ε

1

1

1 1

1

1

1

1

1

1
11

11
1+ε

Figure 2.4: The initial Steiner tree (semantic model) suggested by the system (blue
color). Our algorithm incorrectly suggests that Person is CEO of Organization and
City is where Organization is located.

2.4 Refining Semantic Models

Our approach to model data sources is a semi-automatic approach. The user

supervises different steps of the process to interactively build the desired semantic

model. To bring the user in the loop, we integrated our approach into Karma1

[Knoblock et al., 2012], a general information integration tool that supports many

of the steps required for data integration. Karma allows the user to import data

from a variety of sources including relational databases, spreadsheets, XML, and

JSON. It provides support for cleaning and normalizing the data and integrating

it using data integration operators such as join and union, and for publishing it in

a variety of formats including RDF.

1http://karma.isi.edu

20

http://karma.isi.edu

Figure 2.5: The initial Steiner tree in Karma.

In Karma, the user initiates the modeling process by loading a data source

and importing an ontology (the domain ontology). Karma shows the source data

in a table and visualizes the semantic model as a tree of nodes displayed above

the column headings (Figure 2.5). However, it is possible that the automatically

suggested semantic model does not capture the correct meaning of the data. This

is where the user interacts with the system and refines the model. During modeling

a source, the user can interact with Karma in three ways:

Edit the semantic types: If the correct semantic type is not assigned to a

source column, the user can browse the ontology through a user friendly interface

to find the appropriate type. Karma automatically re-trains the classifier after

this manual assignment. The system removes the class node and the data node

corresponding to the old semantic type and adds new nodes to G. Then the Steiner

tree is re-computed to generate a new semantic model.

21

In assigning or changing a semantic type, the user has the option to add

a new instance of an ontology class that is already present in the model. In

our example, the semantic labeling function has assigned 〈Person, name〉 and

〈Person, birthDate〉 to the first two attributes of s (name and birthdate). Thus,

in the graph, we have two outgoing links from Person to name and birthdate,

indicating that name and birthdate are different attributes of the same person.

Now, consider the case in which the first two attributes of s are referring to dif-

ferent individuals. This means that in the semantic model, there should be two

instances of the class Person that are separately connected to the data nodes

name and birthdate. Assume that the user has already assigned the semantic type

〈Person, name〉 to the first column name. When assigning a semantic type to the

second column birthdate, Karma allows the user to choose the same Person used

to label the first column or choose a new instance of the class Person. If the user

selects a new instance of Person, the system adds a new class node with the label

Person to G, adds the new Person to the Steiner nodes, and replicates all the links

of the existing Person for the new Person. Then, the Steiner tree is re-computed

to produce the correct model.

Edit the links: Users can edit the model to adjust the relationships between

the source columns. For instance, in the model shown in Figure 2.5, Person is

related to Organization through the property ceo. However, in the correct model

of the data, Person is connected to Organization using the property worksFor.

To fix this, the user clicks on the source (Organization) or target (Person) of the

wrong link (ceo) and Karma shows a list of possible relationships between the

selected node and other nodes. For example, if the user clicks on the node Person,

Karma extracts all the outgoing and incoming links of the class node Person from

G and lists them in a menu. Then, the user can select a new link from the menu.

22

Person

Organization

StatePlace

name

name

name

name

birthDate

name birthdate

city

state

workplace

City

Event

bo
rn
In

worksFor

organize
r

ceo

liv
es
In

state

locat
ion

loc
ati
on

bo
rn
In

liv
es
In

bor
nIn

live
sIn

loc
ati
on

location

subClassOf

location location

subClassOf

1+ε

1+ε

1+ε

1+ε

1+ε1+ε

1+ε

1/ε

1/ε

1

ε

1 1

1

1

1

1

1

1
1

1

11

ε

Figure 2.6: The user can refine the model by changing the relationships. The sys-
tem changes the weights of the user-selected links (red links) to ε and re-computes
the Steiner tree.

To force the Steiner tree algorithm to select the new link, we first add the source

(Person) and the target (Organization) of the user-selected link (worksFor) to the

Steiner nodes. Then, we reduce the weight of the user link to ε. These steps

guarantee that the user link will be chosen by the Steiner tree algorithm. Figure

2.6 illustrates the new G and Steiner tree after adjusting the relationships by the

user and Figure 2.7 shows the visualization of the final model in Karma.

2.5 Evaluation

We evaluated our approach on a dataset of 29 museum data sources in CSV, XML,

or JSON format containing data from different art museums in the US. We used

23

Figure 2.7: The visualization of the correct semantic model in Karma.

Karma to model these sources according to Europeana Data Model (EDM),2 a

well-known data model in the museum domain. A data model standardizes how

to map the data elements in a domain to a set of domain ontologies. The domain

ontologies that were used to model the sources are EDM3, AAC4, SKOS5, Dublin

Core Metadata Terms6, FRBR7, FOAF, ORE8, and ElementsGr29. Table 2.1

provides more information about the evaluation dataset. The dataset including

2http://pro.europeana.eu/page/edm-documentation

3http://www.europeana.eu/schemas/edm

4http://www.americanartcollaborative.org/ontology

5http://www.w3.org/2008/05/skos#

6http://purl.org/dc/terms

7http://vocab.org/frbr/core.html

8http://www.openarchives.org/ore/terms

9http://rdvocab.info/ElementsGr2

24

http://pro.europeana.eu/page/edm-documentation
http://www.europeana.eu/schemas/edm
http://www.americanartcollaborative.org/ontology
http://www.w3.org/2008/05/skos#
http://purl.org/dc/terms
http://vocab.org/frbr/core.html
http://www.openarchives.org/ore/terms
http://rdvocab.info/ElementsGr2

Table 2.1: The evaluation datasets.

number of data source 29
number of classes in the domain ontologies 119
number of properties in the domain ontologies 351
number of nodes in the gold-standard models 473
number of data nodes in the gold-standard models 329
number of class nodes in the gold-standard models 141
number of links in the gold-standard models 441

the sources, the domain ontologies, and the gold standard models are available

on GitHub.10 The source code of our approach is integrated into Karma which is

available as open source.11

The objective of the evaluation was to assess the ability of our approach to

produce semantic models for the given data sources. We measured effort in Karma

by counting the number of user actions (number of menu choices to select correct

semantic types or adjust paths in the graph) that the user had to perform to

construct the correct semantic model for a source.

Table 2.2 shows the number of actions required to map all the data sources.

The Choose Type column shows the number of times that the correct semantic

type of a column was not present in the top four semantic types learned by our

labeling function and we had to manually browse the ontology to select the correct

semantic type. We started this evaluation with no training data for the semantic

type identification. Out of the 56 manual assignments, 19 were for specifying

semantic types that the system had never seen before, and 37 to fix incorrectly

inferred types. The data sources were mapped in the order listed in the table, and

10https://github.com/taheriyan/phd-thesis

11https://github.com/usc-isi-i2/Web-Karma

25

https://github.com/taheriyan/phd-thesis
https://github.com/usc-isi-i2/Web-Karma

Table 2.2: Evaluation results for modeling the evaluation dataset using Karma.

Source # Columns
User Actions

Time (min)
Choose Type Change Link Total

s1 7 7 1 8 3
s2 12 5 2 7 6
s3 4 0 0 0 2
s4 17 5 7 12 8
s5 14 4 6 10 7
s6 18 4 4 8 7
s7 14 1 4 5 6
s8 6 0 4 4 3
s9 4 1 0 1 2
s10 11 3 4 7 5
s11 6 1 0 1 2
s12 9 0 3 3 4
s13 10 1 3 4 4
s14 9 1 4 5 5
s15 13 0 3 3 5
s16 5 0 3 3 2
s17 12 0 4 4 4
s18 5 0 1 1 2
s19 17 0 6 6 5
s20 9 2 3 5 3
s21 28 8 8 16 11
s22 8 1 3 4 3
s23 18 0 4 4 5
s24 10 1 3 4 3
s25 13 1 4 5 4
s26 14 2 5 7 5
s27 12 2 3 5 4
s28 15 4 3 7 5
s29 9 2 1 3 3

Total 329 56 96 152 128
Avg. # User Actions/Column = 152/329 = 0.46

we can see that the number of Choose Type actions decreases as we move down the

table. This suggests that Karma is able to learn semantic types from the examples

it has seen before.

The Change Link column shows the number of times we had to select alter-

native relationships using a menu. Unlike learning the semantic types, our semi-

automatic approach does not learn from the changes the user makes in the rela-

tionships. For example, in the first source, the Steiner tree algorithm suggests

the link aac:sitter between aac:CulturalHeritageObject and aac:Person. The cor-

rect link between these two nodes in the gold standard model is dcterms:creator,

26

and thus, the user has to change the initial link in Karma. However, our semi-

automatic approach does not remember this adjustment. When the user starts

modeling the second source, the system still proposes aac:sitter as the link from

aac:CulturalHeritageObject to aac:Person. We address this problem in Section 3.

The whole process is done in a visual user interface, requiring 152 user actions,

about 5.2 per data source and 0.46 per column. It took 128 minutes of interaction

with Karma for a user familiar with the sources and the ontology to model all the

sources. That means the user spent on average 4.4 minutes to create a semantic

model for each source, a small effort compared to writing mapping rules by hand

using standards such as R2RML [Das et al., 2012]. Moreover, manually writing

semantic descriptions for sources requires some degree of expertise in Semantic

Web technologies in addition to the domain knowledge. Karma plays a significant

role by providing a user interface to rapidly build semantic models, making the

complexity of formal semantic descriptions transparent to the user.

27

Chapter 3

Learning Semantic Models of

Data Sources

In previous chapter, we presented a semi-automatic approach to interactively map

a source to an ontology. The system uses learned semantic types and a Steiner tree

algorithm to propose semantic models to the user, who can refine them as needed.

One problem with this approach is that although it learns the new semantic types

assigned by the user, it does not learn the refinements done by the user to adjust

the relationships. Thus, it does not learn from the structure of previously modeled

sources and always suggests a random minimal tree as the initial model of a new

source, and most of the times user intervention is required to build the correct

semantic model from the initially suggested model.

In this chapter, we present algorithms to improve the quality of the automati-

cally generated models by using the already modeled sources to learn the patterns

that more likely represent the intended meaning of a new source [Taheriyan et al.,

2013, 2014, 2015a]. The insight of our approach is that different sources in the

same domain often provide similar or overlapping data. Thus, it should be possi-

ble to exploit knowledge of previously modeled sources to learn semantic models

for new sources. The main contribution of our work are the techniques to leverage

attribute relationships in known source models to hypothesize attribute relation-

ships for new sources, and capturing them in semantic models.

28

3.1 Example

We explain the problem of learning semantic models by giving an example that will

be used throughout this paper to illustrate different steps of our approach. In this

example, the goal is to model a set of museum data sources using EDM, AAC,

SKOS, Dublin Core Metadata Terms, FRBR, FOAF, ORE, and ElementsGr2

ontologies and then use the created semantic models to publish their data as RDF

[Szekely et al., 2013]. Suppose that we have three data sources. The first source is

a table containing information about artworks in the Dallas Museum of Art1 (Fig-

ure 3.1a). We formally write the signature of this source as dma(title, creationDate,

name, type) where dma is the name of the source and title, creationDate, name,

and type are the names of the source attributes (columns). The second source, npg,

is a CSV file including the data of some of the portraits in the National Portrait

Gallery2 (Figure 3.1b), and the third data source, dia, has the data of the artworks

in the Detroit Institute of Art3 (Figure 3.1c).

Figure 3.2 shows the correct semantic model of the sources dma, npg, and dia

created by experts in the museum domain. The links in the semantic model are

associated with ontology properties. The particular link karma:uri from a class

node, which represents an ontology class, to a data node, which represents a source

attribute, denotes that the attribute values are the URIs of the class instances. For

instance, in Figure 3.2b, the values of the column image in the source npg are the

URIs of the instances of the class edm:WebResource.

As discussed earlier, automatically building the semantic models is challenging.

Machine learning methods can help us in assigning semantic types to the attributes

1http://www.dma.org

2http://www.nationalportraitgallery.org

3http://www.dia.org

29

http://www.dma.org
http://www.nationalportraitgallery.org
http://www.dia.org

(a) dma(title, creationDate, name, type)

(b) npg(name, artist, year, image)

(c) dia(title, credit, classification, name, imageURL)

Figure 3.1: Sample data from three museum sources: (a) Dallas Museum of Art,
(b) National Portrait Gallery, and (c) Detroit Institute of Art.

by looking into the attributes values, however, these methods are error prone

when similar data values have different semantic types. For example, from just

the data values of the attribute creationDate in the source dma, it is hard to say

whether it is the creation date of aac:CulturalHeritageObject or it is the birthdate

of a aac:Person. Extracting the relationships between the attributes is a more

complicated problem. There might be multiple paths connecting two classes in

the ontology and we do not know which one captures the intended meaning of

the data. For instance, there are several paths in the domain ontology connecting

aac:CulturalHeritageObject to aac:Person, but in the context of the source dma,

only the link dcterms:creator represents the correct meaning of the source. As

another example, the attributes artist and name in the source npg are both labeled

with name of Person, nevertheless, how can we decide whether these two attributes

30

aac:CulturalHeritageObject

creationDate

 dcterms:created

aac:Person

 dcterms:creator

skos:Concept

 dcterms:hasType

title

 dcterms:title

name

 foaf:name

type

 skos:prefLabel

(a) sm(dma): semantic model of the source dma

aac:CulturalHeritageObject

aac:Person

 dcterms:creator

aac:Person

 aac:sitter

year

 dcterms:created

artist name

edm:EuropeanaAggregation

 edm:aggregatedCHO

edm:WebResource

 edm:hasView

image

 karma:uri

 foaf:name foaf:name

(b) sm(npg): semantic model of the source npg

aac:CulturalHeritageObject

credit

 dcterms:provenance

aac:Person

 dcterms:creator

skos:Concept

 dcterms:hasType

title

 dcterms:title

name

 foaf:name

classification

 skos:prefLabel

imageURL

edm:EuropeanaAggregation

 edm:aggregatedCHO

edm:WebResource

 edm:hasView

 karma:uri

(c) sm(dia): semantic model of the source dia

Figure 3.2: Semantic models of the example data sources created by experts in the
museum domain.

31

are different names of one person or they belong to two distinct individuals? In

general, the ontology defines a large space of possible semantic models and without

additional context, we do not know which one describes the source more precisely.

Now, assume that the correct semantic models of the sources dma and npg are

given. Can we leverage these known semantic models to build a semantic model for

a new source such as dia? In the next section, we present a scalable and automated

approach that exploits the known semantic models sm(dma) and sm(npg) to limit

the search space and learn a semantic model sm(dia) for the new source dia.

3.2 Learning Semantic Models

We now formally state the problem of learning semantic models of data sources.

Let O be the domain ontology4 and {sm(s1), sm(s2), · · · , sm(sn)} is a set of known

semantic models corresponding to the data sources {s1, s2, · · · , sn}. Given sample

data from a new source s(a1, a2, · · · , am) called the target source, in which {a1, a2,

· · · , am} are the source attributes, our goal is to automatically compute a semantic

model sm(s) that captures the intended meaning of the source s. In our example,

sm(dma) and sm(npg) are the known semantic models, and the source dia is the

new source for which we want to automatically learn a semantic model.

The main idea is that data sources in the same domain usually provide overlap-

ping data. Therefore, we can leverage attribute relationships in known semantic

models to hypothesize attribute relationships for new sources. One of the met-

rics helping us to infer relationships between the attributes of a new source is

the popularity of the links between the semantic types in the set of known mod-

els. Nevertheless, simply using link popularity to connect a set of nodes would

4O can be a set of ontologies.

32

lead to myopic decisions that select links that appear frequently in other models

without taking into account how these nodes are connected to other nodes in the

given models. Suppose that we have a set of 5 known semantic models. One of

these models contains the link painter between Artwork and Person and the link

museum between Artwork and Museum. The other 4 models do not contain the

type Artwork, but they include the link founder from Museum to Person. If a

given new source contains the types Artwork, Museum, and Person, just using

the link popularity yields to an incorrect model. Our approach takes into account

the coherence of the patterns in addition to their popularity, and this is more

complicated to do.

Our approach to learn a semantic model for a new source has four steps: (1)

Using sample data from the new source, learn the semantic types of the source

attributes. (2) Construct a graph from the known semantic models, augmented

with nodes and links corresponding to the learned semantic types and ontology

paths connecting nodes of the graph. (3) Compute the candidate mappings from

the source attributes to the nodes of the graph. (4) Finally, build candidate seman-

tic models for the candidate mappings, and rank the generated models.

