
The VLDB Journal manuscript No.
(will be inserted by the editor)

Composing, Optimizing, and Executing Plans

for Bioinformatics Web Services

Snehal Thakkar, José Luis Ambite, Craig A. Knoblock

University of Southern California
Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90292

September 2, 2005

Abstract The emergence of a large number of bioinformatics datasets on
the Internet has resulted in the need for flexible and efficient approaches
to integrate information from multiple bioinformatics data sources and ser-
vices. In this paper, we present our approach to automatically generate
composition plans for web services, optimize the composition plans, and
execute these plans efficiently. While data integration techniques have been
applied to the bioinformatics domain, the focus has been on answering spe-
cific user queries. In contrast, we focus on automatically generating param-
eterized integration plans that can be hosted as web services that respond
to a range of inputs. In addition, we present two novel techniques that im-
prove the execution time of the generated plans by reducing the number of
requests to the existing data sources and by executing the generated plan
more efficiently. The first optimization technique, called tuple-level filtering,
analyzes the source/service descriptions in order to automatically insert fil-
tering conditions in the composition plans that result in fewer requests to
the component web services. To ensure that the filtering conditions can
be evaluated, this technique may include sensing operations in the integra-
tion plan. The savings due to filtering significantly exceed the cost of the
sensing operations. The second optimization technique consists in mapping
the integration plans into programs that can be executed by a dataflow-
style, streaming execution engine. We use real-world bioinformatics web
services to show experimentally that (1) our automatic composition tech-
niques can efficiently generate parameterized plans that integrate data from
large numbers of existing services, and (2) our optimization techniques can
significantly reduce the response time of the generated integration plans.

2 Snehal Thakkar, José Luis Ambite, Craig A. Knoblock

1 Introduction

There exist a large number of bioinformatics datasets on the web in various
formats. There is a need for flexible and efficient approaches to integrate
information from these datasets. Unlike other domains, the bioinformatics
domain has embraced web standards, such as XML and web services. A
web service is a program that can be executed on a remote machine using
standard protocols, such as WSDL and SOAP. There exists a large number
of bioinformatics data sources that are either accessible as web services or
provide data using XML. For the bioinformatics data sources that provide
their data as semi-structured web or text documents, we can use wrapper-
based techniques [BGRV99,KWD97,MMK00] to access the data. Most of
the available bioinformatics web services are information-providing services,
i.e. these services do not change the state of the world in any way. For ex-
ample, when a user queries the UniProt1 website for details of a protein,
the user provides a uniprotid and gets back the information about the pro-
tein. Sending this request does not result in side effects, such as charges to
the user’s credit card. The emergence of the large number of information-
providing services has highlighted the need for a framework to integrate
information from the available data sources and services.

In this paper, we describe our approach to automatically compose inte-
gration plans to create new information-providing web services from exist-
ing web services. When our framework receives a request to create a new
web service, it generates a parameterized integration plan that accepts the
values of the input parameters, retrieves and integrates information from
relevant web services, and returns the results to the user. The parameter-
ized integration plan is then hosted as a new web service. The values of
the input parameters are not known at composition time. Therefore, the
parameterized integration plan must be able to handle different values of
input parameters. This is the key challenge in composing plans for a new
web service. To further clarify this consider the example shown in Figure 1.
We have access to three web services each providing protein information
for different organisms. We would like to create a new web service that
accepts the name of an organism and the id of a protein and returns the
protein information from the relevant web service. Given specific values of
the input parameters, traditional data integration systems can decide which
web service should be queried. However, without knowing the values of the
parameters, the traditional integration systems would generate a plan that
requires querying all three web services for each request.

The key contribution of our approach is to extend the existing techniques
to generate parameterized integration plans that can answer requests with
different sets of values for the input parameters. This is similar to the prob-
lem of generating universal plans [Sch87] in that the generated plan must
return an answer for any combination of valid input parameters.

1 http://www.pir.uniprot.org/

Composing, Optimizing, & Executing Plans for Bioinformatics Services 3

HSProtein MMProtein
Yeast

Protein

Proteinid Proteinid Proteinid

Proteinid

sequence

function

location

pubmedid

Proteinid

sequence

function

location

pubmedid

Proteinid

sequence

function

location

pubmedid

New Protein Service

Proteinid, Organismname

Proteinid, sequence, function,

location, taxonid, pubmedid

Fig. 1 Example Composed Service

A key issue when generating parameterized plans is to optimize the
plans to reduce the number of requests sent to the existing data sources.
The existing optimization techniques utilize the constants in the user query
to filter out unnecessary source requests and/or reorder the joins to produce
more efficient plans. However, as we show with a detailed example later in
the paper, those techniques are not enough when we apply them to the task
of optimizing parameterized integration plans. Intuitively, we can improve
the performance of the parameterized plans for the composed web services
using two approaches: (1) by reducing the number of requests sent to web
services and (2) by executing requests to the existing web services more
efficiently. To that end, we describe two optimizations to reduce the response
time of the composed web services: (1) a tuple-level filtering algorithm that

4 Snehal Thakkar, José Luis Ambite, Craig A. Knoblock

optimizes the parameterized integration plans by adding filters based on
the source descriptions of the existing web services to reduce the number
requests made to the existing web services and (2) an algorithm to map
the parameterized integration plans into dataflow-style, streaming execution
plans that can be executed efficiently using a highly parallelized, streaming
execution engine.

This paper builds on our earlier work, which presented preliminary re-
sults on tuple-level filtering [TAK03,TAK04] and mapping datalog into
streaming, dataflow-style execution system [TK03]. This article describes
these techniques in more detail, shows how they can be applied to the
bioinformatics domain, and contains new experimental results on real-world
bioinformatics web services.

We begin by describing a motivating example that we use throughout
the paper to provide a detailed explanation of various concepts. Next, we
discuss how existing data integration techniques can be extended to model
web sources as data sources and reformulate web service creation requests
into parameterized integration plans. Next, we describe an optimization
technique termed tuple-level filtering that introduces filters and sensing op-
erations in the parameterized integration plan to reduce the number of
requests to the existing web services. In addition, we present a discussion
on the applicability of the tuple-level filtering in the bioinformatics domain.
Then, we describe techniques to translate recursive and non-recursive dat-
alog composition plans into integration plans that can be executed by a
dataflow-style execution engine. Our experimental evaluation shows that
the techniques described in this paper achieve a significant reduction in
the response time of the composed web services. We conclude the paper by
discussing the related work, contributions of the paper, and future work.

2 Motivating Example

In this section, we will describe a set of available web services and an ex-
ample web service that we would like to create by composing the available
services. The existing web services provide information about various pro-
teins and interactions between different proteins. We model each web service
operation as a data source with binding restrictions. The ’$’ before the at-
tribute denotes that the value for the attribute is required to obtain the rest
of the information, i.e., the attribute is a required input to the web service
operation. Each data source provides information about one or more domain
concept(s). A domain concept refers to a type of entity, e.g. Protein.

As shown in Table 1, we have access to eight different web services that
provide information about various proteins. Six of these web services namely,
HSProtein, MMProtein, MembraneProtein, TransducerProtein, DIPProtein,
and ProteinLocations provide information about proteins. The HSProtein-
Interactions and MMProteinInteractions services provide information about
interactions between proteins.

Composing, Optimizing, & Executing Plans for Bioinformatics Services 5

Concept Source

Protein

HSProtein($id, name, location, function, sequence,
pubmedid)

MMProtein($id, name, location, function, sequence,
pubmedid)

MembraneProtein($id, name, taxonid, function,
sequence, pubmedid)

TransducerProtein($id, name, taxonid, location,
sequence, pubmedid)

DIPProtein($id, name, function, location, taxonid)
ProteinLocations($id, $name, location)

Protein HSProteinInteractions($fromid, toid, source, verified)
-Protein MMProteinInteractions($fromid, toid, source, verified)

Interactions

Table 1 Available Web Services

The HSProtein, MMProtein, MembraneProtein and TransducerProtein
services accept the id of a protein and provide the name of the protein, the
location of the protein in a cell, the function of the protein, the sequence
of the protein, and a pointer to articles that may provide more information
about the protein.2 The protein information services cover different sets
of proteins. The HSProtein web service only provides information about
human proteins, while the MMProtein web service provides information
about mouse proteins. The MembraneProtein web service provides informa-
tion about proteins located in the Membrane, while the TransducerProtein
provides information about all the proteins that act as Transducers. The
DIPProtein web service accepts a proteinid and provides name, function,
location, and taxonid information for all proteins. The ProteinLocations ser-
vice accepts a proteinid and name of the protein and provides the location
of the protein.3

Similarly, we also have access to two web services that provide infor-
mation about interactions between different proteins. Both web services
accept a proteinid and provide ids of the interacting proteins, sources of
the interaction, and information on whether the interaction was verified.
The HSProteinInteractions gives information about human protein-protein
interactions, while the MMProteinInteractions provides information about
mouse protein-protein interactions.