3.2.1 Learning Semantic Types of Source Attributes

Semantic labeling is the first step to model a source, i.e., we label the source

attributes with semantic types from the domain ontology. As we described in

Section 2.2, a semantic type can be either an ontology class 〈class uri〉 or a pair

consisting of a data property and its domain class 〈class uri,property uri〉. We use

a class as a semantic type for attributes whose values are URIs for instances of

a class and for attributes containing automatically-generated database keys that

can also be modeled as instances of a class. We use a domain/data property

33

Table 3.1: Top two learned semantic types for the attributes of the source dia.

attribute candidate semantic types
title 〈aac:CulturalHeritageObject,dcterms:title〉0.49

〈aac:CulturalHeritageObject,rdfs:label〉0.28
credit 〈aac:CulturalHeritageObject,dcterms:provenance〉0.83

〈aac:Person,ElementsGr2:note〉0.06
classification 〈skos:Concept,skos:prefLabel〉0.58

〈skos:Concept,rdfs:label〉0.41
name 〈aac:Person,foaf:name〉0.65

〈foaf:Person,foaf:name〉0.32
imageURL 〈foaf:Document〉0.47

〈edm:WebResource〉0.40

pair as a semantic type for attributes containing literal values. For example, the

semantic types of the attributes imageURL and classification in the source dia are

respectively 〈edm:WebResource〉 and 〈skos:Concept,skos:prefLabel〉.

To learn semantic types of source attributes, we use the same method that we

used in our semi-automatic approach in previous chapter (Section 2.2). The only

difference is that we take into account the uncertainty of the machine learning

algorithm when labeling the source attributes. Our approach in previous chapter

only uses the semantic type with the highest confidence value and ignores the other

suggested semantic types. This is a strong assumption, because in many cases, the

learning algorithm cannot distinguish the types of the source attributes that have

similar data values, e.g., birthDate and deathDate. To overcome this limitation, we

consider the top k candidate semantic types for each attribute rather than the top

one semantic type per attribute. Thus, the output of the labeling step for s(a1,

a2, · · · , am) is T = {(tp1111 , · · · , t
p1k
1k), · · · , (tpm1

m1 , · · · , t
pmk

mk)}, where in t
pij
ij , tij is the jth

semantic type learned for the attribute ai and pij is the associated confidence value

which is a decimal value between 0 and 1. Table 3.1 lists the candidate semantic

types for the source dia considering k=2.

34

As we can see in Table 3.1, the semantic labeling method prefers

〈foaf:Document〉 for the semantic type of the attribute imageURL, while accord-

ing to the correct model (Figure 3.2c), 〈edm:WebResource〉 is the correct semantic

type. We will show later how our approach recovers the correct semantic type by

considering coherence of structure in computing the semantic models.

3.2.2 Building A Graph from Known Semantic Models,

Semantic Types, and Domain Ontology

So far, we have tagged the attributes of dia with a set of candidate semantic types.

To build a complete semantic model we still need to determine the relationships

between the attributes. We leverage the knowledge of the known semantic mod-

els to discover the most popular and coherent patterns connecting the candidate

semantic types.

The central component of our method is a directed weighted graph G built

on top of the known semantic models and expanded using the semantic types

T and the domain ontology O. This graph is different than the graph we built

in our semi-automatic approach (Section 2.3.1) in the sense that this graph

incorporates the known semantic models in addition to the learned semantic types

and the domain ontology. Algorithm 3.1 shows the steps to build the graph. The

algorithm has three parts: (1) adding the known semantic models, sm(dma) and

sm(npg) (Algorithm 3.2); (2) adding the semantic types learned for the target

source (Algorithm 3.3); and (3) expanding the graph using the domain ontology

O (Algorithm 3.4).

Adding Known Semantic Models: Suppose that we want to add sm(si) to

the graph. If the graph is empty, we simply add all the nodes and links in sm(si)

35

Algorithm 3.1 Construct Graph G=(V,E)

Input:
- Known Semantic Models M = {sm1, · · · , smn},
- Attributes(s) A = {a1, · · · , am}
- Semantic Types T = {(tp1111 , · · ·, tp1k1k), · · ·, (tpm1

m1 , · · ·, tpmk

mk)}
- Ontology O

Output: Graph G = (V,E)

1: AddKnownModels(G,M)
2: AddSemanticTypes(G,T)
3: AddOntologyPaths(G,O)

return G

to G, otherwise we merge the nodes and links of sm(si) into G by adding the

nodes and links that do not exist in G. When adding a new node or link, we

tag it with a unique identifier (e.g., si, name of the source) indicating that the

node/link exist in sm(si). If a node or link already exists in the graph, we just

add the identifier si to its tags. The nodes and the links that are added in this

step are shown with the black color in Figure 3.3. In order to easily refer to the

nodes of the figure in the text, we assign a unique name to each node. The name

of a node is written with small font at the left side of the node. For example,

the node with the label edm:EuropeanaAggregartion is named n1. The orange and

green tags below the labels of the black links are the identifiers indicating the

semantic model(s) supporting the links. For instance, the link dcterms:creator

from n2 (aac:CulturalHeritageObject) to n7 (aac:Person) is tagged with both dma

and npg, because it exists in both sm(dma) and sm(npg). For readability, we have

not put the tags of the nodes in Figure 3.3.

Although merging a semantic model into G looks straightforward, there are

difficulties when the semantic model or the graph include multiple class nodes

36

aac:CulturalHeritageObject

creationDate

 dcterms:created

title

 dcterms:title

skos:Concept

 dcterms:hasType

aac:Person

 dcterms:creator

aac:Person

 aac:sitter

name

 foaf:name

type

 skos:prefLabel

image

edm:EuropeanaAggregation

 edm:aggregatedCHO

edm:WebResource

 edm:hasView

 karma:uri

name

 foaf:name

n1

n3n2

n4 n5
n6 n7 n8

n9

n10 n11 n12

npg npg

npgnpgnpg npg

npg npg

dmadmadma dma

dmadma

Figure 3.3: The graph G after adding the known semantic models sm(dma) and
sm(npg).

with the same label. Suppose that G already includes two class nodes v1 and v2

both labeled with Person connected by the link isFriendOf. Now, we want to

add a semantic model including the link worksFor from Person to Organization.

Assuming G does not have a class node with the label Organization, we add a new

class node v3 to G. Now, the question is where to put the link worksFor, between

v1 and v3, or v2 and v3. One option is to duplicate the link by adding a link between

each pair and then assign different tags to the added links. This approach slows

down the process of building the graph, and because it can yield a graph with a

large number of links, our algorithm to compute the candidate semantic models

would be inefficient too. Therefore, we adopt a different strategy; if there is more

than one node in the graph matching a node in the semantic model, we select the

one having more tags. This heuristic creates a more compact graph and makes the

whole algorithm faster, while not having much impact on the results.

Algorithm 3.2 illustrates the details of our method to add a semantic model

sm(si) to G:

37

Algorithm 3.2 Add Known Semantic Models to G

1: function AddKnownModels(G,M)

2: H = HashMap〈node,node〉
. H keys: nodes in smi

. H values: matched nodes in G

3: for each smi ∈M do
4: for each class node v in smi do
5: lv ← label of v
6: c1 ← number of class nodes in smi with label lv
7: c2 ← number of class nodes in G with label lv
8: add (c1 − c2) class nodes with label lv to G
9: matched nodes ← class nodes with label lv in G
10: unmapped nodes ← matched nodes − values(H)
11: v′ ← the node with largest tag set in unmapped nodes
12: add 〈v, v′〉 to H
13: end for

14: for each link e from a class node u to a data node v in smi do
15: le ← label of e
16: u′ ← H(u)
17: if u′ has an outgoing link with label le then
18: v′ ← target of the link with label le
19: else
20: add a new data node v′ to G
21: end if
22: add 〈v, v′〉 to H
23: end for

24: wl ← 1
25: for each link e from u to v in smi do
26: u′ ← H(u)
27: v′ ← H(v)
28: if there is e′ from u′ to v′ with le′ = le in G then
29: tagse′ ← tagse′ ∪ smi

30: weight(e′) ← wl − |tagse′ |/(i+ 1)
31: else
32: add the link e′ from u′ to v′ with le′ = le to G
33: tagse′ ← smi

34: weight(e′) ← wl

35: end if
36: end for
37: end for

38: end function

1. [line 2] Let H be a HashMap keeping the mappings from the nodes in sm(si)

to the nodes in G. The key of each entry in H is a node in sm(i) and its value

is a node in G.

2. [lines 3-13]: For each class node v in sm(si), we search the graph to see if G

includes a class node with the same label. If no such node exists in the graph,

we simply add a new node to the graph. It is possible that sm(si) contains

38

multiple class nodes with the same label, for instance, a model including the

link isFriendOf from one Person to another Person. In this case, we make sure

that G also has at least the same number of class nodes with that label. For

example, if G only has one Person, we add another class node with the label

Person. Once we added the required class nodes to the graph, we map the class

nodes in the model to the class nodes in the graph. If G has multiple class

nodes with the same label, we select the one that is tagged by larger number

of known semantic models. We add an entry to H with v as the key and the

mapped node (v′) as the value.

3. [lines 14-23]: For each link e = (u, v) in sm(si) where v is a data node, we

search the graph to see if there is a match for this pattern. We first use H to

find the node u′ in G to which the node u is mapped. If u′ does not have any

outgoing link with a label equal to the label of e, we add a new data node v′ to

G. We add v and its mapped data node v′ to H.

4. [lines 24-37]: For each link e = (u, v) in sm(si), we find the nodes in G to which

u and v are mapped (say u′ and v′). If G includes a link with the same label as

the label of e between u′ and v′, we only add si to the tags associated with the

link. Otherwise, we add a new link to the graph and tag it with si.

Adding Semantic Types: Once the known semantic models are added to G,

we add the semantic types learned for the attributes of the target source. As

mentioned before, we have two kinds of semantic types: 〈class uri〉 for attributes

whose data values are URIs and 〈class uri,property uri〉 for attributes that have

literal data. For each learned semantic type t, we search the graph to see whether

G includes a match for t.

39

aac:CulturalHeritageObject

foaf:PersoncreationDate

 dcterms:created

title

 dcterms:title

skos:Concept

 dcterms:hasType

aac:Person

 dcterms:creator

aac:Person

 aac:sitter

credit

 dcterms:provenance

name

 foaf:name

credit

 ElementsGr2:note

type

 skos:prefLabel

classification

 rdfs:label

image

edm:EuropeanaAggregation

 edm:aggregatedCHO edm:WebResource

 edm:hasView

foaf:Document

 karma:uri

title

 rdfs:label

name

 foaf:name

credit

 ElementsGr2:note

name

 foaf:name

imageURL

 karma:uri

n1

n3

n2

n4 n5 n6 n7 n8

n9

n10 n11 n12

n13 n14

n15

n17n16

n18 n19 n20 n21

npg

npg

npg

npg npg

dma dma

dma dma

npgdma npgdma

npg

Figure 3.4: The graph G after adding the nodes and the links corresponding to
the semantic types (shown in blue).

• t=〈class uri〉: We say (u, v, e) is a match for t if u is a class node with the

label class uri, v is a data node, and e is a link from u to v with the label

karma:uri. For example, in Figure 3.3, (n3,n9,karma:uri) is a match for the

semantic type 〈edm:WebResource〉.

• t=〈class uri,property uri〉: We say (u, v, e) is a match for t if u is a class node

labeled with class uri, v is a data node, and e is a link from u to v labeled

with property uri. In Figure 3.3, (n6,n10,skos:prefLabel) is a match for the

semantic type 〈skos:Concept,skos:prefLabel〉.

We say t=〈class uri〉 or t=〈class uri,property uri〉 has a partial match in G

when we cannot find a full match for t but there is a class node in G whose label

matches class uri. For instance, the semantic type 〈skos:Concept,rdfs:label〉 only

has a partial match in G, because G contains a class node labeled with skos:Concept

(n6), but this class node does not have an outgoing link with the label rdfs:label.

Algorithm 3.3 shows the function that adds the learned semantic types to

the graph G. For each semantic type t learned in the labeling step, we add the

necessary nodes and links to G to create a match or complete existing partial

40

Algorithm 3.3 Add Semantic Types to G

1: function AddSemanticTypes(G,T)

2: for each ai ∈ attributes(s) do
3: for each t

pij
ij ∈ (tpi1i1 , · · ·, tpikik) do

4: if tij = 〈class uri〉 then
5: lv ← class uri
6: le ← “karma:uri”
7: else if tij = 〈class uri, property uri〉 then
8: lv ← class uri
9: le ← property uri

10: end if
11: if no node in G has the label lv then
12: add a new node v with the label lv in G
13: end if
14: Vmatch ← all the class nodes with the label lv
15: wh ← |E|
16: for each v ∈ Vmatch do
17: if v does not have an outgoing link labeled le then
18: add a data node w with the label ai to G
19: add a link e = (v, w) with the label le
20: weight(e) ← wh

21: end if
22: end for
23: end for
24: end for

25: end function

matches. Consider the semantic types learned for the source dia (Table 3.1).

Figure 3.4 illustrates the graph G after adding the semantic types. The nodes

and the links that are added in this step are depicted with the blue color. For

〈aac:CulturalHeritageObject, dcterms:title〉, we do not need to change G, because

the graph already contained one match: (n2,n5,dcterms:title). The semantic type

〈skos:Concept,rdfs:label〉 only had one partial match (n6), thus, we add one data

node (n18 with a label equal to the name of the corresponding attribute) and one

link (rdfs:label from n6 to n18) in order to complete the existing partial match.

41

The semantic type 〈foaf:Document〉 had neither a match nor a partial match. We

add a class node (n15), a data node (n17), and a link between them (karma:uri

from n15 to n17) to create a match.

Adding Paths from the Ontology: We use the domain ontology to find all

the paths that relate the current class nodes in G (Algorithm 3.4). The goal is to

connect class nodes of G using the direct paths or the paths inferred through the

subclass hierarchy in O. The final graph is shown in Figure 3.5. We connect two

class nodes in the graph if there is an object property or subClassOf relationship

that connects their corresponding classes in the ontology. For instance, in Fig-

ure 3.5, there is the link ore:aggregates from n1 to n2. This link is added because

the object property ore:aggregates is defined with ore:Aggregation as domain

and ore:AggregatedResource as range, and edm:EuropeanaAggregation is a sub-

class of the class ore:Aggregation and aac:CulturalHeritageObject is a subclass of

edm:ProvidedCHO, which is in turn a subclass of the class ore:AggregatedResource.

As another example, the reason why n1 is connected to n15 is that the property

foaf:page is defined from owl:Thing to foaf:Document in the FOAF ontology. Thus,

a link with the label foaf:page would exist from each class node in G to n15 since all

classes are subclasses of the class owl:Thing. Depending on the size of the ontology,

many nodes and links may be added to the graph in this step. To make the figure

readable, only a few of the added nodes and links are illustrated in Figure 3.5 (the

ones with the red color).

In cases where G consists of disconnected components, we add a class node

with the label owl:Thing to the graph and connect the class nodes that do not

have any parent to this root node using a rdfs:subClassOf link. This converts the

original graph to a graph with only one connected component.

42

Algorithm 3.4 Add Ontology Paths to G

1: function AddOntologyPaths(G,O)

2: for each pair of class nodes u and v in G do
3: c1 ← ontology class with uri = lu
4: c2 ← ontology class with uri = lv
5: P(c1,c2) ← all the direct and inferred properties (including

rdfs:subClassOf) from c1 to c2 in O
6: wh ← |E|
7: for each property p ∈ P do
8: le ← uri of the property p
9: if there is no link with label le from u to v then
10: add a link e = (u, v) with label le to G
11: weight(e) ← wh

12: end if
13: end for
14: end for

15: end function

The links in the graph G are weighted. Assigning weights to the links of the

graph is very important in our algorithm. We can divide the links in G into two

categories. The first category includes the links that are associated with the known

semantic models (black links in Figure 3.5). The other group consists of the links

added from the learned semantic types or the ontology (blue and red links) which

are not tagged with any identifier. The basis of our weighting function is to assign

a much lower weight to the links in the former group compared to the links in the

latter group. If wl is the default weigh of a link in the first group and wh is the

default weight of a link in the second group, we will have wl � wh. The intuition

behind this decision is to produce more coherent models in the next step when we

are generating minimum-cost semantic models (Section 3.2.4). Our goal is to give

more priority to the models containing larger segments from the known patterns.

One reasonable value for wh is wl ∗ |E| in which |E| is the number of links in G.

43

aac:CulturalHeritageObject

foaf:Person

 dcterms:creator

creationDate

 dcterms:created

title

 dcterms:title

skos:Concept

 dcterms:hasType

aac:Person

 dcterms:creator

aac:Person

 aac:sitter aac:sitter dcterms:creator

credit

 dcterms:provenance

name

 foaf:name

credit

 ElementsGr2:note

type

 skos:prefLabel

classification

 rdfs:label

image

edm:EuropeanaAggregation

 ore:aggregates edm:aggregatedCHO edm:WebResource

 edm:hasView

foaf:Document

 foaf:page

 karma:uri edm:isShownAt

title

 rdfs:label

name

 foaf:name

credit

 ElementsGr2:note

name

 foaf:name

imageURL

 karma:uri

ore:Aggregation

 rdfs:subClassOf

 ore:aggregates

n22
npg

npg

npg

npg npg

dma dma

dma dma

npgdma npgdma

npg

n1

n3

n2

n4 n5 n6 n7 n8

n9

n10 n11 n12

n13 n14

n15

n17n16

n18 n19 n20 n21

Figure 3.5: The final graph G after adding the paths from the domain ontologies.
For legibility, only a few of all the possible paths between the class nodes are shown
(drawn with the red color).

This formula ensures that even a long pattern from a known semantic model will

cost less than a single link that does not exist in any known semantic model.

One factor that we consider in weighting the links coming from the known

semantic models (black links) is the popularity of the links, i.e., the number of

known semantic models supporting that link. We assign (wl − x/(n+ 1)) to each

black link where n is the number of known semantic models and x is the number

of identifiers the link is tagged with. Suppose that we use wl = 1 in our example.

Since our graph in Figure 3.5 has a total of 26 links, we will have wh = wl ∗ |E|=

26. In Figure 3.5, the link edm:hasView from n1 to n3 will be weighted with

0.66 because it is only supported by sm(npg) (n=2, x=1). The weight of the

link dcterms:creator from n2 to n7 will be 0.33 since both sm(dma) and sm(npg)

contain that link (the link has two tags).

We assign wh to the links that are not associated with the known models (blue

and red links, which do not have a tag). There is only a small adjustment for the

links coming from the ontology (red links). We prioritize direct properties over

inherited properties by assigning a slightly higher weight (wh + ε) to the inherited

44

ones. The rationale behind this decision comes from this observation that the direct

properties (more specific) are more likely to be used in the semantic models than

the inherited properties (more general). For instance, the red link aac:sitter from

n2 to n7 will be weighted with wh = 26, because its definition in the ontology AAC

has aac:CulturalHeritageObject as domain and aac:Person as range. In other hand,

the weight of the link ore:aggregates from n1 to n2 will be 26.01 (assume ε = 0.01)

since the domain of ore:aggregates in the ontology ORE is the class ore:Aggregation

(which is a superclass of edm:EuropeanaAggregation) and its range is the class

ore:AggregatedResource (which is a superclass of aac:CulturalHeritageObject).

3.2.3 Mapping Source Attributes to the Graph

We use the graph built in the previous step to infer the relationships between the

source attributes. First, we find mappings from the source attributes to a subset

of the nodes of the graph. Then, we use these mappings to generate and rank

candidate semantic models. In this section, we describe the mapping process, and

in Section 3.2.4, we talk about computing candidate semantic models.

To map the attributes of a source to the nodes of G (Figure 3.5), we search G

to find the nodes matching the semantic types associated with the attributes. For

example, the attribute classification in dia maps to {n6, n10} and {n6, n18}, corre-

sponding to the semantic types 〈skos:Concept,skos:prefLabel〉 and 〈skos:Concept,

rdfs:label〉, respectively.

Since each attribute has been annotated with k semantic types and also each

semantic type may have more than one match in G (e.g., 〈aac:Person,foaf:name〉

maps to {n7, n11} and {n8, n12}), more than one mapping m might exist from the

source attributes to the nodes of G. Generating all the mappings is not feasible in

cases where we have a data source with many attributes and the learned semantic

45

types have many matches in the graph. The problem becomes worse when we

generate more than one candidate semantic type for each attribute. Suppose that

we are modeling the source s consisting of n attributes and we have generated k

semantic types for each attribute. If there are r matches for each semantic type,

we will have (k ∗ r)n mappings from the source attributes to the nodes of G.

We present a heuristic search algorithm that explores the space of possible

mappings as we map the semantic types to the nodes of the graph and expands only

the most promising mappings. The algorithm scores the mappings after processing

each attribute and removes the low score ones. Our scoring function takes into

account the confidence values of the semantic types, the coherence of the nodes

in the mappings, and the size of the mappings. The inputs to the algorithm are

the learned semantic types T = {(tp1111 , · · ·, tp1k1k), · · ·, (tpm1

m1 , · · ·, tpmk

mk)} for the

attributes of the source s(a1, a2, · · · , am) and the graph G, and the output is a

set of candidate mappings m from the source attributes to a subset of the nodes

in G. The key idea is that instead of generating all the mappings (which is not

feasible), we score the partial mappings after processing each attribute and prune

the mappings with lower scores. In other words, as soon as we find the matches

for the semantic types of an attribute, we rank the partial mappings and keep the

better ones. In this way, the number of candidate mappings never exceeds a fixed

size (branching factor) after mapping each attribute.

Algorithm 3.5 shows our mapping process. The heart of the algorithm is the

scoring function we use to rank the partial mappings (line 22 in Algorithm 3.5).

We compute three functions for each mapping m: confidence(m), coherence(m),

and sizeReduction(m). Then, we calculate the final score score(m) by combining

the values of these three functions. We explain these functions using an example.

Suppose that the maximum number of the mappings we expand in each step is

46

Algorithm 3.5 Generate Candidate Mappings

Input:
- G(V,E),
- attributes(s) = {a1, · · · , am}
- T = {(tp1111 , · · ·, tp1k1k), · · ·, (tpm1

m1 , · · ·, tpmk

mk)}
- branching factor: max number of mappings to expand
- num of candidates: number of candidate mappings

Output: a set of candidate mappings m from attributes(s) to S ⊂ V

1: mappings ← {}
2: candidates ← {}
3: for each ai ∈ attributes(s) do
4: for each t

pij
ij ∈ (tpi1i1 , · · ·, tpikik) do

5: matches ← all the (u, v, e) in G matching tij
6: if mappings = {} then
7: for each (u, v, e) ∈ matches do
8: m ← ({ai} → {u, v})
9: mappings ← mappings ∪m
10: end for
11: else
12: for each m : X → Y ∈ mappings do
13: for each (u, v, e) ∈ matches do
14: m′ ← (X ∪ {ai} → Y ∪ {u, v})
15: mappings ← mappings ∪m′

16: end for
17: remove m from mappings
18: end for
19: end if
20: end for
21: if |mappings|> branching factor then
22: compute score(m) for each m ∈ mappings
23: sort items in mappings descending based on their score
24: keep top branching factor mappings and remove others
25: end if
26: end for
27: candidates ← top num of candidates items from mappings

return candidates

2 (branching factor = 2). After mapping the second attribute of the source dia

(credit), we will have: mappings = {

m1 : {title, credit} → {(n2, n5), (n2, n13)},

m2 : {title, credit} → {(n2, n5), (n7, n19)},

m3 : {title, credit} → {(n2, n5), (n8, n20)},

47

m4 : {title, credit} → {(n2, n14), (n2, n13)},

m5 : {title, credit} → {(n2, n14), (n7, n19)},

m6 : {title, credit} → {(n2, n14), (n8, n20)}

}

There are two matches for the attribute title: (n2, n5) for the semantic type

〈aac:CulturalHeritageObject, dcterms:title〉 and (n2, n14) for the semantic type

〈aac: CulturalHeritageObject,rdfs:label〉; and three matches for the attribute credit:

(n2, n13) for the semantic type 〈aac:CulturalHeritageObject, dcterms:provenance〉

and (n7, n19) and (n8, n20) for the semantic type 〈aac:Person, ElementsGr2:note〉.

This yields 2 ∗ 3 = 6 different mappings. Since branching factor = 2 , we have to

eliminate four of these mappings. Now, we describe how the algorithm ranks the

mappings.

Confidence: We define confidence as the arithmetic mean of the confidence

values associated with a mapping. For example, m1 is consisting of the matches

for the semantic types 〈aac:CulturalHeritageObject, dcterms:title〉0.49 and 〈aac:

CulturalHeritageObject,dcterms:provenance〉0.83. Thus, confidence(m1) = 0 .66 .

Coherence: This function measures the largest number of nodes in a mapping

that belong to the same known semantic model. Like the links, the nodes in G

are also tagged with the model identifiers although we have not shown them in

Figure 3.5. We calculate coherence as the maximum number of the nodes in a

mapping that have at least one common tag. For instance, coherence(m1) = 0 .66

because two nodes out of the three nodes in m1 (n2 and n5) are from sm(dma),

and coherence(m2) = 1 .0 because all the nodes of m2 are from the same semantic

model sm(dma). The goal of defining the coherence is to give more priority to

48

the models containing larger segments from the known patterns.

Size Reduction: We define the size of a mapping size(m) as the number of

the nodes in the mapping. Since we prefer concise models, we seek mappings

with fewer nodes. If a mapping has k attributes, the smallest possible size for

this mapping is l = k + 1 (when all the attributes map to the same class node,

e.g., m1) and the largest is u = 2 ∗ k (when all the attributes map to different

class nodes, e.g., m2). Thus, the possible size reduction in a mapping is u − l.

We define sizeReduction(m) = (u − size(m))/(u − l + 1) as how much the size

of a mapping is reduced compared to the possible size reduction. For example,

sizeReduction(m1) = 0 .5 and sizeReduction(m2) = 0 .

Score(m): The final score is the combination the values confidence(m), coher-

ence(m), and sizeReduction(m), which are all in the range [0, 1]. We assign a

weight to each of these values and then compute the final score as the weighted sum

of them: score(m) = w1 confidence(m) +w2 coherence(m) +w3 sizeReduction(m),

where w1, w2, and w3 are the weights, decimal values in the range [0, 1] summing

up to 1. The proper values of the weights can be tuned by experiments. In

our evaluation (Section 3.3), we obtained better results when all the three

functions contributed equally to the final score. That is, score(m) is calculated

as the arithmetic mean of confidence(m), coherence(m), and sizeReduction(m)

(w1 = w2 = w3 = 1/3).

In our example, if we use arithmetic mean to compute the final score, the

scores of the 6 mappings we mentioned before are as follows: score(m1) = 0 .60 ,

score(m2) = 0 .42 , score(m3) = 0 .42 , score(m4) = 0 .46 , score(m5) = 0 .39 ,

49

score(m6) = 0 .39 . Therefore, m2, m3, m5, and m6 will be removed from the

mappings (line 24), and the algorithm continues to the next iteration, which is

mapping the next attribute of the source dia (classification) to the graph. At the

end, we will have maximum branching factor mappings, each of them will include

all the attributes. We sort these mappings based on their score and consider the

top num of candidates mappings as the candidates (Algorithm 3.5 line 27).

3.2.4 Generating and Ranking Semantic Models

Once we generated candidate mappings from the source attributes to the nodes

of the graph, we compute and rank candidate semantic models. To compute a

semantic model for a mapping m, we find the minimum-cost tree in G that connects

the nodes of m. The cost of a tree is the sum of the weights on its links. This

problem is known as the Steiner Tree problem [Winter, 1987]. Given an edge-

weighted graph and a subset of the vertices, called Steiner nodes, the goal is to

find the minimum-weight tree that spans all the Steiner nodes. The general Steiner

tree problem is NP-complete, however, there are several approximation algorithms

[Winter, 1987; Takahashi and Matsuyama, 1980; Kou et al., 1981; Mehlhorn, 1988]

that can be used to gain a polynomial runtime complexity.

The inputs to the algorithm are the graph G and the nodes of m (as Steiner

nodes) and the output is a tree that we consider as a candidate semantic model

for the source. For example, for the source dia and the mapping m: {title,credit,

classification,name,imageURL}→ {(n2,n5),(n2,n13),(n6,n10),(n7,n11),(n3,n9)}, the

resulting Steiner tree will be exactly as what is shown in Figure 3.2c, which is the

correct semantic model of the source dia. The algorithm to compute the mini-

mal tree prefers the links that appear in the known semantic models (links with

50

aac:CulturalHeritageObject

aac:Person

 dcterms:creator

aac:Person

 aac:sitter

 foaf:knows

0.75

0.5

n1

n3n2

s1 s1

s2 s3

0.75

Figure 3.6: A small part of an example graph constructed using three known
models.

tags) because they have a much lower weight than the other links in G. Addition-

ally, since the weight of a link with tags has inverse relation with its number of

tags (number of known semantic models containing the link), the semantic model

obtained by computing the minimal tree will contain the links that are more pop-

ular in the known semantic models.

Selecting more popular links does not always yield the correct semantic model.

Suppose that we have three known semantic models {sm(s1), sm(s2), sm(s3)}. One

of them connects aac:CulturalHeritageObject to two instances of aac:Person using

the links dcterms:creator and aac:sitter (similar to sm(npg)). The other two

semantic models do not contain the class node aac:CulturalHeritageObject, but

they have two class nodes aac:Person connected using the link foaf:knows. Fig-

ure 3.6 shows a small part of the graph constructed using these known models.

The black labels on the links represent the weights of the links. For instance, the

link dcterms:creator from n1 to n2 has a weight equal to 0.75 because it is only

supported by sm(s1) (wl − x/(n+ 1) = 1− 1/(1 + 3) = 0.75).

51

Now, assume that we have a new source s4 with three attributes {a1, a2, a3}

annotated with aac:CulturalHeritageObject, aac:Person, and aac: Person. Com-

puting the minimal tree for the mapping m: {a1, a2, a3} → {n1, n2, n3} will result a

tree that consists of the link foaf:knows between n2 to n3 and either dcterms:creator

from n1 to n2 or aac:sitter between n1 and n3. Nonetheless, this is not the correct

semantic model for the source. When s4 includes aac:CulturalHeritageObject in

addition to those two aac:Person, it is more likely that the source is describing the

relations between the cultural heritage objects and the people and not the relations

between the people.

We solve this problem by taking into account the coherence of the patterns.

Instead of just the minimal Steiner tree, we compute the top-k Steiner trees and

rank them first based on the coherence of their links and then their cost. In the

example shown in Figure 3.6, the top-3 results assuming n1, n2, and n3 as the

Steiner nodes are:

T1={(n1,n3,aac:sitter),(n2,n3,foaf:knows)}

T2={(n1,n2,dcterms:creator),(n2,n3,foaf:knows)}

T3={(n1,n2,dcterms:creator),(n1,n3,aac:sitter)}

where cost(T1)=cost(T2)=1.25 and cost(T3)=1.5. Once we computed the top-k

trees, we sort them according to their coherence. The coherence here means the

percentage of the links in the Steiner tree that are supported by the same semantic

model. It is computed similar to the coherence of the nodes with the difference

that we use the tags on the links instead of the tags on the nodes. In our example,

the coherence of T1 and T2 will be 0.5 because their links do not belong to the same

known semantic model, and the coherence of T3 will be 1.0 since both of its links

are tagged with s1. Therefore, T3 will be ranked higher than T1 and T2, although

it has higher cost than T1 and T2.

52

We use a customized version of the BANKS algorithms [Bhalotia et al., 2002]

to compute the top-k Steiner trees. The original BANKS algorithm is developed

for the problem of the keyword-based search in relational databases, and because

it makes specific assumptions about the topology of the graph, applying it directly

to our problem eliminates some of the trees from the results. For instance, if two

nodes are connected using two links with different weights, it only considers the

one with the lower weight and it never generates a tree including the link with

the higher weight. We customized the original algorithm to support more general

cases.