2 Since we are using a relational schema, we can only have one value for the
pubmedid attribute. For simplicity, we assume that value for the pubmedid at-
tribute is a URL that points to a page containing list of articles that refer to the
protein.

3 For simplicity, we assume that all sources utilize the same proteinid to identify
proteins. If the available sources do not share common keys, we can use record
linkage techniques, such as [TKM02], to materialize a source that provides map-
ping between the keys of different sources.

6 Snehal Thakkar, José Luis Ambite, Craig A. Knoblock

Figure 2 shows the graphical representation of the relationships be-
tween the data sources and domain concepts. The square block in the figure
(e.g. Protein) represents a domain entity. The diamond-shaped box (e.g.
Protein-ProteinInteractions) represents a relationship between domain en-
tities. Cylindrical shapes denote sources. The dotted lines show the rela-
tionships between the sources and domain entities.

Given these sources a user may want to create a new service by combin-
ing information from various sources. One such example is to create service
that accepts a proteinid, queries relevant protein sources to obtain infor-
mation about the protein, and returns the information to the user. The
framework described in this paper allows the users to quickly create such
web services. We would like to allow users to specify web service creation
requests using the domain concepts. Our framework must generate an in-
tegration plan that determines relevant sources based on values of different
input parameters.

As the motivating example for the rest of the paper, we would like our
framework to create the service shown in Figure 3 that accepts a proteinid
and finds the sequence for the given protein and the id and sequence infor-
mation (toproteinid and toseq attributes in the figure) about all the proteins
with which it interacts either directly or indirectly. We use rounded rectan-
gles to denote domain concepts. For example the rounded rectangles with
the Protein and ProteinProteinInteractions text denote retrieval operations
from the Protein and ProteinProteinInteractions domain relations, respec-
tively. Directed arrows in the figure denote a dependency between the two
symbols connected by an arrow. For example, the Join operation cannot
be performed until data is obtained from both Protein operations. In this
example, Protein and ProteinProteinInteractions are virtual relations. The
task of our framework is to generate an integration plan that accepts the
values for the input parameters, retrieves necessary information from the
relevant source web services (e.g. HSProtein), and returns the response to
the user.

3 Adapting Data Integration Techniques to Web service

Composition

In this section we describe an extension to the existing data integration
techniques to solve the problem of generating parameterized integration
plan for new bioinformatics web services. Most Life Sciences web services
are information-providing services. We can treat information-providing ser-
vices as data sources with binding restrictions. Data integration systems
[BJBB+97,GKD97,KMA+01,LRO96] require a set of domain relations, a
set of source relations, and a set of rules that define the relationships be-
tween the source relations and the domain relations.

In Section 3.1 we describe how we can create a domain model for the
given example. In Section 3.2 we describe how we use an existing query

Composing, Optimizing, & Executing Plans for Bioinformatics Services 7

Protein Protein-Protein

Interactions

HSProtein

MMProtein

Membrane
Protein

Transducer
Protein

HSProtein
Interactions

MMProtein
Interactions

DipProtein

Protein
Locations

Fig. 2 Relationships Between Domain Concepts and Data Sources

Join
proteinid = proteinid

proteinid

proteinid,
toproteinid

proteinid, sequence

proteinid,
toproteinid, toseq

proteinid, seq,
toproteinid, toseq

Protein-Protein

Interactions

Protein

Protein

ComposedPlan

Fig. 3 Example of the Integration Plan of a Desired Web Service

8 Snehal Thakkar, José Luis Ambite, Craig A. Knoblock

reformulation technique called Inverse Rules [Dus97] to generate a datalog
program to answer specific user queries. In Section 3.3 we describe our exten-
sions to the existing data integration techniques to support the generation
of parameterized-integration plans for web service composition.

3.1 Modeling Web Services as Data Sources

In order to utilize the existing web services as data sources, we need to model
them as available data sources and create rules to relate the existing web
services with various concepts in the domain. Typically, a domain expert
consults the users and determines a set of domain relations. The users form
their queries on the domain relations. For the example in Section 2, we have
two domain relations with the following attributes:

Protein(id, name, location, function, sequence, pubmedid, taxonid)
ProteinProteinInteractions(fromid, toid, taxonid, source, verified)

The Protein relation provides information about different proteins. The
ProteinProteinInteractions relation contains interactions between different
proteins. As the id attribute in the Protein relation is the primary key,
all other attributes in the Protein relation functionally depend on the id
attribute. For the ProteinProteinInteractions domain relation, the combi-
nation of fromid and toid forms a primary key.

Once we have determined the domain relations, we need to define the
relationships between the domain relations and the available web services.
Traditionally, various mediator systems utilize either the Local-As-View ap-
proach [Lev00], the Global-As-View approach [GMHI+95], or the Global-
Local-As-View (GLAV) [Len02] to describe the relationship between the do-
main predicates and available data sources. In the Global-As-View approach
the domain relations are described as views over available data sources. In
the Local-As-View approach the data sources are described as views over
the domain relations. Adding data sources in the Local-As-View model is
much easier compared to the Global-As-View model. Therefore, our data
integration system utilizes the Local-As-View model. We define the data
sources as views over the domain relations as shown in Figure 4. The source
descriptions (SD1-SD8) contain a source relation as the head of the rule
and a conjunction of domain relations and equality or order constraints in
the body of the rule.

In addition to the source descriptions, we will also include the recur-
sive domain rule DR to ensure that the ProteinProteinInteractions relation
actually represents all protein-protein interactions, not just direct protein-
protein interactions. A domain rule must contain exactly one domain rela-
tion as the head of the rule and a conjunction of domain relations, source
relations, and equality or order constraints in the body of the rule. In gen-
eral, we assume that we have the correct model for all available data sources
and the data sources do not report incorrect data. However, our frame-
work can handle incomplete data sources. For example, a web service that

Composing, Optimizing, & Executing Plans for Bioinformatics Services 9

SD1:HSProtein(id, name, location, function, sequence, pubmedid):-
Protein(id, name, location, function, sequence, pubmedid, taxonid) ∧

taxonid=9606

SD2:MMProtein(id, name, location, function, sequence, pubmedid):-
Protein(id, name, location, function, sequence, pubmedid, taxonid) ∧,
taxonid=10090

SD3:MembraneProtein(id, name, taxonid, function, sequence, pubmedid):-
Protein(id, name, location, function, sequence, pubmedid, taxonid) ∧

location=‘Membrane’

SD4:TransducerProtein(id, name, taxonid, location, sequence, pubmedid):-
Protein(id, name, location, function, sequence, pubmedid, taxonid) ∧

function=‘Transducer’

SD5:DIPProtein(id, name, function, location, taxonid):-
Protein(id, name, location, function, sequence, pubmedid, taxonid)

SD6:ProteinLocations(id, name, location):-
Protein(id, name, location, function, sequence, pubmedid, taxonid)

SD7:HSProteinInteractions(fromid, toid, source, verified):-
ProteinProteinInteractions(fromid, toid, taxonid, source, verified) ∧

taxonid=9606

SD8:MMProteinInteractions(fromid, toid, source, verified):-
ProteinProteinInteractions(fromid, toid, taxonid, source, verified) ∧

taxonid=10090

DR:ProteinProteinInteractions(fromid, toid, taxonid, source, verified):-
ProteinProteinInteractions(fromid, itoid, taxonid, source, verified) ∧

ProteinProteinInteractions(itoid, toid, taxonid, source, verified)

Fig. 4 Source Descriptions and Domain Rule

provides information about human proteins may only provide information
about some human proteins.

Having defined the domain model and source descriptions, the users can
send queries to the data integration system. Figure 5 shows an example
query that asks the system to find information about the proteins with
proteinid equal to ‘19456’ and taxonid equal to ‘9606’, and their interactions.

3.2 Answering Individual User Queries

When a traditional data integration system gets a user query, it utilizes a
query reformulation algorithm to generate a datalog program to answer the
user query using the source descriptions, domain rules, and the user query.