The BANKS algorithm creates one iterator for each of the nodes corresponding

to the semantic types, and then the iterators follow the incoming links to reach a

common ancestor. The algorithm uses the iterator’s distance to its starting point

to decide which link should be followed next. Because our weights have an inverse

relation with their popularity, the algorithm prefers more frequent links. To make

the algorithm converge to more coherent models first, we use a heuristic that prefers

the links that are parts of the same pattern (known semantic model) even if they

have higher weights. Suppose that sm1 : v1
e1−→v2 and sm2 : v1

e2−→v2
e3−→v3 are the

only known models used to build the graph G, and the weight of the link e2 is

higher than e1. Assume that v1 and v3 are the semantic labels. The algorithm

creates two iterators, one starting from v1 and one from v3. The iterator that

starts from v3 reaches v2 by following the incoming link v2
e3−→v3. At this point, it

analyzes the incoming links of v2 and although e1 has lower weight than e2, it first

chooses e2 to traverse next. This is because e2 is part of the known model sm2

which includes the previously traversed link e3.

53

It is important to note that considering coherence of patterns in scoring the

mappings and also ranking the final semantic models enables our approach to com-

pute the correct semantic model in many cases where the top semantic types are not

the correct ones. For example, for the source dia, the mapping m: {title,credit, clas-

sification,name,imageURL} → {(n2,n5),(n2,n13),(n6,n10),(n7,n11),(n3,n9)}, which

maps the attribute imageURL to (n3, n9) using the type 〈edm:WebResource〉, will

be scored higher than the mappingm′: {title,credit,classification,name,imageURL}

→ {(n2,n5),(n2,n13),(n6,n10),(n7,n11),(n15,n17)}, which maps imageURL to the

nodes (n15, n17) using the semantic type 〈foaf:Document〉. The mapping m has

lower confidence value than m′, but is scored higher because its coherence value is

higher. The model computed from the mapping m will also be ranked higher than

the model computed from m′, because it includes more links from known patterns,

thus resulting in a lower cost tree.

3.3 Evaluation

We evaluated our approach on two datasets, each including a set of data sources

and a set of domain ontologies that will be used to model the sources. Both of these

datasets have the same set of data sources, 29 museum sources in CSV, XML, or

JSON format containing data from different art museums in the US, however, they

include different domain ontologies. The goal is to learn the semantic models of the

data sources with respect to two well-known data models in the museum domain:

Europeana Data Model (EDM) [Hennicke et al., 2011], and CIDOC Conceptual

Reference Model (CIDOC-CRM) [Doerr, 2003]. EDM5 and CIDOC-CRM6 data

5http://pro.europeana.eu/page/edm-documentation

6http://www.cidoc-crm.org

54

http://pro.europeana.eu/page/edm-documentation
http://www.cidoc-crm.org

Table 3.2: The evaluation datasets dsedm and dscrm.

dsedm dscrm

#data source 29 29
#classes in the domain ontologies 119 147
#properties in the domain ontologies 351 409
#nodes in the gold-standard models 473 812
#data nodes in the gold-standard models 329 418
#class nodes in the gold-standard models 141 394
#links in the gold-standard models 441 785

models use different domain ontologies to represent knowledge in the museum

domain.

The first dataset, dsedm (the same dataset that we used for evaluation in Sec-

tion 2.5), contains the EDM, AAC, SKOS, Dublin Core Metadata Terms, FRBR,

FOAF, ORE, and ElementsGr2 ontologies, and the second dataset, dscrm, includes

the CIDOC-CRM and SKOS ontologies. The reason why we used two data models

is to evaluate how our approach performs with respect to different representations

of knowledge in a domain. We applied our approach on both datasets to find the

candidate semantic models for each source and then compared the best suggested

models (the first ranked models) with models created manually by domain experts.

Table 3.2 shows more details of the evaluation datasets. The datasets including

the sources, the domain ontologies, and the gold standard models are available

on GitHub.7 The source code of our approach is integrated into Karma which is

available as open source.8

In each dataset, we applied our method to learn a semantic model for a target

source si, sm(si), assuming that the semantic models of the other sources are

7https://github.com/taheriyan/phd-thesis

8https://github.com/usc-isi-i2/Web-Karma

55

https://github.com/taheriyan/phd-thesis
https://github.com/usc-isi-i2/Web-Karma

known. To investigate how the number of the known models influences the results,

we used variable number of known models as input. Suppose that Mj is a set

of known semantic models including j models. Running the experiment with M0

means that we do not use any knowledge other than the domain ontology and

running it with M28 means that the semantic models of all the other sources are

known (M28 is leave-one-out cross validation). For example, for s1, we ran the code

29 times using M0={}, M1={sm(s2)}, M2={sm(s2), sm(s3)}, · · ·, M28={sm(s2),

· · · , sm(s29)}.

In learning the semantic types of a source si, we use the data of the sources

whose semantic models are known as training data. More precisely, when we are

running our labeling algorithm on source si with Mj setting, the training data

is the data of all the sources {sk|k = 1, .., j and k! = i} and the test data is

the data of the target source si. Using M0 means that there is no training data

and thus the labeling function will not be able to suggest any semantic type for

the source attributes. To evaluate the labeling algorithm, we use mean reciprocal

rank (MRR) [Craswell, 2009], which is useful when we consider top k semantic

types. MRR helps to analyze the ranking of predictions made by any semantic

labeling approach using a single measure rather than having to analyze top-1 to

top-k prediction accuracies separately, which is a cumbersome task. In learning

the semantic types of a source si with n attributes, MRR is computed as:

MRR =
1

n

n∑
i=1

1

ranki

where ranki is the rank of the correct semantic type in the top k predictions made

for the attribute ai. It is obvious that if we only consider the top semantic type

predictions, the value of MRR is equal to the accuracy. In our example in Table 3.1,

56

MRR = 1/5(1/1 + 1/1 + 1/1 + 1/1 + 1/2) = 0.9 (the correct semantic type for the

attribute imageURL is ranked second).

We compute the accuracy of the learned semantic models by comparing them

with the gold standard models in terms of precision and recall. Assuming that the

correct semantic model of the source s is sm and the semantic model learned by

our approach is sm′, we define precision and recall as:

precision =
|rel(sm) ∩ rel(sm′)|

|rel(sm′)|

recall =
|rel(sm) ∩ rel(sm′)|

|rel(sm)|

where rel(sm) is the set of triples (u, v, e) in which e is a link from the node u

to the node v in the semantic model sm. For example, for the semantic model in

Figure 3.2c, rel(sm)={(edm:EuropeanaAggregation, aac:CulturalHeritageObject,

edm:aggregatedCHO), (edm:EuropeanaAggregation, edm:WebResource, edm:

hasView),(aac:CulturalHeritageObject, aac:Person, dcterms:creator), · · ·}.

If all the nodes in sm have unique labels and all the nodes in sm′ also have

unique labels, rel(sm) = rel(sm ′) ensures that sm and sm′ are equivalent. How-

ever, if the semantic models have more than one instance of an ontology class,

we will have nodes with the same label. In this case, rel(sm) = rel(sm ′) does

not guarantee sm = sm ′. For example, the two semantic models exemplified in

Figure 3.7 have the same set of triples although they do not convey the same

semantics. In Figure 3.7a, the creator of the artwork knows another person while

the semantic model in Figure 3.7b states that the creator of the artwork is known

by another person. Many sources in our datasets have models that include two or

more instances of an ontology class.

57

(a)

aac:CulturalHeritageObject

aac:Person

 dcterms:creator

aac:Person

 foaf:knows

aac:CulturalHeritageObject

aac:Person

 dcterms:creator

aac:Person

 foaf:knows

(b)

n1

n3

n2

n1

n3

n2

Figure 3.7: These two semantic models are not equivalent.

To have a more accurate evaluation, we number the nodes and then use the

numbered labels in measuring the precision and recall. Assume that the model in

Figure 3.7a is the correct semantic model (sm) and the one in 3.7b is the model

learned by our approach (sm′). We change the labels of the nodes n1, n2 and

n3 in sm to aac:CulturalHeritageObject1, aac:Person1 and aac:Person2. After

this change, we will have rel(sm)={(aac:CulturalHeritageObject1, aac:Person1,

dcterms:creator), (aac:Person1, aac:Person2, foaf: knows)}. Then, we try all

the permutations of the numbering in the learned model sm′ and report the pre-

cision and recall of the one that generates the best F1-measure.9 For instance, if

we number the nodes n2 and n3 in sm′ with aac:Person1 and aac:Person2, we

will have rel(sm′)={(aac:CulturalHeritageObject1, aac:Person1, dcterms:creator),

(aac:Person2, aac: Person1, foaf:knows)}, which yields precision=recall=0.5. If

we label n2 with aac:Person2 and n3 with aac:Person1, we will have rel(sm′)=

9F1-measure=2 ∗ (precision× recall)/(precision+ recall)

58

Table 3.3: The overlap between the pairs of the semantic models in the datasets
dsedm and dscrm.

dsedm dscrm

minimum overlap 0.04 0.03
maximum overlap 1 1
median overlap 0.45 0.46
average overlap 0.43 0.46

{(aac:CulturalHeritageObject1, aac:Person2, dcterms:creator), (aac:Person1, aac:

Person2, foaf:knows)}, which still has precision=recall=0.5.

One of the factors influencing the results of our method is the overlap between

the known semantic models and the semantic model of the target source. To see

how much two semantic models overlap each other, we define the overlap metric

as the Jaccard similarity between their relationships:

overlap =
|rel(sm) ∩ rel(sm′)|
|rel(sm) ∪ rel(sm′)|

Table 3.3 reports the minimum, maximum, median, and average overlap

between the semantic models of each dataset. Overall, the higher the overlap

between the known semantic models and the semantic model of the target source,

the more accurate models can be learned.

In our mapping algorithm (Algorithm 3.5), we used 50 as cut-off (branch-

ing factor=50) and then considered all the generated mappings as the candidate

mappings (num of candidates=50). We justify this choice in Section 3.3.2 by ana-

lyzing the impact of the branching factor on the accuracy of the results and the

running time of the algorithm. To score a mapping m, we assigned equal weights to

the functions confidence(m), coherence(m), and sizeReduction(m). We tried dif-

ferent combinations of weights, and although our algorithm generated more precise

59

models for a few sources in some of these weight systems, the average results were

better when each of these functions contributed equally to the final score. Once

we found the candidate mappings, we generated the top 10 Steiner trees for each

of them (k=10 in top-k Steiner tree algorithm). Finally, we ranked the candi-

date semantic models (at most 500) and compared the best one with the correct

model of the source. We ran two experiments with different scenarios that will be

explained next.

3.3.1 Scenario 1

In the first scenario, we assumed that each source attribute is annotated with

its correct semantic type. The goal was to see how well our approach learns the

attribute relationships using the correct semantic types. Figure 3.8 illustrates

the average precision and recall of all the learned semantic models (sm′(s1), · · · ,

sm′(s29)) for each Mj (j ∈ [0..28]) for each dataset. Since the correct semantic types

are given, we excluded their corresponding triples in computing the precision and

recall. That is, we compared only the links between the class nodes in the gold

standard models with the links between the class nodes in the learned models. We

call such links internal links, the links that are established between the class nodes

in semantic models. The total number of the links in the dataset dsedm is 441, and

329 of these links corresponds to the source attributes (there are 329 data nodes).

Thus, dsedm has 112 internal links (441-329=112). Following the same rationale,

dscrm has 367 internal links.

The results show that the precision and recall increase significantly even with

a few known semantic models. An interesting observation is that when there is no

known semantic model and the only background knowledge is the domain ontology

(baseline, M0), the precision and recall are close to 0. This low accuracy comes from

60

the fact that there are multiple links between each pair of class nodes in the graph

G, and without additional information, we cannot resolve the ambiguity. Although

we assign lower weights to direct properties to prioritize them over inherited ones,

it cannot help much because for many of the class nodes in the correct models,

there is no object property in the ontology that is explicitly defined with the

corresponding classes as domain and range. In fact, most of the properties that

have been used in the correct models are either inherited properties or defined

without a domain or/and range in the ontology.

To evaluate the running time of the approach, we measured the running time

of the algorithm starting from building the graph until ranking the results on a

single machine with a Mac OS X operating system and a 2.3 GHz Intel Core i7

CPU. Figure 3.9 shows the average time (in seconds) of learning the semantic

models. The reason why there is some fluctuations in the timing diagram of dscrm

(Figure 3.9b) is related to the topology of the graph built on top of the known

models and also the details of our implementation. While one expects to see linear

increase in time when the number of known semantic models grows, sometimes

adding a new semantic model changes the structure of the graph in a way that the

Steiner tree algorithm finds k candidate trees faster.

We believe that the overall time of the process can be further reduced by using

parallel programming and some optimizations in the implementation. For example,

the graph can be built incrementally. When a new known model is added, we do

not need to create the graph from scratch. We just need to merge the new known

model to the existing graph and update the links.

61

(a) dsedm (b) dscrm

Figure 3.8: Average precision and recall for the learned semantic models when the
attributes are labeled with their correct semantic types.

(a) dsedm (b) dscrm

Figure 3.9: Average semantic model learning time when the attributes are labeled
with their correct semantic types.

3.3.2 Scenario 2

In the second scenario, we used our semantic labeling algorithm to learn the seman-

tic types. We trained the labeling classifier on the data of the sources whose seman-

tic models are already known and then applied the learned labeling function to the

target source to assign a set of candidate semantic types to each source attribute.

Figure 3.10 shows the MRR diagram for dsedm and dscrm in two cases: (1) only

the top semantic type (the type with the highest confidence value) is considered

(k=1), (2) the top four learned semantic types are taken into account as the can-

didate semantic types (k=4). Note that, when k=1, the MRR value is equal to the

accuracy, i.e., how many of the attributes are labeled with their correct semantic

types.

62

(a) dsedm (b) dscrm

Figure 3.10: MRR value of the learned semantic types when only the top learned
semantic types are considered (k=1); and the top four suggested types are consid-
ered (k=4).

(a) dsedm (b) dscrm

Figure 3.11: Average precision and recall for the learned semantic models for k=1
and k=4.

Once the labeling is done, we feed the learned semantic types to the rest of

algorithm to learn a semantic model for each source. The average precision and

recall of the learned models are illustrated in Figure 3.11. The black color shows

the precision and recall for k=1, and the blue color illustrates the precision and

recall for k=4. In this experiment, we computed precision and recall for all the

links including the links from the class nodes to the data nodes (these links are

associated with the learned semantic types). The results show that using the known

semantic models as background knowledge yields in a remarkable improvement in

both precision and recall compared to the case in which we only consider the

domain ontology (M0).

63

We provide an example to help in understanding the correlation between the

MRR and the precision values, i.e., how the accuracy of the learned semantic types

affects the accuracy of the learned semantic models. The average MRR value for

dscrm when we use k=1 and M28 (leave-one-out setting) is 0.75 (Figure 3.10b). This

means that our labeling algorithm can learn the correct semantic types for only 75%

of the attributes. From Table 3.2, we know that the gold standard models for dscrm

have totally 418 data nodes, and thus, 418 links in the gold standard models cor-

respond to the source attributes. Since 75% of the attributes are labeled correctly,

313 links out of 418 links corresponding to the source attributes will be correct in

the learned semantic models. Even if we predict all the internal links correct (785-

418=367 links), the maximum precision would be 86% ((367+313)/785). However,

the input to the Steiner tree algorithm are the nodes coming from the learned

semantic types (leaves of the tree), and incorrect semantic types may prompt the

Steiner tree algorithm to select incorrect links in the higher levels (internal links).

As we see in Figure 3.11b, in the k=1 and M28 setting, the average precision of

the learned semantic models is 65%.

When considering the top four semantic types (k=4) instead of only the top one

semantic type (k=1), our algorithm recovers some of the correct semantic types

even if they are not the top predictions of the labeling function. For example, in

the dataset dscrm, using k=4 rather than k=1 when we have 28 known models

(M28), improves the precision by 6% and the recall by 7% (Figure 3.11b). This

improvement is mainly because of the coherence factor we take into account in

scoring the mappings and also ranking the candidate semantic models.

The running time of the algorithm in the second scenario is displayed in Fig-

ure 3.12. This time does not include the labeling step. The work done by Krish-

namurthy et al. [Krishnamurthy et al., 2015] contains a detailed analysis of the

64

(a) dsedm (b) dscrm

Figure 3.12: Average semantic model learning time when the attributes are labeled
with their correct semantic types.

performance of the labeling algorithm. As we can see in Figure 3.12b, the running

time of the algorithm is higher at M8, M9, M10, and M11 when k=1. This is because

computing top 10 Steiner trees takes longer once we add semantic models of s8, s9,

s10, and s11 to the graph. When adding more semantic models, the algorithm runs

faster. For example, the average time at M11 is 7.29 seconds while it is 1.21 seconds

at M12. This is the result of a combination of several reasons. First, there is more

training data in learning the semantic types of a source si at M12, and this affects

the output of the mapping algorithm (Algorithm 3.5). Second, the structure of

the graph is different at M12 and this results in different mappings between the

source attributes and the graph. Finally, the new semantic model sm(s12) adds

new paths to the graph allowing the Steiner tree algorithm to find the top 10 trees

faster.