10 Snehal Thakkar, José Luis Ambite, Craig A. Knoblock

Q1:Q1(fromid, fromname, fromseq, frompubid, toid, toname, toseq, topubid):-
Protein(fromid, fromname, loc1, func1, fromseq, frompubid, taxonid) ∧

ProteinProteinInteractions(fromid, toid, taxonid, source, verified) ∧

Protein(toid, toname, loc2, func2, toseq, topubid, taxonid) ∧

taxonid = 9606 ∧

fromid = 19456

Fig. 5 Example Query

IR1:Protein(id, name, location, function, sequence, pubmedid, f1(...)):-
HSProtein(id, name, location, function, sequence, pubmedid)

IR2:Protein(id, name, location, function, sequence, pubmedid, f2(...)):-
MMProtein(id, name, location, function, sequence, pubmedid)

IR3:Protein(id, name, f3(...), function, sequence, pubmedid, taxonid):-
MembraneProtein(id, name, taxonid, function, sequence, pubmedid)

IR4:Protein(id, name, location, f5(...), sequence, pubmedid, taxonid):-
TransducerProtein(id, name, taxonid, location, sequence, pubmedid)

IR5:Protein(id, name, location, function, f6(...), f7(...), taxonid):-
DIPProtein(id, name, function, location, taxonid)

IR6:Protein(id, name, location, f8(...), f9(...), f10(...), f11(...)):-
ProteinLocations(id, name, location)

IR7:ProteinProteinInteractions(fromid, toid, taxonid, source, verified):-
HSProteinInteractions(fromid, toid, source, verified)

IR8:ProteinProteinInteractions(fromid, toid, taxonid, source, verified):-
MMProteinInteractions(fromid, toid, source, verified)

Fig. 6 Automatically Generated Inverse Rules

Our mediator is based on the Inverse Rules [Dus97] query reformulation
algorithm for the Local-As-View approach.

The first step of the Inverse Rules is to invert the source definitions to
obtain definitions for all domain relations as views over the source relations
as ultimately only the requests on the source relations can be executed. In
order to generate the inverse view definition, the Inverse Rules algorithm
analyzes all source descriptions. The rules IR1 through IR8 are the result
of inverting the rules SD1 through SD8 from Figure 4. The head of the rule
IR5 contains function symbols as the attributes sequence and pubmedid are
not present in the source DIPProtein. For clarity purposes, we have used

Composing, Optimizing, & Executing Plans for Bioinformatics Services 11

Join

Composed Plan

FromProteinInfo,
ToProteinInfo

FromId

ProteinId,
InteractingProteinId

FromProteinInfo

FromId,
ToProteinInfo

FromProteinInfo,
ToProteinInfo

HSProtein

Membrane
Protein

Tranducer
Protein

HSProtein
Interactions

HSProtein

Membrane
Protein

Transducer
Protein

Union

Union

FromId

Fig. 7 Generated Integration Plan to Answer the User Query

a shorthand notation for these Skolem functions. In general the Skolem
functions would have the rest of the attributes in the head of the view as
arguments. For example, Skolem function f6(...) in rule IR5 stands for f6(id,
name, function, location, taxonid).

Next, the mediator combines the domain rule, the relevant inverted rules
shown in Figure 6, and the user query shown in Figure 5 to generate a data-
log program to answer the user query. Figure 7 shows a graphical represen-
tation of the datalog program. We can use any datalog evaluation engine
(as long as the datalog engine can retrieve data remote sources and web
services) to execute the program and get the answer to the user query.
Given a Proteinid, the integration plan proceeds as follows. The given Pro-
teinid is used to send requests to the three relevant protein information
data sources. Note that the source MMProtein is not used as it has the con-
straint, taxonid = 10090, which conflicts with a constraint in the user query.
In addition, a request is sent to the HSProteinInteractions data source to
obtain all interactions between the given protein and other proteins. The
MMProteinInteractions data source is not used as it has a constraint on the
attribute taxonid that conflicts with a constraint in the query. Next, the

12 Snehal Thakkar, José Luis Ambite, Craig A. Knoblock

data integration system sends requests to the three relevant protein sources
to find information about all the directly interacting proteins. The informa-
tion about the given protein and interacting proteins is joined and provided
as part of the output, while the ids of the interacting proteins are used as
input to the next iteration to obtain indirect interactions.

3.3 Generating Parameterized Integration Plans for Web Service
Composition

While data integration systems can be used to answer the user queries by
integrating data from various data sources, the user still needs to specify
the query for each request and needs to know the domain model. Ideally, we
would like to create a web service that accepts some input parameters such
as proteinid, executes a pre-determined program, and provides the results
of the program to the user. In other words we would like a data integration
system to generate a web service that a user can utilize over and over with
different values for the inputs. A key difference between generating a web
service and answering specific queries is that the data integration system
needs to generate a parameterized integration plan that works for different
values of the input parameters.

We extend the techniques described in Section 3.2 in two ways in order
to automatically generate parameterized integration plans. First, instead of
passing in specific queries to the data integration system, we pass in param-
eterized queries, such as the query shown in Figure 8. We use the ‘!’ prefix
to denote a parameter. Unlike the specific query, the value of the parameter
is not known to the mediator. The generated integration plan should accept
proteinid and taxonid parameters. The arguments in the head of the query
show the output of the generated plan. The generated plan should out-
put the following attributes: fromid, fromname, fromseq, frompubid, toid,
toname, toseq, topubid. The body of the datalog rule indicates the informa-
tion that the generated plan would need to gather. For the given query, the
generated plan should query the Protein relation to obtain name, seq, and
pubid information for the given proteinid. Next, it should query the Protein-
ProteinInteractions relation to find all proteins that interact with the given
protein. Finally, it should find the name, seq, and pubid information for all
the interacting proteins. The information about the given protein and all
the interacting proteins should be returned to the user.

Second, we modify the Inverse Rules [Dus97] to treat the parameterized
constraints in the query as run-time variables [Gol98] since the value of
the parameters is not known. Like the data integration system described in
Section 3.2, our extended integration system also requires a domain model
and source descriptions. To generate the parameterized integration plan, the
mediator utilizes the Inverse Rules [Dus97] technique. As the constraints
in the query have parameters, it is not possible to filter out sources by
checking for conflicting constraints. For example, even though there is a

Composing, Optimizing, & Executing Plans for Bioinformatics Services 13

Q1:Q1(fromid, fromname, fromseq, frompubid, toid, toname, toseq, topubid):-
Protein(fromid, fromname, loc1, func1, fromseq, frompubid, taxonid),
ProteinProteinInteractions(fromid, toid, taxonid, source, verified),
Protein(toid, toname, loc2, func2, toseq, topubid, taxonid),
(taxonid = !taxonid),
(fromid = !proteinid)

Fig. 8 Parameterized Query

constraint on the taxonid attribute in the query and a constraint on the
taxonid attribute in the description of the source HSProtein, as we do not
know the value of the parameter !taxonid, we cannot exclude the HSProtein
source from the generated plan. Instead our system must utilize all available
data sources for every domain relation. For the given query, the integration
system needs to send requests to all four data sources to obtain information
about proteins. Moreover, the integration system must also send requests to
both protein-protein interactions data sources as shown in the integration
plan in Figure 9.

Once the integration system generates the parameterized integration
plan, it can be hosted as a web service and the users can query the web
service by providing different values of taxonid and proteinid.

One advantage of our approach is that once a web service is composed
using our framework, the users of the composed web service do not need
to know the details of the mediator’s domain model. As long as the users
know what function the web service performs, they can use the service by
providing the parameter values.

4 Optimizing Web Service Composition Plans using Tuple-level

Filtering

While the generated integration plan can be hosted as a web service that
provides complete answers for any given values of the input, it may send
a large number of requests to the existing web services. This may result in
slow response times for the composed web service. Therefore, it is important
to optimize the generated integration plans to remove unnecessary requests
to the component web services. For example, the user can send requests
to the example web service described in Section 2 with different values of
proteinid. However, each request to the composed web service may require a
large number of requests to the composed web services. For example, when
we invoke the composed service with ‘19456’ as the value for the proteinid
parameter, the composed service would need to call all the web services
that provide protein information once for the given protein and once for
each interacting protein.

There has been much work in the data integration community on the
issue of reducing the response time of integration plans by removing redun-
dant calls to data sources and ordering data accesses [HKR+00,KLN+03,

14 Snehal Thakkar, José Luis Ambite, Craig A. Knoblock

Join

Composed Plan

FromProteinInfo,

ToProteinInfo

FromId

ProteinId,
InteractingProteinId

FromProteinInfo

Fromid,
ToProteinInfo

FromProteinInfo,ToProteinInfo

HSProtein

MMProtein

Membrane
Protein

Tranducer
Protein

HSProtein
Interactions

MMProtein
Interactions

HSProtein

MMProtein

Membrane
Protein

Transducer
Protein

Union

Union

Fromid

Union

Fig. 9 Parameterized Integration Plan

LRE04]. However, those optimizations are geared toward answering spe-
cific queries, while web service composition requires integration plans that
can answer the parameterized queries. It may not be possible to identify
redundant or unnecessary calls to data sources in a parameterized integra-
tion plan until the execution time, when the parameter values are known.
The existing optimization techniques rely on comparing constraints in the
query with the constraints in the source descriptions to determine if a source
may provide useful tuples to answer the user query. However, in case of the
parameterized plans, the values of the input parameters participating in
the constraints is not known at composition time. Therefore, the existing
optimization techniques would not be able to remove any source requests
from the composed parameterized plans, such as one shown in Figure 9. In
this Section, we describe a novel optimization algorithm termed tuple-level
filtering that addresses this problem by optimizing the generic integration
plans using the equality and order constraints in the source descriptions.

The key idea behind the tuple-level filtering algorithm is to use the
equality (e.g., x = 5) and order constraints (e.g., x < 5) in the source de-
scriptions to add filters that eliminate provably useless calls to each existing
web service. For example, if we have access to a web service that accepts a
proteinid of a human protein and provides information about the protein,

Composing, Optimizing, & Executing Plans for Bioinformatics Services 15

we should add a filter before calling the web service to ensure that all re-
quests sent to the service are for human proteins. The concept of adding
filters before data sources is similar in spirit to ‘pushing’ selections in the
queries in deductive databases [KL90]. However, the key difference is that
the selections ‘pushed’ by the tuple-level filtering algorithm originate from
the source descriptions and not from the user query.

The tuple-level filtering algorithm may also add requests to additional
sources as sensing operations to obtain the values of the attributes involved
in the constraint. We first convert the datalog program into dataflow-style
execution plan using techniques described in Section 5. The tuple-level fil-
tering algorithm adds the necessary filters and sensing operations into the
dataflow-style execution plan.

Figure 10(a) shows a graphical representation of a request to a web
service (SF) in the parameterized plan. We use a vector notation (capital,
boldface) to denote lists of attributes. The web service (SF) accepts a set of
inputs (Xb) and provides a set of outputs (Xb

⋃
Z). The source description

of the service (SF) is a conjunction of domain predicates (
∧

i Pi(Xi)) and a
constraint (C(Y)) on attribute Y . In our running example, the web service
HSProtein is one of the sources being filtered (SF). The only required
input to the source is the proteinid (Xb = [proteinid]). The source provides
proteinid, name, location, function, sequence, and pubmedid attributes (Z =
[name, location, function, sequence, pubmedid]). Moreover, there exists a
constraint on attribute taxonid in the source description (Y = taxonid).

Intuitively, we would like to use the constraint C(Y) to insert a select
operation before the request to the service (SF). As shown in Figure 10(b)
and 10(c), there are two scenarios: (1) the value of attribute Y is already
computed before the request to the service (SF) or (2) the value of attribute
Y is not computed before call to the service (SF). In the Figure 10(b), the
filtering algorithm only needs to add a select operation to filter out tuples
that do not satisfy constraint C(Y). In the Figure 10(c), the filtering algo-
rithm inserts a call to another web service (SS) to obtain value for attribute
Y followed by a select operation to filter out tuples that do not satisfy con-
straint C(Y). The tuple-level filtering algorithm accepts an integration plan
(similar to Figure 10(a)) and if possible inserts sensing and/or filtering op-
erations to obtain a more efficient integration plan (similar to Figure 10(b)
or Figure 10(c)).

Figure 11 shows the tuple-level filtering algorithm. The algorithm first
analyzes the generated integration plan to obtain a list of source calls. For
each request the algorithm finds the description of the source. If the descrip-
tion of the source contains a constraint, the algorithm attempts to insert
necessary sensing and filtering operations to reduce the number of requests
sent to each source. If the value for the attribute involved in the constraint
is already present in the plan, the tuple-level filtering algorithm inserts a
filtering operation to filter out tuples that conflict with the constraint in the
source description. We describe the process of inserting filtering operations
(without a sensing operation) in Section 4.1.

16 Snehal Thakkar, José Luis Ambite, Craig A. Knoblock

SF

X

X, Z

SF(X, Z):-

iPi(Xi)^C(Y)

X,Z UXi,

Y UXi

Q

SF

X,Y

X, Z

SF(X, Z):-

iPi(Xi)^C(Y)

X,Z UXi,

Y UXi

Q’

C(Y)

SF

X

X, Z

SF(X, Z):-

iPi(Xi)^C(Y)

X,Z UXi,

Y UXi

Q’’

C(Y’)

SS

X,Y’

SS(X,Y’, Z’):-

jPj(Xj)

X,Z UXj,

Y UXj

(a) (b) (c)

Fig. 10 (a) Initial Composition Plan, (b) Insertion of a Filtering Operation, and
(c) Insertion of Sensing and Filtering Operations

For some generated plans, the values of the attributes participating in
the constraints may not be retrieved before calling the source. In those cases,
the tuple-level filtering algorithm may insert sensing services to first obtain
the values of those attributes. While this may sound counter-productive at
first, it may be helpful since one additional web service request may avoid
requests to multiple web services at a later stage in the plan. Section 4.2
describes the process of selecting and adding additional source requests to
the generated plan. Section 4.3 proves the correctness of the tuple-level
filtering algorithm. Finally, Section 4.4 discusses the applicability of our
algorithm in the bioinformatics domain.

4.1 Tuple-level Filtering Without Sensing

Intuitively, adding filters to the generated program is a three step process.
First, the algorithm needs to find calls to all data sources (line 2). For each
source call (SF) it first calculates the attributes that are bound to constants,
bound to input parameters, or bound to source accesses that have already
been performed (line 3). Second, it finds all the attributes involved in the
constraints in the source description (line 5). Third, if the values of those
attributes are calculated before calling the source, the algorithm inserts the
constraint in the integration plan before the source call to filter out tuples
that do not satisfy the constraint (line 7). To insert a filter the algorithm
simply adds a select operation.

Composing, Optimizing, & Executing Plans for Bioinformatics Services 17

Procedure Tuple-level Filtering(SrcDesc, TPlan)
Input: SrcDesc: Source Descriptions (LAV rules)

DTPrg: Rules in the Datalog Program
TP lan: Corresponding Theseus plan

Output: Optimized Theseus plan
Algorithm:

1. SrcPreds := headsofSrcDesc /* source predicates */
2. For each call to a source SF in TP lan

3. BoundAttrs := attribute values computed by operators
before SF in TP lan

4. For each constraint C in the source description for SF

5. Attrs := attributes of C

6. If Attrs ⊆ BoundAttrs Then /* insert filtering constraint */
7. insert constraint C before SF in TP lan

8. Else /* insert sensing source predicate */
9. If ∃ source predicate SS in SrcPreds such that
10. CompatibleSensingSource(SS, SF , TPlan)
11. Then /* insert sensing operation */
12. insert predicate SS before SF in TP lan

13. insert constraint C before SF in TPlan
14. insert minus operation to find missing tuples
15. due to incompleteness of SS (as shown in Figure 15)
16. union the missing tuples with output of constraint C

17. pass the unioned tuples to SF

Procedure CompatibleSensingSource(SF, SS, TP lan)
Input: SF : SF (Xb,Z) :-

∧
i
Pi(Xi) ∧ C(Y)

where the Pi denote domain predicates,
Xb are the required input attributes to SF,
Z ⊆

⋃
Xi, Xb ⊆

⋃
Xi, and Y ∈

⋃
Xi.

SS : SS(X′

Y, Y ′,Z′) :-
∧

j
Pj(Xj)

where the Pj denote domain predicates and
X′

Y ⊆
⋃

Xj, Y
′ ∈

⋃
Xj, and Z′ ⊆

⋃
Xj.

TPlan: Corresponding Theseus plan
Output: True: if SS is compatible

False: Otherwise
Algorithm:
/* A sensing source SS is compatible with a source SF in plan TP lan if */
/* the following conditions are satisfied: */
18. If [SS 6∈ TP lan] and
19. [∀X ∈ Xb ∃X ′ ∈ X′

Y such that typeof(X) = typeof(X ′)
(let X′

Y =
⋃

X ′)] and
20. [typeof(Y ′) = typeof(Y)] and
21. [QSSC 6⊆ QSF where

QSSC : q(X′

Y, Y ′) :-
∧

j
Pj(Xj)

QSF : q(Xb, Y) :-
∧

i
Pi(Xi) ∧ C(Y)] and

22. [∃ Functional dependencies Xb → Y in
∧

i
Pi(Xi) and

X′

Y → Y ′ in
∧

j
Pj(Xj)] and

23. [QSFSS ⊆ QSF where
QSFSS : q(X′

Y, Y ′) :-
∧

i
Pi(Xi) ∧ C(Y)

∧
j
Pj(Xj) ∧ (Xb = X′

Y)]

24. Then Return true
25. Else Return false

Fig. 11 Tuple-level Filtering Algorithm

18 Snehal Thakkar, José Luis Ambite, Craig A. Knoblock

IR1:ProteinProteinInteractions(fromid, toid, taxonid, source, verified):-
HSProteinInteractions(fromid, toid, source, verified)

IR2:ProteinProteinInteractions(fromid, toid, taxonid, source, verified):-
MMProteinInteractions(fromid, toid, source, verified)

DR:ProteinProteinInteractions(fromid, toid, taxonid, source, verified):-
ProteinProteinInteractions(fromid, itoid, taxonid, source, verified) ∧

ProteinProteinInteractions(itoid, toid, taxonid, source, verified)
Q2:Q(fromid, toid, taxonid, source, verified):-

ProteinProteinInteractions(fromid, toid, taxonid, source, verified) ∧

(fromid = !fromproteinid) ∧

(taxonid = !taxonid)

Fig. 12 Datalog Representation of the Example Composition Plan

ProteinId,
taxonid

HSProtein
Interactions

MMProtein
Interactions

Proteinid,
toproteinid

Union

InteractionsPlan

ProteinId,
taxonid

HSProtein
Interactions

MMProtein
Interactions

Proteinid,
toproteinid

Taxonid = 9606 Taxonid = 10090

Union

InteractionsPlan

(a) (b)

Fig. 13 (a) Initial Composition Plan and (b) Optimized Composition Plan

For example consider a request to create a web service that accepts a
proteinid and taxonid and finds all protein-protein interactions. Figure 12
shows the datalog plan generated by the techniques described in Section 3.2.
The graphical representation of the parameterized plan generated using the
traditional data integration techniques is shown in Figure 13(a). When we
use the tuple-level filtering to optimize the generated plan, the filtering
algorithm analyzes the generated plan and the source descriptions of the
MMProteinInteractions and HSProteinInteractions web service operations.
The algorithm uses the constraints on the taxonid attribute and adds a
filtering constraint before sending requests to each web service operation as
shown in Figure 13(b). As the value of the taxonid attribute is provided as
an input to the composed web service, the filtering algorithm does not need
to add any sensing operations.