We mentioned earlier that we used 50 as the value of the branching factor

in mapping the source attributes to the graph (line 21 of Algorithm 3.5). The

branching factor is essential to the scalability of our mapping algorithm. This value

can be configured by trying some sample values and then choosing a value yielding

good accuracy while keeping the running time of the algorithm reasonably low.

This can be different for each dataset. In our evaluation, using branching factor=50

65

(a) dsedm (b) dscrm

Figure 3.13: impact of branching factor on precision, recall, and running time for
k=4 and M28.

worked well for both datasets. Figure 3.13 illustrates how changing the value of the

branching factor affects the precision, recall, and running time of the algorithm in

a setting where we considered 4 candidate semantic types (k=4) and the semantic

models of all the other sources were known (M28). In this experiment, we fixed

the value of num of candidates (line 27 of Algorithm 3.5) equal to the value of

branching factor. This means that all the generated mappings will be given to the

Steiner tree algorithm as the candidate mappings. As we can see in Figure 3.13b,

increasing the value of the branching factor from 50 to 200 for dscrm provides 1%

improvement in the precision, however, it increases the average running time by

2.14 seconds. We chose to ignore this insignificant increase in the precision and

used 50 as the branching factor to gain a better running time.

3.3.3 User Effort

Manually constructing semantic models, in addition to being time-consuming and

error-prone, requires a thorough understanding of the domain ontologies. Karma

[Knoblock et al., 2012] provides a user friendly graphical interface enabling users

to interactively build the semantic models. Yet, building the models in Karma

without any automation requires significant user effort. Our automatic approach

66

learns accurate semantic models that can be transformed to the gold standard

models by only a few user actions.

To measure how much our new approach, which learns from the known semantic

models, facilitates the modeling task in Karma, we integrated our approach into

Karma and repeated the same experiment we did in Section 2.5 (where we only

used the knowledge from the domain ontology to build the semantic models). We

used Karma to model the dataset dsedm according to the EDM data model and

then counted the number of user actions required to convert the predicted models

to the correct models.

The results are shown in Table 3.4. The Choose Type column shows the number

of times that the correct semantic type of a column was not present in the top four

semantic types learned by our labeling function and we had to manually browse

the ontology to select the correct semantic type. Since we employed the same

labeling algorithm that was used in the experiment in Section 2.5, the values of

this column are exactly similar to the values in Table 2.2.

The Change Link column shows the number of times we had to add/delete links

to/from the suggested models or change one of the predicted links. If we compare

the values of this column with the values of the same column in Table 2.2, we

observe a significant reduction in the number of user actions (reducing from 96 to

19). This is because the approach we introduced in this chapter learns popular

and coherent patterns from the semantic models of previously modeled sources and

uses them to hypothesize the attribute relationships for a new source.

Comparing the results of the experiment in this section with the results of the

experiment in Section 2.5, we see that our new approach decreases the total number

of user actions from 152 to 77 (from 5.2 per data source to 2.6 per data source).

The overall time the user took to model all the sources also dropped from 128

67

Table 3.4: The evaluation results for modeling the dataset dsedm using Karma.

Source # Columns
User Actions

Time (min)
Choose Type Change Link Total

s1 7 7 1 8 3
s2 12 5 1 6 5
s3 4 0 0 0 2
s4 17 5 6 11 7
s5 14 4 2 6 5
s6 18 4 1 5 5
s7 14 1 0 1 4
s8 6 0 0 0 2
s9 4 1 0 1 2
s10 11 3 0 3 4
s11 6 1 0 1 2
s12 9 0 0 0 2
s13 10 1 0 1 3
s14 9 1 0 1 3
s15 13 0 0 0 4
s16 5 0 0 0 2
s17 12 0 0 0 3
s18 5 0 0 0 1
s19 17 0 0 0 3
s20 9 2 0 2 2
s21 28 8 6 14 10
s22 8 1 0 1 2
s23 18 0 1 1 4
s24 10 1 0 1 3
s25 13 1 0 1 3
s26 14 2 1 3 4
s27 12 2 0 2 4
s28 15 4 1 5 4
s29 9 2 1 3 3

Total 329 56 19 77 101
Avg. # User Actions/Column = 77/329 = 0.23

minutes to 101 minutes (from 4.4 minutes per source to 3.4 minutes per source),

and most of this time was for assigning the correct semantic types by browsing the

ontology. The results show that leveraging the known semantic models in additions

to the domain ontology significantly reduces the number of user actions compared

to the case where we only use the domain ontology.

68

Chapter 4

Leveraging Linked Data to Infer

Semantic Relations

In previous chapter, we presented an automatic approach that exploits the known

semantic models to learn a semantic model for a new unknown source. However,

in many domains, only few, if any, known semantic models are available. In this

chapter, we present an approach that leverages the knowledge from Linked Open

Data (LOD) to learn semantic models. This approach complements the work in our

previous chapter in cases where the number of known semantic models is limited

in a domain.

LOD is a vast and growing collection of semantic data that has been published

by various data providers. The current estimate is that the LOD cloud contains

over 30 billion RDF triples. Even the New York Times is now publishing all of

their metadata as Linked Open Data.1 Given the growing availability of this type

of data, LOD will provide an invaluable source of semantic content that we can

exploit as background knowledge.

The semantic data in the LOD cloud can be leveraged to learn how instances

of different classes are linked to each other. Once we have identified the semantic

types of the source attributes, we can search for corresponding classes in LOD and

analyze which properties are connecting them. Suppose that a source with two

attributes is labeled with dbpedia:City and dbpedia:State. We can search LOD for

1See http://data.nytimes.com

69

http://data.nytimes.com

possible properties between these two classes and find that the properties dbpe-

dia:state and dbpedia:isPartOf are better candidates than other properties that

ontology suggests, e.g., dbpedia:closeTo. By combining the information we extract

for each pair of classes, we can narrow the search to those classes and properties

that commonly occur together.

The main contribution of the work we introduce in this chapter is exploit-

ing the graph patterns occurring in the linked data to disambiguate the relation-

ships between the source attributes [Taheriyan et al., 2015b]. The main difference

between the algorithm in this chapter and the one in Chapter 3 is the way we

create the graph. Here, instead of the known semantic models, we use the patterns

extracted from LOD to build the graph. The rest of the two approaches are similar.

We use SPARQL to extract graph patterns with different lengths occurring in the

linked data. We combine these patterns into one graph and expand the resulting

graph using the paths inferred from the domain ontology. Then, we search the

graph starting from the semantic labels of the source and heuristically find the top

k semantic models connecting all the labels.

4.1 Example

In this section, we provide an example from the museum domain to explain how

the knowledge from LOD can help us to infer semantic relations within structured

sources. In this example, we want to model a data source using the CIDOC-CRM

ontology and then use the created semantic model to publish the source data as

RDF. This source is a table containing information about artworks in the Crystal

Bridges Museum of American Art2 (Figure 4.1). We formally write the signature

2http://crystalbridges.org

70

http://crystalbridges.org

Figure 4.1: Sample data from the Crystal Bridges Museum of American Art.

of this source as s(title, creation, name) where s is the name of the source and title,

creation, and name are the names of the source attributes (columns). The correct

semantic types for the columns title, creation, and name are 〈E35 Title,label〉,

〈E52 Time-Span, P82 at some time within〉, and 〈E82 Actor Appellation,label〉.

Figure 4.2 shows the correct semantic model of the source s. As we can see

in the figure, none of the semantic types corresponding to the source columns

are directly connected to each other, which makes the problem of finding the

correct semantic model more complex. There are many paths in the CIDOC-CRM

ontology connecting the assigned labels. For instance, we can use the classes

E39 Actor and E67 Birth to relate the semantic types E82 Actor Appellation and

E52 Time-Span:

(E39 Actor, P1 is identified by, E21 Actor Appellation)

(E39 Actor, P98i was born, E67 Birth)

(E67 Birth, P4 has time-span, E52 Time-Span)

However, this way of modeling does not correctly represent the semantics of this

particular data source. In general, the ontology defines a large space of possible

semantic models and without additional knowledge, we do not know which one is

a correct interpretation of the data.

71

E12_Production

E52_Time-Span

 P4_has_time-span

E21_Person
P14_carried_out_by

E82_Actor_Appellation

name

 label

 P131_is_identified_by

creation

 P82_at_some_time_within

E22_Man-Made_Object

E35_Title

P102_has_title P108i_was_produced_by

title

 label

Figure 4.2: The semantic model of the source s.

Now assume that we have access to a repository of linked data containing the

RDF triples published by some other museums. We can exploit this linked data to

bias the search space to prefer those models that are used for related source. Once

we have identified the semantic types of the source attributes, we can search the

linked data to find the frequent patterns connecting the corresponding classes. For

example, by querying the linked data, we find out that P131 is identified by is more

popular than P1 is identified by to connect instances of E82 Actor Appellation and

instances of E21 Person, and this makes sense when we investigate the definitions

of these two properties in the ontology. The property P1 is identified by describes

the naming or identification of any real world item by a name or any other iden-

tifier, and P131 is identified by is a specialization of P1 is identified by that iden-

tifies a name used specifically to identify an instance of E39 Actor (superclass of

E21 Person). We can query the linked data to find longer paths between entities.

For instance, by inspecting the paths with length two between the instances of

E22 Man-Made Object and E21 Person, we observe that the best way to connect

72

these two classes is through the path: E22 Man-Made Object
P108i was produced by−−−−−−−−−−−−−→

E12 Production
P14 is carried out by−−−−−−−−−−−−→ E21 Person.

4.2 Inferring Semantic Relations

In this section, we explain our approach to automatically deduce the attribute

relationships within a data source. Since we have described our labeling algorithm

before (Chapter 2), in this section, we assume that source attributes are already

labeled with semantic types and we focuses on learning the relationships. The

input to our approach are the domain ontology, a repository of linked data in

the same domain, and a data source whose attributes are already labeled with

semantic types. The output is a semantic model expressing how the assigned

labels are connected.

4.2.1 Extracting Patterns from Linked Open Data

The Linked Open Data (LOD) cloud includes a vast and growing collection of

semantic content published by various data providers in many domains. When

modeling a source in a particular domain, we can exploit the linked data published

in that domain to hypothesize attribute relationships within the source. We assume

that the source attributes are labeled with 〈class uri,property uri〉 pairs.

We use SPARQL to query the linked data in order to extract the graph

patterns connecting the instances of the classes corresponding to the semantic

types. Each pattern consists of some nodes and links. The nodes correspond to

ontology classes and the links correspond to ontology properties. Suppose that

we want to find the patterns connecting three classes c1, c2, and c3. Figure 4.3

exemplifies some of the possible patterns to connect these classes. Depending on

73

c1

c2

 p1

c3

 p2

c1

c2

 p1

c3

 p2

c1

c3

 p1

c2

 p2

c1

c2

 p1

c3

 p3

 p2

c1

c2

 p1 p2

c3

 p3

...

Figure 4.3: Sample graph patterns connecting the classes c1, c2, and c3 using the
ontology properties p1, p2, and p3.

the structure of the domain ontology, there might be a large number of possible

patterns for any given number of ontology classes. For simplicity, in this paper, we

only extract the tree patterns, the patterns in which the number of properties is

exactly one less than the number of classes (the first three patters in Figure 4.3).

That said, we define the length of a pattern as the number of links (ontology

properties) in a pattern. For example, a pattern with length one is in the form

of c1
p−→c2 indicating that at least one instance of the class c1 is connected to

an instance of the class c2 with the property p. The following SPARQL query

extracts the patterns with length one along with their frequencies from the linked

data:

SELECT DISTINCT ?c1 ?p ?c2 (COUNT(*) as ?count)

WHERE

?x ?p ?y.

?x rdf:type ?c1.

?y rdf:type ?c2.

FILTER (?x != ?y).

GROUP BY ?c1 ?p ?c2

74

ORDER BY DESC(?count);

Querying a triple store containing a huge amount of linked data to mine long

patterns is not efficient. In our experiments, we only extracted the patterns with

length one and two. We will see later that even small graph patterns provide

enough evidence to infer rich semantic models.

4.2.2 Merging LOD Patterns into a Graph

Once we extracted the LOD patterns, we combine them into a graph G that will

be used to infer the semantic models. Building the graph has three parts: (1)

adding the LOD patterns, (2) adding the semantic labels assigned to the source

attributes, and (3) expanding the graph with the paths inferred from the ontology.

Algorithm 4.1 shows the pseudocode of building the graph.

The graphG is a weighted directed graph in which nodes correspond to ontology

classes and links correspond to ontology properties. The algorithm to construct

the graph is straightforward. However, we adopt a subtle approach to weight the

links. We assign a much lower weight to the links added from the LOD patterns

comparing to the links added from the ontology. Since we are generating minimum-

cost models in the next section, this weighting strategy gives more priority to the

links used in the linked data. The weight of the links coming from the LOD

patterns has an inverse relation with the frequency of the patterns.

The other important feature of the links in the graph is their tags. We assign

an identifier to each pattern added to the graph and annotate the links with the

identifiers of the supporting patterns. Suppose that we are adding two patterns

m1 : c1
p1−→c2

p2−→c3 and m2 : c1
p1−→c2

p3−→c4 to G. The link p1 from c1 to c2 will

be tagged with {m1,m2}, the link p2 from c2 to c3 will have only {m1} as its tag

75

Algorithm 4.1 Construct Graph G

Input: LOD Patterns, Semantic Types, Domain Ontology
Output: Graph G

. Add LOD patterns
1: sort the patterns descending based on their length
2: exclude the patterns contained in longer patterns
3: merge the nodes and links of the remaining patterns into G

. Add Semantic Types
4: for each semantic type 〈class uri,property uri〉 do
5: add the class to the graph if it does not exist in G
6: end for

. Add Ontology Paths
7: for each pair of classes ci and cj in G do
8: find the directed and inherited properties between ci and cj in the ontology
9: add the properties that do not exist in G
10: end for

return G

set, and the link p3 from c2 to c4 will be tagged with {m2}. We use the link tags

later to prioritize the semantic models containing larger segments from the LOD

patterns.

4.2.3 Mapping Source Attributes to the Graph

This part of the algorithm is exactly similar to what we explained in Section 3.2.3.

The goal is to map the semantic types assigned to the attributes to the nodes of

the graph. If there is only one instance of each class in the graph, the map-

ping will be one to one. However, we might have patterns that include two

instances of the same ontology class, e.g., E82 Actor Appellation
P106 is composed of−−−−−−−−−−−−→

E82 Actor Appellation. In this case, the graph will have two nodes with the

label E82 Actor Appellation, and if one of the source attributes is labeled with

76

E82 Actor Appellation, we will have two ways to map this attribute to the graph.

We score the possible mappings and then select the more promising mappings as

the input to the next step (similar to Algorithm 3.5).

4.2.4 Generating and Ranking Semantic Models

The final part of our approach is to compute the semantic models from the graph,

and this step is also the same as the technique presented in 3.2.4. Once we mapped

the semantic types to the nodes of the graph, we find the top k minimal trees

connecting those nodes. We rank the resulting models first based on their coherence

and then their cost (sum of the weights of the links). The coherence metric gives

priority to the models that contain longer patterns. For example, a model that

includes one pattern with length 3 will be ranked higher than a model including

two patterns with length 2, and the latter in turn will be preferred over a model

with only one pattern with length 2.

4.3 Evaluation

To evaluate our approach, we used the dataset dscrm that was also used in previous

chapter. The linked data that we used as the background knowledge is the RDF

data published by the Smithsonian American Art Museum.3 The museum has

made use of the CIDOC Conceptual Reference Model (CIDOC-CRM) to map

out the concepts and relationships that exist within the artwork collection. This

repository includes more than 3 million triples (3,398,350). We injected the data

into a Virtuoso triple store and then used SPARQL to extract patterns of length

3http://americanart.si.edu/collections/search/lod/about

77

http://americanart.si.edu/collections/search/lod/about

Table 4.1: The evaluation results for modeling the dataset dscrm. The correct
semantic types are given as input.

background knowledge precision recall time (s)
domain ontology 0.07 0.05 0.17
domain ontology + patterns of length one 0.65 0.55 0.75
domain ontology + patterns of length one and two 0.78 0.70 0.46

one and two. There were 68 distinct patterns with length one (two nodes and one

link) and 634 distinct patterns with length two (three nodes and two links).