The value of the taxonid attribute is not known at plan generation time.
This is the key difference from the traditional query reformulation and op-
timization techniques that rely on filtering sources by analyzing constraints

Composing, Optimizing, & Executing Plans for Bioinformatics Services 19

in the source descriptions and queries. The tuple-level filtering algorithm in-
stead uses filtering operations to encode conditional plans that are similar in
spirit to the concept of universal plans [Sch87]. Once the filtering algorithm
generates the optimized plan, we utilize a cost-based optimizer to evaluate
the cost of the original plan shown in Figure 13(a) as well as the optimized
plan shown in Figure 13(b). The cost of the plan is calculated by summing
the cost of potential requests sent to different services. We define the cost of
sending a request to a web service as the response time of the service. The
optimizer picks the plan with lower cost (in this case the optimized plan
shown in Figure 13(b)) as the composition plan.

4.2 Adding Sensing Operations

If the values of the attributes participating in the constraints are not re-
trieved before calling the source, the tuple-level filtering algorithm attempts
to insert additional web services to first obtain the values of those attributes.
We use the term sensing source to refer to such additional web services. The
addition of the sensing source can produce a more cost-efficient plan as it
can reduce the number of requests sent to the source being filtered. The
key criteria for the sensing source are (1) the addition of the sensing service
should not change the meaning of the integration plan and (2) the addition
of sensing service should lead to a more cost-efficient plan.

As shown in Figure 10(a) and Figure 10(c), the modified query (Q”) after
the insertion of the sensing and filtering operations is a subset of the original
query (Q). Therefore, to ensure that the meaning of the original query does
not change, we need to ensure that the insertion of sensing and filtering
operations does not lead to removal of qualified tuples. The modified query
(Q”) contains two operations that may remove the tuples: (1) the call to
the sensing source (SS) and (2) the filtering operation (C(Y)).

As we are operating under the open-world assumption, the sensing source
may not be complete, i.e. it may not provide a value for attribute Y for all
values of the input attributes (Xb). To clarify this point consider the plan
shown in Figure 14. Imagine that the DIPProtein web service only returned
values for some input values. Figure 14 shows an example of inputs to the
web service and the corresponding outputs. Note that the output of the
service is missing some values of the proteinid attribute. As some of these
missing values may produce qualifying tuples to answer the query, we would
like to ensure that those tuples (tuples with values ‘13456’ and ‘14567’) are
also passed to the next step. The tuple-level filtering algorithm identifies
the missing tuples (lines 14-15 of Figure 11) and unions the missing tuples
with the result of the filtering operation (lines 16-17 of Figure 11) to ensure
that the sensing operation does not remove any useful tuples.

The tuple-level filtering algorithm also needs to ensure that the filter-
ing operation only removes provably useless tuples. The tuple-level filtering
ensures this by requiring that the sensing source satisfies the six conditions

20 Snehal Thakkar, José Luis Ambite, Craig A. Knoblock

17241

13456

14567

19456

Proteinid

Membrane

Cell

Location

17241

19456

Proteinid

10900

9600

Taxonid

Transducer

Transducer

Function

Input to

DipProtein

Output of DipProtein
Dip

Protein

HS

Protein

Taxonid = “9600”

13456

14567

Proteinid

Missing tuples due to

incomplete sensing

Union
19456

Proteinid

Fig. 14 Example of Loss of Tuples due to Incomplete Sensing Source

shown in the procedure CompatibleSensingSource in Figure 11. Section
4.2.1 describes the process of selecting compatible sensing sources. Sec-
tion 4.2.2 describes the process of inserting the selected sensing source(s)
and filtering operation(s) in the generated integration plan.

4.2.1 Selecting Sources for Sensing When the tuple-level filtering algo-
rithm determines that a sensing operation is needed to obtain the value of an
attribute, it uses the CompatibleSensingSource procedure to search through
available sources (line 9-10 of Figure 11). All the sources that satisfy all six
conditions are returned as available sensing sources. The CompatibleSens-
ingSource method finds a sensing source that satisfies six conditions. The
first condition (line 18 in Figure 11) requires that we should not introduce a
new sensing operation if it is already present in the plan. The second condi-
tion (line 19) requires that the service being used as the sensing source (SS
in Figure 11) must contain attributes (X′

Y) of the same types as the input
attributes (Xb) to the source being filtered (SF). Similarly, the third con-
dition (line 20) requires that the sensing source must contain an attribute
(Y’) of the same type as the attribute that participates in the constraint
(Y). Intuitively, if we cannot find attributes of matching types, then the
service cannot be used as the sensing source.

The fourth condition (line 21) requires that the description of the service
being used as the sensing source (SS) is not a subset of the description of

Composing, Optimizing, & Executing Plans for Bioinformatics Services 21

SF

X

X, Z

SF(X, Z):- iPi(Xi)^C(Y),

X, Z UXi, Y UXi

X

X, Z

SF

SS

C(Y’)

SS(X, Y’, Z’) Minus

Union

Q
Q’

Project

Project

X, Y’, Z’ X

X

X, Y’, Z’

X

SF(X, Z):- iPi(Xi)^C(Y),

X, Z UXi, Y UXi

(a) (b)

Fig. 15 Example Partial Integration Plans (a) Before Insertion of Sensing and
Filtering Operations (b) After Insertion of Sensing and Filtering Operations

the source being filtered (SF). If the description of the sensing source is a
subset of the description of the source being filtered, the insertion of the
sensing source and filtering operation would not result in fewer requests to
the source being filtered. As we are using the open world assumption, we
do not know if the services are complete. Therefore, we cannot guarantee
that the sensing source will definitely remove some tuples. The best we can
do is ensure that the sensing operation may remove some tuples.

Even if the sensing operation meets the first four conditions, it may not
be valid since it may change the meaning of the query. The fifth and the
sixth condition in the CompatibleSensingSource procedure ensure that the
filtering operation (C(Y ′)) has the same meaning as the constraint (C(Y))
by assuring that attributes Y and Y ′ have the same meaning. To clarify
the fifth and the sixth conditions, consider the integration plans shown in
Figure 15. The sixth condition in the CompatibleSensingSource procedure
requires that for all the values of the input attributes (Xb) that satisfy∧

i Pi(Xi) ∧ C(Y) (the body of SF) and that satisfy
∧

j Pj(Xj) (the body
of SS), the value of Y ′ is the same as value of Y . This condition is stated as
a containment check formula in the sixth condition. The condition checks
that all the tuples [X, Y ′] that satisfy

∧
i Pi(Xi) ∧ C(Y)

∧
j Pj(Xj) (the

conjunction of the bodies of SS and SF joined on X), are contained in the
set of tuples [X, Y] that satisfy

∧
i Pi(Xi)∧C(Y). Note that Y ′ ∈

⋃
Xj. The

functional dependency requirements in the fifth condition ensure that for
any given value of the input attributes to the source being filtered, there is

22 Snehal Thakkar, José Luis Ambite, Craig A. Knoblock

exactly one value for the attributes involved in the constraint. So, given the
functional dependencies, the sixth condition is only satisfied when attributes
Y (in SF) and Y ′ (in SS) have the same meaning.

As an example consider the datalog rules shown in Figure 6 and the
query rule shown in Figure 8. The graphical representation for the datalog
program is shown in Figure 9. The tuple-level filtering algorithm begins the
optimization by analyzing the generated plan. There are ten source calls
in the generated plan: two instances of HSProtein, MMProtein, Membrane-
Protein, and TransducerProtein and one instance of HSProteinInteractions
and MMProteinInteractions. The source HSProtein, which contains equality
constraint on the attribute taxonid. However, the taxonid attribute is not
one of the attributes retrieved before the call to the source. At this point
the optimization algorithm searches through the list of sources to find a
sensing source compatible with HSProtein (lines 9-12 of Figure 11).

In the given example, the algorithm finds the source DIPProtein that
is not in the integration plan (satisfying first condition from Figure 11).
The DIPProtein source accepts a Proteinid and provides a taxonid (this
satisfies the second and third conditions). The DIPProtein source also
satisfies the fourth condition as the Protein domain relation contains all
the proteins (

∧
i Pj(Xj) = Protein(...)). Also, the proteinid functionally

determines taxonid (which satisfies the fifth condition).
For the DIPProtein and HSProtein sources, the sixth condition is:

QSFSS ⊆ QSF where
QSFSS : q(id, taxonid′) : −/ ∗

∧
i Pi(Xi) ∗ /

Protein(id, name, location, function, sequence,
pubmedid, taxonid)∧

/ ∗ C(Y) ∗ /
taxonid = 9606∧
/ ∗

∧
j Pj(Xj) ∗ /

Protein(id′, name′, location′, function′,
sequence′, pubmedid′, taxonid′)∧

/ ∗ Xb = X′

Y ∗ /
id = id′

QSF : q(id, taxonid) : −/ ∗
∧

i Pi(Xi) ∗ /
Protein(id, name, location, function, sequence,

pubmedid, taxonid)∧
/ ∗ C(Y) ∗ /
taxonid = 9606

We use the methods described in [LS97] to determine that QSFSS is con-
tained in QSF given the functional dependencies. Intuitively, given that the
DIPProtein data source satisfies the functional dependency requirements,
the id attribute in the Protein domain relation functionally determines the
taxonid attribute. Similarly, the id′ attribute functionally determines the
value of the taxonid′ attribute. Given that the id and id′ attributes have
the same value in QSFSS , taxonid and taxonid′ attributes also have the

Composing, Optimizing, & Executing Plans for Bioinformatics Services 23

same value. Therefore, we can rewrite QSFSS by unifying the two instances
of the protein relation as shown below.

QSFSS ⊆ QSF where
QSFSS : q(id, taxonid′) : −Protein(id, name, location, function, sequence,

pubmedid, taxonid′)∧
taxonid′ = 9606

QSF : q(id, taxonid) : −Protein(id, name, location, function, sequence,
pubmedid, taxonid)∧

taxonid = 9606

Once we rewrite the query QSFSS , it is clear that QSFSS is contained in
QSF . Therefore, the DIPProtein data source satisfies the sixth condition.

Since the DIPProtein data source matches all the conditions in the pro-
cedure CompatibleSensingSource, the filtering algorithm selects the DIP-
Protein data source as a sensing operation.

The filtering algorithm does not use the ProteinLocations data source
as it requires the name of the protein in addition to the proteinid and the
value for the name attribute has not been retrieved.

Consider an example service called ClosestOrthologSrc that satisfies the
first five conditions of the tuple-level filtering algorithm, but not the critical
sixth condition. The ClosestOrthologSrc service accepts a Proteinid and re-
turns the taxonid for the organism with the closest ortholog to the protein.
The taxonid returned by the ClosestOrthologSrc is the taxonid of a differ-
ent protein. Therefore, the tuple-level filtering should not use the Closes-
tOrthologSrc as a sensing operation before HSProtein service. We can de-
scribe this source using the following source description:

ClosestOrthologSrc(id, otaxonid):-
Protein(id, name, location, function, sequence, pubmedid, taxonid) ∧

Protein(oid, oname, oloc, ofunction, osequence, opubmedid, otaxonid) ∧

ClosestOrthologProtein(id, oid)

The domain predicate ClosestOrthologProtein contains information about
the closest ortholog protein for each protein. As there is only one closest
ortholog protein for each protein, the attribute id functionally determines
the attribute oid. Moreover, for the source ClosestOrthologSrc the attribute
id functionally determines the attribute otaxonid. Given this scenario, it
seems like tuple-level filtering may select the ClosestOrthologSrc service as
a sensing source before the HSProtein service.

The ClosestOrthologSrc service is not in the plan, so it satisfies the first
condition. The id attribute in the ClosestOrthologSrc service has the same
type as the proteinid attribute in the HSProtein service and the otaxonid
attribute in the ClosestOrthologSrc service has the same type as the taxonid
attribute. Therefore, the ClosestOrthologSrc service satisfies the second and
third conditions. Also, the description of the ClosestOrthologSrc service does
not have a conflicting constraint on the attribute otaxonid. Therefore, the
ClosestOrthologSrc service satisfies the fourth condition. There exists a

24 Snehal Thakkar, José Luis Ambite, Craig A. Knoblock

functional dependency between the id attribute and the otaxonid attribute,
which satisfies the functional dependency requirement in the fifth condition.

However, the ClosestOrthologSrc data source does not satisfy the sixth
condition. Recall that the sixth condition states that:

QSFSS ⊆ QSF where
QSFSS : q(X, Y ′) : −

∧
i Pi(Xi) ∧ C(Y)

∧
j Pj(Xj) ∧ (Xb = X′

Y)

QSF : q(X, Y) : −
∧

i Pi(Xi) ∧ C(Y)

Replacing the values from the descriptions of services,

QSFSS ⊆ QSF where
QSFSS : q(id, otaxonid) : −/ ∗

∧
i Pi(Xi) ∗ /

Protein(id, name, location, function, sequence,
pubmedid, taxonid)∧

/ ∗ C(Y) ∗ /
taxonid = 9606∧
/ ∗

∧
j Pj(Xj) ∗ /

Protein(id1, name1, location1, function1,
sequence1, pubmedid1, taxonid1)∧

Protein(oid, oname, oloc, ofunction, osequence,
opubmedid, otaxonid)∧

ClosestOrthologProtein(id, oid)∧
/ ∗ (Xb = X′

Y) ∗ /
id = id1

QSF : q(id, taxonid) : −/ ∗
∧

i Pi(Xi) ∗ /
Protein(id,name, location, function, sequence,

pubmedid, taxonid)∧
/ ∗ C(Y) ∗ /
taxonid = 9606

However, our system can prove using techniques described in [LS97]
to prove that QSFSS is not contained in QSF . Therefore, the tuple-level
filtering algorithm does not select the ClosestOrtholog service as a sensing
source.

4.2.2 Inserting Sensing and Filtering Operations in the Plan Once the
tuple-level filtering determines the compatible sensing source(s), it inserts a
request(s) to each qualifying sensing source followed by a filter (lines 13-14
in Figure 11) before the request to the source being filtered. If there are mul-
tiple compatible sensing sources, the tuple-level filtering algorithm inserts
requests to all of the sensing sources followed by a filter before the request
to the source being filtered. In our running example, the tuple-level filtering
algorithm inserts a request to the DIPProtein data source followed by a con-
straint taxonid’ = 9606 before the request to the HSProtein data source.
Similar filters are also introduced before sending requests to MMProtein,
MembraneProtein, and TransducerProtein sources.

Composing, Optimizing, & Executing Plans for Bioinformatics Services 25

Join

FromProteinId FromProteinInfo,
ToProteinInfo

FromProteinId

FromProteinId,
ToProteinId

FromProteinId,
fromseq,

FromProteinId,
ToProteinId, toseq

FromProteinInfo,
ToProteinInfo

HSProtein
Interactions

MMProtein
Interactions

DipProtein

DipProtein

Taxonid = 9606 Taxonid = 10090

FromProteinId, taxonid,
location, function

ProteinsPlan

ProteinsPlan

FromProteinId, ToProteinId,
taxonid, location, function

Union

InteractionsPlan

Fig. 16 Optimized Integration Plan

The optimized program for the running example is shown in Figure 16.
For clarity, we have shown the filters and the retrieval operations for dif-
ferent protein sources separately in Figure 17.4 The optimized plan first
sends request to the DIPProtein source to obtain the taxonid, location, and
function information. Then, filters based on taxonid, location, and function
attributes are used to determine which protein sources should be queried to
obtain the protein information for the given proteinid. Filters based on the
taxonid attribute are also used to determine which protein-protein interac-
tions source should be queried. For all the interacting proteins, a similar
process is repeated.

In this example, the algorithm only needs to add one sensing operation
for all sources as all the necessary attributes can be obtained from the
DIPProtein data source. However, in some scenarios the algorithm may need
to add multiple sensing operations. Once the filtering algorithm generates
the optimized plan, we utilize a cost-based optimizer to evaluate the cost
of the original plan as well as the optimized plan. The optimizer picks the
plan with less cost (in this case the optimized plan shown in Figure 16) as
the composition plan.

4 As a matter of fact, our execution architecture, Theseus, allows for the encap-
sulation of sets of operations into reusable subplans.