We assumed that the correct semantic labels for the source attributes are

known. The goal was to see how well our approach learns the attribute rela-

tionships having the correct semantic types. We performed three experiments.

First, we only used the domain ontology to build a graph on top of the seman-

tic labels and then computed the semantic model connecting those labels. In the

second experiment, we took into account the patterns with length one extracted

from the linked data, and in the third experiment, we used the patterns of both

length one and two. We measured the accuracy of the computed semantic mod-

els by comparing them with the gold standard models in terms of precision and

recall. Since the correct semantic types are given, we excluded their corresponding

triples in computing the precision and recall. For example, in learning the semantic

model of the source s (Figure 4.2), we do not consider (E35 Title, label, title) in

our evaluation. From the 785 links in the correct models, 418 links correspond to

the semantic types because we have 418 attributes, and the rest are the internal

links. Therefore, our evaluation in this scenario measures the precision and recall

of inferring the 367 internal links.

Table 4.1 shows the average precision and recall for all 29 sources. An interest-

ing observation is that when we do not use the linked data patterns, the precision

78

and recall are close to zero. This low accuracy comes from the fact that in most of

the gold standard models, the attributes are not directly connected and there are

multiple paths between each pair of classes in the ontology (and thus in our graph),

and without additional information, we cannot resolve the ambiguity. When we

exploit the patterns with length one, there is a boost in precision and recall. Since

we are using the pattern frequencies in assigning the weights to the links of the

graph, using patterns of length one means that we are only taking into account the

popularity of the links in computing the semantic models. Once we added the pat-

terns with length two, our approach achieved 13% improvement in precision and

15% increase in recall. This means that considering coherence (even to a small

extent) in addition to the link popularity empowers our approach to derive more

accurate semantic models.

We can compare the results in Table 4.1 (inferring relationships from LOD) with

the results shown in Figure 3.8b in Section 3.3 (inferring relationships from known

semantic models). The target dataset is the same in both experiments, dscrm, and

we assume that the correct semantic types are given as input in both cases, however,

the precision and recall in Table 4.1 are lower than the leave-one-out setting (M28)

in Figure 3.8b (78% precision and 70% recall compared to 81% precision and 82%

recall). Two reasons explain the difference between the results of our experiment

in this section and the experiment in Section 3.3. First, we used different kinds

of background knowledge in these two experiments. In this section, we used LOD

(the linked data published by Smithsonian American Art Museum) to infer the

relationships between the attributes of a source, but in Section 3.3, we used the

semantic models of other sources to learn the semantic relations within each data

source. Thus, we can expect to observe different outputs because the overlap

between the semantic model of a target source and the background knowledge is

79

not the same. The second reason why the accuracy is lower in the case of using

LOD is that we only used patterns of length one and two in our experiment. On

the other hand, our approach in Section 3.3 exploits complete semantic models of

previously modeled sources, which are more coherent than the small graph patterns

we used in this section. We believe that both the precision and recall will be further

improved if we extract longer patterns from LOD and incorporate them into our

approach.

The column time in Table 4.1 shows the running time of our algorithm on a

single machine with a Mac OS X operating system and a 2.3 GHz Intel Core i7

CPU. This is the time from combining pre-extracted LOD patterns into a graph

until generating and ranking candidate semantic models. The algorithm is much

faster when we only use the domain ontology as the background knowledge, because

adding LOD patterns will be excluded from the graph construction process (lines 1-

3 in Algorithm 4.1). The reason why more time is required when we use patterns

of length one comparing to the case where we use patterns of both length one

and two is related to details of our algorithm to compute top k minimal trees.

Although it takes longer to create the graph when we add patterns of length two,

the algorithm to generate the candidate models finds top k trees faster reducing

the total running time.

Our evaluation results support the theory that more accurate models can be

constructed when longer graph patterns from LOD are used. Although these

patterns can be pre-computed, using SPARQL queries to extract long patterns

from a large number of triples is challenging. For example, the Virtuoso response

time to the SPARQL query to extract patterns of length two with a chain shape

(c1
p2−→c2

p3−→c3) was approximately 90 seconds, and it was roughly 1 hour for the

query to extract patterns of length two having a V-shape (c1
p2−→c2

p3←−c3). We

80

were only able to collect a few patterns with length three and could not extract

any pattern with length four from our Virtuoso server in a 5-hour timeout. Effi-

ciently mining more complex patterns from the linked data is one direction of our

future work.

81

Chapter 5

Related Work

The problem of describing semantics of data sources is at the core of data integra-

tion [Doan et al., 2012] and exchange [Arenas et al., 2010]. The main approach

to reconcile the semantic heterogeneity among sources consists of defining logical

mappings between the source schemas and a common target schema. One way

to define these mappings is local-as-view (LAV) descriptions where every source

is defined as a view over the domain schema [Doan et al., 2012]. The seman-

tic models that we generate are graphical representation of LAV rules, where the

domain schema is the domain ontology. Although the logical mappings are declar-

ative, defining them requires significant technical expertise, so there has been much

interest in techniques that facilitate their generation.

In traditional data integration, the mapping generation problem is usually

decomposed in a schema matching phase followed by schema mapping phase [Bel-

lahsene et al., 2011]. Schema matching [Rahm and Bernstein, 2001] finds cor-

respondences between elements of the source and target schemas. For example,

iMAP [Dhamankar et al., 2004] discovers complex correspondences by using a set

of special-purpose searchers, ranging from data overlap, to machine learning and

equation discovery techniques. This is analogous to the semantic labeling step in

our work [Krishnamurthy et al., 2015], where we learn a labeling function to learn

candidate semantic types for a source attribute. Every semantic type maps an

attribute to an element in the domain ontology (a class or property in the domain

ontology).

82

Schema mapping defines an appropriate transformation that populates the tar-

get schema with data from the sources. Mappings may be arbitrary procedures, but

of greater interest are declarative mappings expressible as queries in SQL, XQuery,

or Datalog. These mapping formulas are generated by taking into account the

schema matches and schema constraints. There has been much research in schema

mapping, from the seminal work on Clio [Fagin et al., 2009], which provided a

practical system and furthered the theoretical foundations of data exchange [Fagin

et al., 2005] to more recent systems that support additional schema constraints

[Marnette et al., 2011]. Alexe et al. [Alexe et al., 2011] generate schema mappings

from examples of source data tuples and the corresponding tuples over the target

schema.

An et al. [An et al., 2007] generate declarative mapping expressions between

two tables with different schemas starting from element correspondences. They

create a graph from the conceptual model (CM) of each schema and then suggest

plausible mappings by exploring low-cost Steiner trees that connect those nodes in

the CM graph that have attributes participating in element correspondences. This

is similar to our semi-automatic approach to build the semantic models where we

derive a graph from the domain ontology and the learned semantic types (Chap-

ter 2). We exploit the knowledge from the ontology to assign weights to the links

based on their types, e.g., direct properties get lower weight than inherited prop-

erties, because we want to give more priority to more specific relations. We also

allows the user to correct the mappings interactively.

Our work on learning semantic models of structured sources (Chapter 3) is com-

plementary to these schema mapping techniques. Instead of focusing on satisfying

schema constraints, we analyze known source models to propose mappings that

83

capture more closely the semantics of the target source in ways that schema con-

straints could not disambiguate. For example, by suggesting that a dcterms:creator

relationship is more likely than dbpedia:owner in a given domain. Moreover, our

algorithm can incrementally refine the mappings based on user feedback and learn

from this feedback to improve future predictions.

In the Semantic Web, what is meant by a source description is a semantic model

describing the source in terms of the concepts and relationships defined by a domain

ontology. There are many studies on mapping data sources to ontologies. Several

approaches have been proposed to generate semantic web data from databases and

spreadsheets [Sahoo et al., 2009].

D2R [Bizer, 2003; Bizer and Cyganiak, 2006] and D2RQ [Bizer and Seaborne,

2004] are mapping languages that enable the user to define mapping rules between

tables of relational databases and target ontologies in order to publish semantic

data in RDF format. R2RML [Das et al., 2012] is a another mapping language,

which is a W3C recommendation for expressing customized mappings from rela-

tional databases to RDF datasets. Writing the mapping rules by hand is a tedious

task. The users need to understand how the source table maps to the target

ontology. They also need to learn the syntax of writing the mapping rules.

RDOTE [Vavliakis et al., 2010] is a tool that provides a graphical user inter-

face to facilitate mapping relational databases into ontologies. The developers of

RDOTE have said they will incorporate an export/import mechanism for D2RQ

compliant mapping files, as well as a query builder graphical user interface to hasten

the mapping creation process. RDF123 [Han et al., 2008] and XLWrap [Langeg-

ger and Wöß, 2009] are other tools to define mappings from spreadsheets to RDF

graphs. Although these tools can facilitate the mapping process, the users still

need to manually define the mappings between the source and target ontologies.

84

In recent years, there are some efforts to automatically infer the implicit seman-

tics of tables. Polfliet and Ichise [Polfliet and Ichise, 2010] use string similarity

between the column names and the names of the properties in the ontology to find

a mapping between the table columns and the ontology. Wang et al. [Wang et al.,

2012] detect the header of Web tables and use them along with the values of the

rows to map the columns to the attributes of the corresponding entity in a rich

and general purpose taxonomy of worldly facts built from a corpus of over one

million Web pages and other data. This approach can only deal with the tables

containing information of a single entity type.

Limaye et al. [Limaye et al., 2010] used YAGO1 to annotate web tables and

generate binary relationships using machine learning approaches. However, this

approach is limited to the labels and relations defined in the YAGO ontology (less

than 100 binary relationships). Venetis et al. [Venetis et al., 2011] presented a

scalable approach to describe the semantics of tables on the Web. To recover

the semantics of tables, they leverage a database of class labels and relationships

automatically extracted from the Web. They attach a class label to a column if

a sufficient number of the values in the column are identified with that label in

the database of class labels, and analogously for binary relationships. Although

these approaches are very useful in publishing semantic data from tables, they are

limited in learning the semantics relations. Both of these approaches only infer

individual binary relationships between pair of columns. They are not able to

find the relation between two columns if there is no direct relationship between

the values of those columns. Our approach to learn semantic models can connect

one column to another one through a path in the ontology. For example, suppose

that we have a table including two columns person and city, where the city is

1http://www.mpi-inf.mpg.de/yago-naga/yago

85

http://www.mpi-inf.mpg.de/yago-naga/yago

the location of the company the person is working for. Our approach can learn a

semantic model that connects the class Person to the class City through the chain

Person
worksFor−→ Organization

location−→ City.

There is also work that exploits the data available in the Linked Open Data

(LOD) cloud to capture the semantics of the tables and publish their data as RDF.

Munoz et al. [Muñoz et al., 2013] mine RDF triples from the Wikipedia tables by

linking the cell values to the resources available in DBPedia [Auer et al., 2007]. This

approach is limited to Wikipedia tables because of its simple linking algorithm. If

a cell value contains a hyperlink to a Wikipedia page, the Wikipedia URL maps to

a DBpedia entity URI by replacing the namespace http://en.wikipedia.org/

wiki/ of the URL with http://dbpedia.org/resource/.

In other work, Mulwad et al. [Mulwad et al., 2013] used Wikitology [Syed and

Finin, 2011], an ontology which combines some existing manually built knowledge

systems such as DBpedia and Freebase [Bollacker et al., 2008], to link cells in a

table to Wikipedia entities. They query the background LOD to generate ini-

tial lists of candidate classes for column headers and cell values and candidate

properties for relations between columns. Then, they use a probabilistic graphical

model to find the correlation between the columns headers, cell values, and relation

assignments. The quality of the semantic data generated by this category of work

is highly dependent to how well the data can be linked to the entities in LOD.

While for most popular named entities there are good matches in LOD, many

tables contain domain-specific information or numeric values (e.g., temperature

and age) that cannot be linked to LOD. Moreover, these approaches are only able

to identify individual binary relationships between the columns of a table. How-

ever, an integrated semantic model is more than fragments of binary relationships

86

http://en.wikipedia.org/wiki/
http://en.wikipedia.org/wiki/
http://dbpedia.org/resource/

between the columns. In a complete semantic model, the columns may be con-

nected through a path including the nodes that do not correspond to any column

in the table.

Semantic annotation of services have also received attention. Annotating the

input and output parameters of Web services and Web APIs is useful for automatic

service discovery and composition. SAWSDL vocabulary [Farrell and Lausen, 2007]

allows adding semantic meta-data to service descriptions. Service inputs and out-

puts can be annotated by the concepts and properties using an attribute called

modelReference. SWEET [Maleshkova et al., 2009] is a tool that supports users

in creating semantic descriptions of RESTful services. There has been some work

on classifying Web services into different domains [Heß et al., 2003] and automati-

cally labeling the input and outputs of Web services [Lerman et al., 2006; Saquicela

et al., 2011]. This work provides useful knowledge for service discovery, but not

sufficient for automating service integration. In our work, we are able to learn

more expressive descriptions of Web services that describe how the attributes of a

service relate to one another.

Parundekar et al. [Parundekar et al., 2012] previously developed an approach to

automatically generate conjunctive and disjunctive mappings between the ontolo-

gies of linked data sources by exploiting existing linked data instances. However,

the system does not model arbitrary sources such as we present in this paper. Car-

man and Knoblock [Carman and Knoblock, 2007] use known source descriptions

to learn a semantic description that precisely describes the relationship between

the inputs and outputs of a source, expressed as a Datalog rule. However, their

approach is limited in that it can only learn sources whose models are subsumed

by the models of known sources. That is, the description of a new source is a

conjunctive combination of known source descriptions. By exploring paths in the

87

domain ontology, in addition to patterns in the known sources, we can hypothesize

target mappings that are more general than previous source descriptions or their

combinations.

In recent years, ontology matching has received much attention in the Seman-

tic Web community [Kalfoglou and Schorlemmer, 2003; Pavel and Euzenat, 2013].

Ontology matching (or ontology alignment) finds the correspondence between

semantically related entities of different ontologies. This problem is analogous

to schema matching in databases. Both schemas and ontologies provide a vocab-

ulary of terms that describe a domain of interest. However, schemas often do

not provide explicit semantics for their data. Our work benefits from some of the

techniques developed for ontology matching. For example, instance-based ontol-

ogy matching exploits similarities between instances of ontologies in the matching

process. Our semantic labeling algorithm adopts the same idea to map the data

of a new source to the classes and properties of a target ontology. The algorithm

computes the similarity (cosine similarity between TF/IDF vectors) between the

data of the new source and the data of the sources whose semantic models are

known.

Ontology matching is different than the problem we addressed in this paper in

the sense that in our work the data that is being mapped to a target ontology is not

bound to any source ontology. This makes our problem more complicated since no

explicit semantics is necessarily attached to data sources. Moreover, most of the

work on ontology matching only finds simple correspondences such as equivalence

and subsumption between ontology classes and properties. Therefore, the explicit

relationships within the data elements are often missed in aligning the source data

to the target ontology. Suppose that we want to find the correspondences between

a source ontology Os and a target ontology Ot. Using ontology matching, we find

88

that the class As in Os maps to the class At in Ot and the class Bs in Os maps

to the class Bt in Ot. Assume that there is only one property connecting As to

Bs in Os, but there are multiple paths connecting At to Bt in Ot. If we align the

source data to the target ontology Ot using the correspondences found by ontology

matching, the instances of As will be mapped to the class At and the instances of

Bs will be mapped to the class Bt. However, this alignment does not tell us which

path in Ot captures the correct meaning of the source data.

In our approach presented in Chapter 2 [Knoblock et al., 2012], we build a

graph from learned semantic types and a domain ontology and use this graph

to map a source to the ontology interactively. Karma, which is an open source

data integration tool, employs our semi-automatic modeling approach to propose

models to the user, who can correct them as needed. Szekely et al. [Szekely et al.,

2013] used Karma to model the data from Smithsonian American Art Museum2

and then publish it into the Linked Open Data cloud. Karma is also able to build

semantic models for Web services and then exploits the created semantic models

to build APIs that directly communicate at the semantic level [Szekely et al., 2011;

Taheriyan et al., 2012a,b].