26 Snehal Thakkar, José Luis Ambite, Craig A. Knoblock

Proteins
Plan

Taxonid = 10090

HSProtein MMProtein

Taxonid = 9606

function = ‘Transducer’

Membrane
Protein

Transducer
Protein

location = ‘Membrane’

ProteinId, taxonid,
location, function

Union

FromProteinId,
fromseq,

FromProteinId,
fromseq,

Fig. 17 Proteins Plan Called from the Integration Plan in Figure 16

4.3 Correctness of Tuple-level Filtering

In this Section, we show that the sensing operations inserted by the Tuple-
level filtering algorithm do not change the answer of the query.

Theorem 1 Given an integration plan Q generated using the Inverse Rules
algorithm to answer the user query, the tuple-level filtering algorithm pro-
duces a new integration plan Q′ containing sensing operations and filters
such that Q ≡ Q′.

Proof:
Consider the partial integration plan before and after adding sensing

operation shown in Figure 15. The data source SF is part of an integration
plan generated to answer a user query. The source SF is described as a
conjunction of domain predicates Pi(Xi) and a constraint C(Y). Without
loss of generality we assume that the source description only contains one
equality constraint. Assume that the tuple-level filtering algorithm inserted
before SF a sensing source SS and a selection that enforces C(Y). Thus,
SS satisfies the conditions in Figure 11. Recall the definitions of sources SF
and SS:

SF (Xb,Z) :-
∧

i Pi(Xi) ∧ C(Y)
SS(X′

Y, Y ′,Z′) :-
∧

j Pj(Xj)
Query Q below shows the plan before the insertion of the sensing oper-

ation. The relation R(X) represents the inputs into SF from the preceding
operations of the plan. Query Q′ represents the plan after the insertion of

Composing, Optimizing, & Executing Plans for Bioinformatics Services 27

the sensing operation SS. The first rule of Q′ corresponds to the case when
SS contains a tuple for the given value of X, while the second rule repre-
sents the case where SS does not contain a tuple for the given value of X.
Note that X = Xb = X′

Y.
Q : q(X,Z) :- R(X) ∧ SF (X,Z)
Q′: q(X,Z) :- R(X) ∧ SS(X, Y ′,Z′) ∧ C(Y ′) ∧ SF (X,Z)

q(X,Z) :- R(X) ∧ ¬SS(X, Y ′,Z′) ∧ SF (X,Z)
First, we show that Q′ ⊆ Q. Assume that tuple [X,Z] ∈ Q’; the tuple

[X,Z] is produced by either the first or the second rule of Q′. We analyze
both cases:

1. Assume the tuple is an output of the first rule of Q′, that is, [X,Z] ∈
R(X) ∧ SS(X, Y ′,Z′) ∧ C(Y ′) ∧ SF (X,Z). Since the tuple satisfies the
entire conjunctive formula, it also satisfies the subformula: [X,Z] ∈

R(X) ∧ SF (X,Z). Since this is the body of Q, then [X,Z] ∈ Q.
2. Assume the tuple is an output of the second rule of Q′, that is, [X,Z] ∈

R(X) ∧ ¬SS(X, Y ′,Z′) ∧ SF (X,Z). As before, since the tuple satisfies
the entire conjunctive formula, it also satisfies the subformula [X,Z] ∈
R(X) ∧ SF (X,Z), which is the body of Q. Thus, [X,Z] ∈ Q.

Therefore, Q′ ⊆ Q. The insertion of the sensing operation and the filter
by the algorithm does not introduce additional tuples.

Second, we show that Q ⊆ Q′. Assume that tuple [X,Z] ∈ Q. Then, by
the definition of Q:

[X,Z] ∈ R(X) ∧ SF (X,Z) (1)

Given the functional dependencies X → Y and X → Y ′ and the definition
of Q′, we need to consider three cases: either a tuple in Q is not in SS, or
it is in SS and satisfies C(Y ′), or it is in SS and does not satisfy C(Y ′).

1. Assume that ∃Y ′,Z′ such that [X, Y ′,Z′] 6∈ SS.
Then, from (1) and the assumption in this case, the tuple [X,Z] satisfies
the body of the second rule for Q′, that is, [X,Z] ∈ R(X)∧ SF (X,Z)∧
¬SS(X, Y ′,Z′). Therefore, [X,Z] ∈ Q′.

2. Assume that ∃Y ′,Z′ such that [X, Y ′,Z′] ∈ SS ∧ C(Y ′).
Then, from (1) and the assumption in this case, the tuple [X,Z] satisfies
the body of the first rule for Q′, that is, [X,Z] ∈ R(X) ∧ SF (X,Z) ∧
SS(X, Y ′,Z′) ∧ C(Y ′). Therefore, [X,Z] ∈ Q′.

3. Assume that ∃Y ′,Z′ such that [X, Y ′,Z′] ∈ SS ∧ ¬C(Y ′).
Expanding the definition of SS:

[X, Y ′,Z′] ∈
∧

j

Pj(Xj) ∧ ¬C(Y ′) (2)

By assumption, tuple [X,Z] ∈ Q. Therefore, tuple [X,Z] satisfies (1).
Thus, it also satisfies the definition of SF :

∃Y [X, Y,Z] ∈
∧

i

Pi(Xi) ∧ C(Y) (3)

28 Snehal Thakkar, José Luis Ambite, Craig A. Knoblock

From equations (2) and (3), we have that:

[X, Y ′] ∈
∧

j

Pj(Xj) ∧ ¬C(Y ′)
∧

i

Pi(Xi) ∧ C(Y) (4)

(Note that the formula joins on X. Recall that X = XY = Xb, Xb ⊆⋃
Xi , X′

Y ⊆
⋃

Xj, Y
′ ∈

⋃
Xj and Y ∈

⋃
Xi).

As SS was chosen as the sensing source by tuple-level filtering, it must
satisfy condition 6 in procedure CompatibleSensingSource in Figure 11:

QSFSS ⊆ QSF where
QSFSS : q(X, Y ′) :-

∧
i Pi(Xi) ∧ C(Y)

∧
j Pj(Xj)

QSF : q(X, Y) :-
∧

i Pi(Xi) ∧ C(Y)

By definition of QSF ∀X, Y [X, Y] ∈ QSF , Y satisfies C(Y). However,
from (4), there exists a tuple [X, Y ′] such that, [X, Y ′] ∈ QSFSS and Y’
satisfies ¬C(Y ′). Therefore, there exists a tuple [X, Y ′] ∈ QSFSS that is
not present in QSF . Thus, QSFSS 6⊆ QSF , which is a contradiction.

Therefore, Q ⊆ Q′.
Since, Q′ ⊆ Q and Q ⊆ Q′, then Q ≡ Q′.
¤

4.4 Tuple-level Filtering in the Bioinformatics Domain

In this section, we discuss the applicability of the tuple-level filtering in
the bioinformatics domain. In particular, we show examples of real-world
data sources and domain models where the tuple-level filtering results in
more cost efficient plans. As discussed in Section 4.2, tuple-level filtering
requires that the sensing source must meet six conditions. The fifth and sixth
conditions of the tuple-level filtering are the key conditions that guarantee
the correctness of the optimized plan.

The fifth condition states that the input attributes (X) to the source
being filtered must functionally determine the attribute involved in the
constraint (Y). Moreover, the same relationship should hold between the
corresponding attributes in the sensing source (SS) and the attribute (Y ′)
used in the constraint for the filtering operation. In the life sciences do-
main, most data sources provide at least some attribute(s) that serves as a
local key that identifies different entities. The attribute that serves as the
local key often functionally determines other attributes. The existence of
the functional dependency implies that the fifth condition of the tuple-level
filtering would be satisfied for a large number of bioinformatics sources.

The sixth condition requires that the sensing source provides information
about the same type of entity as the source being filtered. In the bioinfor-
matics domain there exists a variety of data sources that provide detailed
information about different entities and have a well-defined coverage. For

Composing, Optimizing, & Executing Plans for Bioinformatics Services 29

Source

UniProt($accession, creationdate, proteinname, genename, organism,
taxonomy, sequence, checksum)

PathCalling($accession, interactingproteinid, typeofinteraction)
HPRD($accession, interactingproteinid, publicationid)

Table 2 Available Web Services

Domain Relations

Protein(accession, creationdate, proteinname, genename, organism,
taxonomy, sequence, checksum)

Protein-ProteinInteractions(proteinid, interactingproteinid, typeofinterac-
tion, publication)

Table 3 Domain Predicates

example, the Human Protein Reference Database (HPRD)5 provides de-
tailed information about human proteins. Moreover, there exists a set of
sources for different entity types that have very good coverage. For ex-
ample, the UniProt6 data source provides information about proteins in
different organisms. However, UniProt does not provide information about
the interactions between different proteins. If the user query was to find out
information about all the proteins that the given protein interacts with, the
UniProt data source would not be useful to answer the user query. However,
UniProt may be a good sensing source to filter out tuples before sending
requests to the HPRD data source, as both sources provide protein informa-
tion. The existence of the sources that provide information about the same
type of entities, but have different coverage implies that the sixth condition
of the tuple-level filtering would be satisfied by a large number of sources.