Most of the work mentioned earlier is manual or automates learning semantic

types for services parameters or table columns, but is limited in learning relation-

ships. Our automatic approach explained in Chapter 3 [Taheriyan et al., 2013,

2014, 2015a] exploits the known semantic models to learn a semantic model for a

new unknown source. We analyze known semantic models to hypothesize semantic

models that capture more closely the semantics of the new source. Integrating our

algorithm into Karma, enables the user to refine the automatically learned models

resulting in more accurate predictions for future data sources.

2http://americanart.si.edu

89

http://americanart.si.edu

Our work in Chapter 4 [Taheriyan et al., 2015b] complements our method in

Chapter 3 in cases where few, if any, known semantic models are available. In fact,

the number of known semantic models is limited in many domains, however, there

may be a huge amount of semantic data published in those domain. We lever-

age the small graph patterns from the available linked data to infer the semantic

relationships within data sources.

90

Chapter 6

Discussion

In this dissertation, we presented a novel approach to learn semantic models of

structured data sources. Such models are the key ingredients to automate tasks

such as source discovery and data integration. They also automate the process

of publishing semantic data. In this chapter, I first summarize the contributions

of my thesis. Next, I discuss some of the applications areas and highlight some

limitations of the presented approach. Finally, I list possible directions for future

work.

6.1 Contributions

The key contributions of this work are threefold. In Chapter 2, we use a domain

ontology as the background knowledge to semi-automatically build semantic mod-

els. In Chapter 3, we exploit the knowledge from known semantic models in addi-

tion to the domain ontology to automatically learn semantic models. Finally, in

Chapter 4, we leverage the knowledge from Linked Open Data (LOD) to learn the

semantic models. We summarize each part in the following paragraphs.

In Chapter 2, we presented a semi-automatic approach to build a semantic

model of a new source as a mapping from the source to a domain ontology (Chap-

ter 2). The system attempts to exploit the knowledge from the domain ontology

to automate as much of the source modeling as possible and relies on the user to

91

help disambiguate the semantic models when there is insufficient information to

fully automate the modeling task.

We use an existing machine learning technique to label the attributes of the

new source with semantic types, classes and/or properties of the ontology. Second,

we exploit the knowledge inferred from the domain ontology to build a graph

that models the possible relationships between the learned semantic types. Then,

we find an initial semantic model by computing the minimal tree connecting the

semantic types in the graph. If the suggested model is not the right interpretation

of the source data, the user can interactively impose constraints on the algorithm

to refine the model.

In Chapter 3, we presented a scalable approach to make the process of building

semantic models more automated. The core idea is to exploit the knowledge of

previously learned semantic models to learn a plausible semantic model for a new

source. The first step in learning semantic models is learning semantic types which

is done exactly the same as our semi-automatic approach. The output of the

labeling step is a set of candidate semantic types and their confidence values rather

than one fixed semantic type. Taking into account the uncertainty of the labeling

algorithm is very important because machine learning techniques often cannot

distinguish the types of the source attributes that have similar data values, e.g.,

birthDate and deathDate.

Once we learned the semantic types, we create a graph from known semantic

models and augment it by adding the nodes and the links corresponding to the

semantic types and also adding the paths inferred from the ontology. Our algo-

rithm to construct the graph consolidates the overlapping segments of the known

semantic models, makes it scalable to a huge number of known semantic models.

92

The next step is mapping the source attributes to the nodes of the graph where

we use a search algorithm that enables the system to do the mapping even when the

source has many attributes. The algorithm, after processing each source attribute,

prunes the existing mappings by scoring them and removing the ones having lower

scores. The proposed scoring function not only contributes to the scalability of

our method, but also increases the accuracy of the learned models. It takes into

account the confidence scores associated with the semantic types and the coherence

of the nodes in each mapping in order to calculate the top k promising mappings.

The final part of the approach is computing the minimal tree that connects the

nodes of the candidate mappings. We build a minimal tree over each mapping to

generate k candidate models. We score the candidates to output a ranked list of the

most plausible semantic models. Our evaluation shows that our approach learns

rich semantic models with minimal user input. It also shows that exploiting both

the domain ontology and the known semantic models yields in semantic models that

are significantly more accurate than the models built by only using the knowledge

from the domain ontology.

In many domains, there is none or very limited number of known semantic

models available. However, there may be a huge amount of semantic data published

in those domain. In Chapter 4, we presented a new approach that mines the small

graph patterns from the available linked data to infer the semantic relationships

within data sources. We use SPARQL to extract graph patterns with different

lengths occurring in the linked data. We treat these patterns as known models.

We combine them into one graph and expand the resulting graph using the paths

inferred from the domain ontology. Then, we compute the top k semantic models

from the graph.

93

Our work provides a basis to learn the semantic models of structured informa-

tion sources. The learned semantic models explicitly represent the relationships

between the source attributes in addition to their semantic types. Such precise

models of data sources make it possible to automatically integrate the data across

sources and provides rich support for source discovery. They also make it possible

to convert sources into RDF and publish them in the Linked Data cloud.

Our learning algorithms play an important role in making the Karma interactive

user interface easy to use, a key design goal given that many of our users are domain

experts, but are not Semantic Web experts. Our experience observing users is that

they can understand and critique models when displayed in our interactive user

interface. They can easily verify that models accurately capture the semantics of

a source, and can easily spot errors or controversial modeling decisions. Users can

click on the corresponding elements on the screen and do local modifications such

as replacing the property of a link or changing the source or destination of a link.

We also observe that it is much harder for users to model a source from scratch,

as is necessary in tools such as Open Refine.1 Even though the user interface is

easy to use, the task of filling a blank page with a model is daunting for many

users. Karma helps these users because it gives them an almost-correct model

as a starting point. Users can easily find the elements they do not agree with,

and can easily change them. A possible direction for future work is to perform

user evaluations to measure the quality of the models produced using learning

algorithms. Although time to create models is important, we hypothesize that

most users, such as our museum users, are primarily concerned with producing

correct models, and time to model is a secondary concern for them. By using

previous models, users are more likely to model sources in a correct way.

1http://openrefine.org/

94

http://openrefine.org/

A large portion of the data in the LOD cloud is published directly from existing

databases using tools such as D2R [Bizer, 2003; Bizer and Cyganiak, 2006]. This

conversion process uses the structure of the data as it is organized in the database,

which may not be the most useful structure of the information in RDF. But either

way, there is often no explicit semantic description of the contents of a source

and it requires a significant effort if one wants to do more than simply convert a

database into RDF. The result of the ease with which one can publish data into

the LOD cloud is that there is lots of data published in RDF and remarkably little

in the way of semantic descriptions of much of this data. Our approach brings the

semantics into the conversion process by producing a semantic model that maps

a data source to a common domain ontology. This model can then be used to

generate RDF triples that are linked to an ontology and to provide a SPARQL end

point that converts the data on the fly into RDF with respect to a given ontology.

Our work also plays a role in helping communities to produce consistent Linked

Data so that sources containing the same type of data use the same classes and

properties when published in RDF. Often, there are multiple correct ways to model

the same type of data. For example, users can use Dublin Core and FOAF to

model the creator relationship between a person and an object (dcterms:creator

and foaf:maker). A community is better served when all the data with the same

semantics is modeled using the same classes and properties. Our work encour-

ages consistency because our learning algorithms bias the selection of classes and

properties towards those used more frequently in existing models.

95

6.2 Applications

Our research addresses the fundamental question of how an intelligent system can

learn things of which it has limited knowledge. This capability will allow people

and systems to better exploit the massive amount of data available today on the

Internet and provide a tool to keep up with its growth. Within the bioinformatics

world, for example, the amount of data continues to grow rapidly, and the ability

to find and structure this data will have a significant impact on our ability to

fully exploit all of this information to solve biomedical research questions, such as

finding more effective treatments for cancer. Today in the bioinformatics service

repository, called BioCatalogue,2 there are approximately 2,500 services available

with limited semantic descriptions of the capabilities provided by these services.

The work in this thesis will provide an important step in the ability to automati-

cally create semantic models of services, which will make it possible for researchers

to quickly find relevant services as well as to automatically compose services to

solve specific technical problems.

We have integrated our approach into Karma [Knoblock et al., 2012], our

data integration framework. Users integrate information in Karma by modeling

it according to an ontology of their choice using a graphical user interface that

automates much of the process. The modeling component of Karma is an imple-

mentation of the approaches we presented in Chapter 2 and Chapter 3. Karma

learns to recognize the mapping of data to ontology classes and then uses the

ontology as well as the previously modeled sources to propose a model that ties

together these classes. Users then interact with the system to adjust the automati-

cally generated model. During this process, users can transform the data as needed

2http://www.biocatalogue.org

96

http://www.biocatalogue.org

to normalize data expressed in different formats and to restructure it. Once the

model is complete, users can published the integrated data as RDF or store it in a

database. The modeling framework we have developed is domain independent, so

it can be applied across a variety of domains. Sometimes these applications provide

surprising solutions to problems in other fields that we had not anticipated.

Our tool helped the museum community to provide more detailed and more

easily accessed information about artworks. We collaborated with Smithsonian

American Art Museum (SAAM) to model their data using the museum stan-

dard ontologies and map their data to Linked Open Data (LOD).3 This enables

online users to access records of more than 40,000 artworks in a structured format

designed to be easier to interlink both inside and outside of the museums online

presence. We are now working with the museum community to grow the project

and create the American Art Collaborative. This effort will integrate the data

about artwork across a set of American museums.

We also used Karma in data integration research within the Southern California

Clinical Translational Science Institute.4 One of the many tasks of the SC-CTSI

is to create a social network of participating researchers. To that end, the SC-

CTSI evaluated several tools including VIVO.5 One of the major challenges of

using this tool by SC-CTSI staff was loading the existing personnel/faculty data

from multiple departmental databases and HR systems into the RDF-based VIVO

tool, according to the VIVO ontology (which describes researchers, institutions,

publications, etc). We realized that our Karma modeling tool was well suited to

3http://viterbi.usc.edu/news/news/2014/creating-the-art.htm

4http://sc-ctsi.org

5http://www.vivoweb.org

97

http://viterbi.usc.edu/news/news/2014/creating-the-art.htm
http://sc-ctsi.org
http://www.vivoweb.org

facilitate this process. Using Karma we were able to transform the data from mul-

tiple databases and populate the VIVO knowledge base quickly and with minimum

effort. We presented these results at the annual VIVO conference and it was very

well received. Karma is currently in use by the VIVO community for mapping

their data sources into the VIVO knowledge base.

Karma also plays a vital role in the DIG system,6 which is developed as part of

the DARPA Memex program,7 an effort to create the next generation of domain-

specific search technologies. DIG harnesses state-of-the-art open source software

combined with an open architecture and flexible set of APIs to facilitate the inte-

gration of a variety of extraction and analysis tools. DIG uses Karma to build rich

models for data sources in a domain and then builds a graph of the entities and

relationships within the domain using scalable extraction and linking technologies.

DIG also includes a faceted content search interface for users to query DIGs and

visualize information on maps, timelines, and tables. Szekely et al. have used DIG

in the problem of combating human trafficking and have successfully deployed it to

six law enforcement agencies and several non-governmental organizations to assist

them with finding traffickers and helping victims in a matter of months [Szekely

et al., 2015].

Thus, our current research has already contributed to several areas that we had

not expected. We expect new efficiencies and capabilities will be generated when

we and others apply Karma to novel fields. This effect should be multiplied by

the fact that our code is available to the public as open source, so that others can

easily extend and adapt its capabilities for new domains.

6http://dig.isi.edu

7http://www.darpa.mil/program/memex

98

http://dig.isi.edu
http://www.darpa.mil/program/memex

6.3 Limitations

The work presented in Chapter 3 exploits known semantic models to map a given

source to a domain ontology. One limitation of this approach is that in many

domains, there are not many known semantic models available. Therefore, our

algorithm only relies on the domain ontology to hypothesize a semantic model for

the input source. The same thing happens when there is not any (or enough) over-

lap between the new source and the previously modeled sources. As the evaluation

showed (Section 3.3), using only the domain ontology as the background knowledge

does not yield accurate semantic models. The reason is that the domain ontol-

ogy often defines a large space of possible semantic models and without additional

knowledge we cannot resolve the ambiguity. Fortunately, our approach allows users

to give feedback on the proposed suggestions and uses that feedback to improve

further suggestions. However, in cases where there are not enough known seman-

tic models available, the user often needs to make many changes to the initially

learned model in order to build the correct model.

A limitation of our approach to infer semantic relationships from LOD (Chap-

ter 4) is that it heavily depends on the linked data at hand. It assumes that

there is sufficient amount of linked data available in the same domain that we are

modeling the target data sources. The other assumption is that the linked data

contains relationship instances between the instances of the classes assigned to the

source attributes as the semantic types. Our approach cannot leverage enough

useful patterns when no or sparse data is available, and this negatively impacts

the accuracy of the generated semantic models.

99

6.4 Future Work

There are some future directions for this work that will allow our approach to be

applied more broadly. One direction is to improve the techniques used for semantic

labeling of source attributes. Semantic types are very important in our approach.

The input to the Steiner tree algorithm that computes the candidate semantic

models are the nodes coming from the learned semantic types (leaves of the tree).

Incorrect semantic types may prompt the Steiner tree algorithm to select incorrect

links in the higher levels (internal links).

In Chapter 4, we use the LOD patterns to infer relationships between the source

attributes. Nonetheless, we make no use of LOD in learning the semantic types

for the source attributes. One possible direction for future work is to leverage

LOD in the semantic labeling step of our approach. Given the huge repository

of data available in LOD, for any given set of values provided by a new source,

we can search for classes that provide or even subsume all of the data for a given

property of a source. For example, if we have a set of values for people names or

temperature, we are likely to find some classes in LOD that provides that same

set of values. We will not require a perfect overlap between the set of values from

the source and a class in LOD, but rather a statistically significant overlap, similar

to what is done by Parundekar et al. [Parundekar et al., 2012]. An important

challenge here is how to efficiently find the classes that most closely match the set

of attribute values and how to handle the problem that the classes that match the

best may come form different ontologies.

Another direction for future work is to improve the quality of the models learned

from LOD. Our evaluation results (Section 4.3) support the theory that more

accurate models can be constructed when longer graph patterns from LOD are

used. Although these patterns can be pre-computed, using SPARQL queries to

100

extract long patterns from a large number of triples is challenging. For example, for

our Virtuoso repository including 3,398,350 RDF triples, the response time to the

SPARQL query to extract patterns of length two with a chain shape (c1
p2−→c2

p3−→c3)

was approximately 90 seconds, and it was roughly 1 hour for the query to extract

patterns of length two having a V-shape (c1
p2−→c2

p3←−c3). We were only able to

collect a few patterns with length three and could not extract any pattern with

length four from our Virtuoso server in a 5-hour timeout. A promising path for

future study includes efficiently mining more complex patterns from the linked

data and incorporating those patterns in learning semantic models.

As discussed earlier, the strength of our work in Chapter 3 is limited when there

are not enough known semantic models. This is the motivation of our approach

in Chapter 4, which exploits the published semantic data instead of the known

semantic models as the background knowledge. The drawback of this approach is

that it cannot generate accurate models when no or sparse data is available. One

direction of future work is to combine the work in Chapter 3 (learning semantic

models from the known semantic models) and the work in Chapter 4 (learning

semantic models from the LOD patterns). The combined approach will use the

known semantic models, LOD patterns, and domain ontology to learn a semantic

model for a new source. We believe leveraging the knowledge from both the known

semantic models and the LOD patterns can help to learn more precise semantic

models.

This thesis focuses on learning semantic models of data sources. These seman-

tic models are the key to automatically populate knowledge graphs (e.g., the

LOD cloud) with semantic content (e.g., RDF). However, publishing semantic

data according to a shared vocabulary is just the first step to build a knowledge

101

graph. The second step is to link the information at the instance level. Link-

ing entities distributed across different published datasets is an active research

area in the Semantic Web community. Adding the capability of linking the data

at the instance level empowers our approach to automate the entire workflow of

publishing linked data on the Web.

102

Bibliography

Alexe, Bogdan; ten Cate, Balder; Kolaitis, Phokion G., and Tan, Wang-Chiew.
Designing and Refining Schema Mappings via Data Examples. In Proceedings
of the 2011 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’11, pages 133–144, New York, NY, USA, 2011. ACM. ISBN 978-1-
4503-0661-4.

An, Yuan; Borgida, Alexander; Miller, Renée J., and Mylopoulos, John. A Seman-
tic Approach to Discovering Schema Mapping Expressions. In Proceedings of
the 23rd International Conference on Data Engineering (ICDE), pages 206–215,
Istanbul, Turkey, 2007.

Arenas, Marcelo; Barcelo, Pablo; Libkin, Leonid, and Murlak, Filip. Relational
and XML Data Exchange. Morgan & Claypool, San Rafael, CA, 2010.

Auer, Sören; Bizer, Christian; Kobilarov, Georgi; Lehmann, Jens; Cyganiak,
Richard, and Ives, Zachary. DBpedia: A Nucleus for a Web of Open Data. In
Proceedings of the 6th International The Semantic Web and 2Nd Asian Confer-
ence on Asian Semantic Web Conference, ISWC’07/ASWC’07, pages 722–735,
Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 3-540-76297-3, 978-3-540-76297-
3.

Bellahsene, Zohra; Bonifati, Angela, and Rahm, Erhard. Schema Matching and
Mapping. Springer, 1st edition, 2011. ISBN 9783642165177.

Bhalotia, Gaurav; Hulgeri, Arvind; Nakhe, Charuta; Chakrabarti, Soumen, and
Sudarshan, S. Keyword Searching and Browsing in Databases Using BANKS.
In Proceedings of the 18th International Conference on Data Engineering, pages
431–440, 2002.

Bizer, Christian. D2R MAP - A Database to RDF Mapping Language. In WWW
(Posters), 2003.

Bizer, Christian and Cyganiak, Richard. D2R Server - Publishing Relational
Databases on the Semantic Web. In Poster at the 5th International Seman-
tic Web Conference, 2006.

103

Bizer, Christian and Seaborne, Andy. D2RQ - Treating Non-RDF Databases as
Virtual RDF Graphs. In ISWC2004 (posters), November 2004.

Bizer, Christian; Heath, Tom, and Berners-Lee, Tim. Linked Data - The Story So
Far. Int. J. Semantic Web Inf. Syst., 5(3):122, 2009.

Bollacker, Kurt; Evans, Colin; Paritosh, Praveen; Sturge, Tim, and Taylor, Jamie.
Freebase: A Collaboratively Created Graph Database for Structuring Human
Knowledge. In Proceedings of the 2008 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’08, pages 1247–1250, New York, NY, USA,
2008. ACM. ISBN 978-1-60558-102-6.

Carman, Mark J. and Knoblock, Craig A. Learning Semantic Definitions of Online
Information Sources. Journal of Artificial Intelligence Research, 30(1):1–50,
September 2007. ISSN 1076-9757.

Craswell, Nick. Mean reciprocal rank. In Encyclopedia of Database Systems, page
1703. 2009.

Das, Souripriya; Sundara, Seema, and Cyganiak, Richard. R2RML: RDB
to RDF Mapping Language, W3C Recommendation 27 September 2012.
http://www.w3.org/TR/r2rml/, 2012.

Dhamankar, Robin; Lee, Yoonkyong; Doan, AnHai; Halevy, Alon, and Domin-
gos, Pedro. iMAP: Discovering Complex Semantic Matches between Database
Schemas. In International Conference on Management of Data (SIGMOD),
pages 383–394, New York, NY, 2004.

Ding, Li; DiFranzo, Dominic; Graves, Alvaro; Michaelis, James; Li, Xian; McGuin-
ness, Deborah L., and Hendler, James A. TWC Data-gov Corpus: Incrementally
Generating Linked Government Data from data.gov. In Rappa, Michael; Jones,
Paul; Freire, Juliana, and Chakrabarti, Soumen, editors, WWW, pages 1383–
1386. ACM, 2010. ISBN 978-1-60558-799-8.

Doan, Anhai; Halevy, Alon, and Ives, Zachary. Principles of Data Integration.
Morgan Kauffman, 2012.

Doerr, Martin. The CIDOC Conceptual Reference Module: An Ontological
Approach to Semantic Interoperability of Metadata. AI Mag., 24(3):75–92,
September 2003. ISSN 0738-4602.

Fagin, Ronald; Kolaitis, Phokion G.; Miller, Renée J., and Popa, Lucian. Data
Exchange: Semantics and Query Answering. Theoretical Computer Science, 336
(1):89 – 124, 2005.

104

Fagin, Ronald; Haas, Laura M.; Hernández, Mauricio; Miller, Renée J.; Popa,
Lucian, and Velegrakis, Yannis. Clio: Schema Mapping Creation and Data
Exchange. In Conceptual Modeling: Foundations and Applications, 2009.

Farrell, Joel and Lausen, Holger. Semantic Annotations for WSDL and XML
Schema, August 2007. W3C Recommendation.

Han, Lushan; Finin, Tim; Parr, Cynthia; Sachs, Joel, and Joshi, Anupam.
RDF123: From Spreadsheets to RDF. pages 451–466. 2008.

Hennicke, Steffen; Olensky, Marlies; Boer, Viktor De; Isaac, Antoine, and Wiele-
maker, Jan. A Data Model for Cross-domain Data Representation. The Euro-
peana Data Model in the Case of Archival and Museum Data. In Schriften zur
Informationswissenschaft 58, Proceedings des 12. Internationalen Symposiums
der Informationswissenschaft (ISI 2011), pages 136–147, 2011.

Heß, Andreas; Kushmerick, Nick, and Kushmerick, Nicholas. Learning to Attach
Semantic Metadata to Web Services. In Proceedings of the 2nd International
Semantic Web Conference (ISWC), pages 258–273. Springer, 2003.

Kalfoglou, Yannis and Schorlemmer, Marco. Ontology Mapping: The State of the
Art. Knowl. Eng. Rev., 18(1):1–31, January 2003. ISSN 0269-8889.

Knoblock, Craig; Szekely, Pedro; Ambite, José Luis; Goel, Aman; Gupta, Shub-
ham; Lerman, Kristina; Muslea, Maria; Taheriyan, Mohsen, and Mallick, Parag.
Semi-Automatically Mapping Structured Sources into the Semantic Web. In
Proc. 9th Extended Semantic Web Conference, 2012.

Kou, Lawrence T.; Markowsky, George, and Berman, Leonard. A Fast Algorithm
for Steiner Trees. Acta Informatica, 15:141–145, 1981. ISSN 0001-5903.

Krishnamurthy, Ramnandan; Mittal, Amol; Knoblock, Craig A., and Szekely,
Pedro. Assigning Semantic Labels to Data Sources. In Proceedings of the 12th
Extended Semantic Web Conference (ESWC), May 2015.

Langegger, Andreas and Wöß, Wolfram. XLWrap - Querying and Integrat-
ing Arbitrary Spreadsheets with SPARQL. In Bernstein, Abraham; Karger,
David R.; Heath, Tom; Feigenbaum, Lee; Maynard, Diana; Motta, Enrico, and
Thirunarayan, Krishnaprasad, editors, International Semantic Web Conference,
volume 5823 of Lecture Notes in Computer Science, pages 359–374. Springer,
2009. ISBN 978-3-642-04929-3.

Lehmann, Erich L. and Romano, Joseph P. Testing Statistical Hypotheses. Springer
Texts in Statistics. Springer, New York, third edition, 2005. ISBN 0-387-98864-5.

105

Lerman, Kristina; Plangrasopchok, Anon, and Knoblock, Craig A. Semantic Label-
ing of Online Information Sources. IJSWIS, special issue on Ontology Matching,
2006.

Limaye, Girija; Sarawagi, Sunita, and Chakrabarti, Soumen. Annotating and
Searching Web Tables Using Entities, Types and Relationships. PVLDB, 3(1):
1338–1347, 2010.

Maleshkova, Maria; Pedrinaci, Carlos, and Domingue, John. Semantically Anno-
tating RESTful Services with SWEET. In 8th International Semantic Web
Conference (ISWC2009), October 2009.

Marnette, Bruno; Mecca, Giansalvatore; Papotti, Paolo; Raunich, Salvatore, and
Santoro, Donatello. ++Spicy: an OpenSource Tool for Second-Generation
Schema Mapping and Data Exchange. In Procs. VLDB, pages 1438–1441, Seat-
tle, WA, 2011.

Mehlhorn, Kurt. A Faster Approximation Algorithm for the Steiner Problem in
Graphs. Information Processing Letters, 27(3):125 – 128, 1988. ISSN 0020-0190.

Muñoz, Emir; Hogan, Aidan, and Mileo, Alessandra. Triplifying Wikipedia’s
Tables. In Gentile, Anna Lisa; Zhang, Ziqi; d’Amato, Claudia, and Paulheim,
Heiko, editors, LD4IE@ISWC, volume 1057 of CEUR Workshop Proceedings.
CEUR-WS.org, 2013.

Mulwad, Varish; Finin, Tim, and Joshi, Anupam. Semantic Message Passing for
Generating Linked Data from Tables. In The Semantic Web - ISWC 2013, pages
363–378. Springer, 2013.

Parundekar, Rahul; Knoblock, Craig A., and Ambite, José Luis. Discovering Con-
cept Coverings in Ontologies of Linked Data Sources. In Proceedings of the 11th
International Semantic Web Conference (ISWC), Boston, MA, 2012.

Pavel, Shvaiko and Euzenat, Jérôme. Ontology Matching: State of the Art and
Future Challenges. IEEE Trans. on Knowl. and Data Eng., 25(1):158–176, Jan-
uary 2013. ISSN 1041-4347.

Polfliet, Simeon and Ichise, Ryutaro. Automated Mapping Generation for Convert-
ing Databases into Linked Data. In Polleres, Axel and Chen, Huajun, editors,
ISWC Posters&Demos, volume 658 of CEUR Workshop Proceedings. CEUR-
WS.org, 2010.

Rahm, Erhard and Bernstein, Philip A. A Survey of Approaches to Automatic
Schema Matching. VLDB Journal, 10(4), 2001.

106

Sahoo, Satya S.; Halb, Wolfgang; Hellmann, Sebastian; Idehen, Kingsley; Jr,
Ted Thibodeau; Auer, Sören; Sequeda, Juan, and Ezzat, Ahmed. A Survey
of Current Approaches for Mapping of Relational Databases to RDF, 01 2009.

Saquicela, Victor; Blázquez, Luis Manuel Vilches, and Óscar Corcho, . Lightweight
Semantic Annotation of Geospatial RESTful Services. In Proceedings of the 8th
Extended Semantic Web Conference (ESWC), pages 330–344, 2011.

Sheth, Amit P.; Gomadam, Karthik, and Ranabahu, Ajith. Semantics Enhanced
Services: METEOR-S, SAWSDL and SA-REST. IEEE Data Eng. Bulletin, 31
(3):8–12, 2008.

Syed, Zareen and Finin, Tim. Creating and Exploiting a Hybrid Knowledge Base
for Linked Data. In Agents and Artificial Intelligence, pages 3–21. Springer,
2011.

Szekely, Pedro; Knoblock, Craig A.; Gupta, Shubham; Taheriyan, Mohsen, and
Wu, Bo. Exploiting Semantics of Web Services for Geospatial Data Fusion. In
Proceedings of the SIGSPATIAL International Workshop on Spatial Semantics
and Ontologies (SSO 2011), Chicago, IL, 2011.

Szekely, Pedro; Knoblock, Craig A.; Yang, Fengyu; Zhu, Xuming; Fink, Eleanor;
Allen, Rachel, and Goodlander, Georgina. Connecting the Smithsonian Ameri-
can Art Museum to the Linked Data Cloud. In Proceedings of the 10th Extended
Semantic Web Conference (ESWC), pages 593–607, Montpellier, May 2013.

Szekely, Pedro; Knoblock, Craig A.; Slepicka, Jason; Philpot, Andrew; Singh,
Amandeep; Yin, Chengye; Kapoor, Dipsy; Natarajan, Prem; Marcu, Daniel;
Knight, Kevin; Stallard, David; Karunamoorthy, Subessware S.; Bojanapalli,
Rajagopal; Minton, Steven; Amanatullah, Brian; Hughes, Todd; Tamayo, Mike;
Flynt, David; Artiss, Rachel; Chang, Shih-Fu; Chen, Tao; Hiebel, Gerald, and
Ferreira, Lidia. Building and Using a Knowledge Graph to Combat Human
Trafficking. In Proceedings of the 14th International Semantic Web Conference
(ISWC 2015), 2015.

Taheriyan, Mohsen; Knoblock, Craig A.; Szekely, Pedro, and Ambite, José Luis.
Semi-Automatically Modeling Web APIs to Create Linked APIs. In Proceedings
of the Linked APIs for the Semantic Web Workshop (LAPIS), 2012a.

Taheriyan, Mohsen; Knoblock, Craig A.; Szekely, Pedro, and Ambite, José Luis.
Rapidly Integrating Services into the Linked Data Cloud. In ISWC, pages 559–
574, Boston, MA, 2012b.

107

Taheriyan, Mohsen; Knoblock, Craig A.; Szekely, Pedro, and Ambite, José Luis.
A Graph-based Approach to Learn Semantic Descriptions of Data Sources. In
Procs. 12th International Semantic Web Conference (ISWC), 2013.

Taheriyan, Mohsen; Knoblock, Craig A.; Szekely, Pedro, and Ambite, José Luis. A
Scalable Approach to Learn Semantic Models of Structured Sources. In Semantic
Computing (ICSC), 2014 IEEE International Conference on, pages 183–190,
June 2014.

Taheriyan, Mohsen; Knoblock, Craig; Szekely, Pedro, and Ambite, José Luis.
Learning the Semantics of Structured Data Sources. Journal of Web Seman-
tics Special Issue on Knowledge Graphs, 2015a.

Taheriyan, Mohsen; Knoblock, Craig; Szekely, Pedro; Ambite, José Luis, and Chen,
Yinyi. Leveraging Linked Data to Infer Semantic Relations within Structured
Sources. In Proceedings of the 6th International Workshop on Consuming Linked
Data (COLD 2015), 2015b.

Takahashi, Hiromitsu and Matsuyama, Akira. An Approximate Solution for the
Steiner Problem in Graphs. Math.Japonica, 24:573–577, 1980.

Vavliakis, Konstantinos N.; Grollios, Theofanis K., and Mitkas, Pericles A.
RDOTE - Transforming Relational Databases into Semantic Web Data. In
Polleres, Axel and Chen, Huajun, editors, ISWC Posters & Demos, volume
658 of CEUR Workshop Proceedings. CEUR-WS.org, 2010.

Venetis, Petros; Halevy, Alon; Madhavan, Jayant; Paşca, Marius; Shen, Warren;
Wu, Fei; Miao, Gengxin, and Wu, Chung. Recovering Semantics of Tables on
the Web. Proc. VLDB Endow., 4(9):528–538, June 2011. ISSN 2150-8097.

Wang, Jingjing; Wang, Haixun; Wang, Zhongyuan, and Zhu, Kenny Qili. Under-
standing Tables on the Web. In Atzeni, Paolo; Cheung, David W., and Ram,
Sudha, editors, ER, volume 7532 of Lecture Notes in Computer Science, pages
141–155. Springer, 2012. ISBN 978-3-642-34001-7.

Wiederhold, Gio. Mediators in the Architecture of Future Information Systems.
Computer, 25(3):38–49, March 1992. ISSN 0018-9162.

Winter, Pawel. Steiner Problem in Networks - A Survey. Networks, 17:129–167,
1987.

108

	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Abstract
	Introduction
	Motivation
	Thesis Statement
	Proposed Approach
	Contributions of the Research
	Outline of the Thesis

	Semi-Automatically Building Semantic Models of Data Sources
	Problem Formulation
	Learning Semantic Types of Source Attributes
	A Graph-Based Approach to Extract the Implicit Relationships
	Building A Graph from the Semantic Types and Domain Ontology
	Generating an Initial Semantic Model

	Refining Semantic Models
	Evaluation

	Learning Semantic Models of Data Sources
	Example
	Learning Semantic Models
	Learning Semantic Types of Source Attributes
	Building A Graph from Known Semantic Models, Semantic Types, and Domain Ontology
	Mapping Source Attributes to the Graph
	Generating and Ranking Semantic Models

	Evaluation
	Scenario 1
	Scenario 2
	User Effort

	Leveraging Linked Data to Infer Semantic Relations
	Example
	Inferring Semantic Relations
	Extracting Patterns from Linked Open Data
	Merging LOD Patterns into a Graph
	Mapping Source Attributes to the Graph
	Generating and Ranking Semantic Models

	Evaluation

	Related Work
	Discussion
	Contributions
	Applications
	Limitations
	Future Work

	Bibliography