Consider the three real-world datasets shown in Table 2. The Uniprot
dataset contains detailed information about different proteins. The Path-
Calling7 dataset contains information about the interactions between yeast
proteins, while the HPRD dataset contains information about interactions
between human proteins.

Our domain model contains the two domain predicates shown in Table 3.
Figure 18 shows the source descriptions. Notice that the descriptions of the
PathCalling and the HPRD sources include a constraint on the organism.

Given these domain relations, sources, and source descriptions, the user
specifies the following parameterized query.

Q1(proteinid, interactingproteinid):-
Protein-ProteinInteractions(proteinid, interactingproteinid,

typeofinteraction, publication)∧

5 http://www.hprd.org/
6 http://www.pir.uniprot.org/
7 http://curatools.curagen.com/cgi-bin/com.curagen.portal.servlet.PortalYeastList

30 Snehal Thakkar, José Luis Ambite, Craig A. Knoblock

SD1: UniProt(accession, creationdate, proteinname, genename, organism,
taxonomy, sequence, checksum):-

Protein(accession, creationdate, proteinname, genename, organism,
taxonomy, sequence, checksum)

SD2: PathCalling(proteinid, interactingproteinid, typeofinteraction):-
Protein(proteinid, creationdate, proteinname, genename, organism,

taxonomy, sequence, checksum)∧
Protein(interactingproteinid, icreationdate, iproteinname, igenename,

iorganism, itaxonomy, isequence, ichecksum)∧
Protein-ProteinInteractions(proteinid, interactingproteinid,

typeofinteraction, publication)∧
organism = ‘Saccharomyces cerevisiae (Baker’s yeast)’

SD3: HPRD(proteinid, interactingproteinid, publication):-
Protein(proteinid, creationdate, proteinname, genename, organism,

taxonomy, sequence, checksum)∧
Protein(interactingproteinid, icreationdate, iproteinname, igenename,

iorganism, itaxonomy, isequence, ichecksum)∧
Protein-ProteinInteractions(proteinid, interactingproteinid,

typeofinteraction, publication)∧
organism = ‘Saccharomyces cerevisiae (Baker’s yeast)’

Fig. 18 Source Descriptions

proteinid=!proteinid

Given this query, the initial plan generated by the integration system
only contains requests to the HPRD and PathCalling data sources. How-
ever, after applying tuple-level filtering, the optimized plan first obtains the
organism information from the UniProt data source and uses that to filter
out tuples before sending requests to the HPRD or the PathCalling data
sources.

In the bioinformatics domain there exists a variety of sources that pro-
vide information about the same entities, but have different coverage. The
TIGRFAM8 data source organizes the protein information by the function of
proteins. In addition to protein information sources, a similar set of sources
exists for gene mutation information. Moreover, all of these sources provide
some form of local key that functionally determines the other attributes.

Another challenge in bioinformatics domain is to uniquely identify vari-
ous entities. In particular, when integrating data from various data sources
one needs to have a mapping between local keys of different sources to accu-
rately identify entities. For example, when combining data from UniProt9

and NCBI Protein, we would need to obtain the accession number in the
NCBI Protein Database for each protein in Uniprot. While several sources
provide links to other datasets, those links are often not complete. Never-
theless, the tuple-level filtering can handle incomplete sensing sources. As

8 http://www.tigr.org/TIGRFAMs/
9 http://www.pir.uniprot.org/

Composing, Optimizing, & Executing Plans for Bioinformatics Services 31

long as there are several sources that share the local key attributes, the
tuple-level filtering algorithm would result in more cost-efficient plans.

As the bioinformatics domain is an active area of research, information
about entities changes frequently. For example, gene symbols are often re-
tired and replaced with new symbols (often called aliases). When integrating
information from various datasets, one would need to worry about different
aliases and synonyms. While the problem of managing identity of objects is
very different from the problem of generating efficient composition plans, it
may impact the effectiveness of the tuple-level filtering. We can handle this
problem by managing the mappings between the local key attributes of dif-
ferent sources in similar spirit to the work described in [LR02]. We believe
that our integration system is well-suited for such extension. In particular,
we have done some work on automatically utilizing additional sources to
accurately link records from different sources [MTK05].

5 Efficient Execution of Composition Plans

The generated integration plans may send several requests to the existing
web services. We can reduce the execution time of the generated plans by ex-
ecuting the generated plans using a streaming, dataflow-style execution en-
gine. The dataflow-style execution engines stream data between operations
and execute multiple operations in parallel (if the operations are indepen-
dent). There has been some work on mapping datalog integration plans into
plans that can be executed by dataflow-style execution engines [IFF+99].
However, the mapping described in [IFF+99] is restricted to non-recursive
datalog programs.

We address this limitation by describing our techniques to map recursive
and non-recursive integration plans into a dataflow-style execution engine
called Theseus [BK05]. We selected the Theseus execution engine [BK05] for
its two unique features: (1) its declarative plan language and (2) its support
for recursive composition plans. First, we will briefly introduce the plan
language utilized by the Theseus execution engine. Next, we will describe
the translation of non-recursive datalog programs to the Theseus plans.
Finally, we will describe the translation of recursive datalog programs.

5.1 Brief Introduction to Theseus

A Theseus plan consists of a graph of operations that accepts a set of input
relations and produces a set of output relations. A relation in Theseus is
similar to relations in relational databases, consisting of a list of attributes
and a set of tuples. Theseus streams tuples of the relations between various
operations to reduce the runtime of the plan.

Theseus supports a wide variety of operations. The operations relevant
to this article can be divided in three sets: (1) operators that support rela-
tional manipulations, such as select, project, union, or join, (2) data access

32 Snehal Thakkar, José Luis Ambite, Craig A. Knoblock

operations, such as, dbquery or retrieve operation, to retrieve data from
databases, wrappers or web services, and (3) conditional operations, such
as null, to determine the next action based on the existence of data in some
relation. All Theseus operations accept one or more input relations, some
arguments if needed, and produce an output relation. For example, a select
operation accepts an input relation and a selection condition and produces
an output relation with the tuples that satisfy the criteria.

Another key feature of the plan language of Theseus is the ability to call
another Theseus plan from inside a plan. Moreover, Theseus allows the user
to write plans that call themselves recursively. As we will show in Section 5.3
this allows us to translate recursive datalog programs into plans that can
be executed by the Theseus execution engine.

5.2 Mapping Composition Plans into Dataflow Programs

If the composed datalog program does not have recursive rules, the transla-
tion is relatively straight-forward. The translation begins by macro-expanding
the datalog rule for the parameterized query, until all the predicates in the
rule(s) are data sources or constraints. The mediator then utilizes the trans-
lations described in the rest of this section to translate the expanded rule
into a Theseus plan. Figure 19 shows examples of different datalog opera-
tions and corresponding Theseus plans. The translated Theseus plans in its
plan language are shown in Appendix A.

Data Access: Data access predicates to obtain data by sending a request
to a web service are translated to retrieval operations in a Theseus plan. For
example, DIPProtein(‘19456’, name, function, location, taxonid) denotes a
request to the DIPProtein web service.

Figure 19(a) shows an example translation of a data access predicate to
a retrieval operation. A retrieval operation in Theseus accepts an optional
input relation containing values of necessary inputs for the web service,
submits a request to the web service, obtains the result, and returns the
resulting information in the form of a output relation. A data access predi-
cate may include constants in the attribute list for a relation. A data access
predicate containing with a constant value for an attribute having a binding
constraint, is translated to a retrieval operation with the constant as the
input parameter value. For example, DIPProtein(‘19456’, name, function,
location, taxonid), is translated to a retrieval call with inputs proteinid =
‘19456’ (operation 1 in Figure 19(a)). If the attribute list of the relation in
the data access predicate contains a constant for a free attribute, then the
data access statement is translated to a retrieval operation followed by a
select operation as shown in Figure 19(b).

Select : Equality and order constraints, such as (x = 5) or (x > y) are
translated into a select operations. The select operation accepts a relation
and a select condition and provides a new relation that contains tuples
that satisfy the selection condition. In the example given in Figure 19(b),

Composing, Optimizing, & Executing Plans for Bioinformatics Services 33

Datasource: DipProtein

Input:

proteinid = ‘19456’,

Output:

Dipout(id, name, function,

location, taxonid)

Retrieve (1)

Q(name, function, location, taxonid):-

DipProtien(‘19456’, name,

function, location, taxonid)

(a). Example of retrieval operation followed by a projection

Attrs: name, function,

location, taxonid

Project (2)

Datasource: DipProtein

Input:

proteinid = ‘19456’,

Output:

Dipout(id, name,

function, location,

taxonid)

Retrieve (1)

Q(name, function, location, taxonid):-

DipProtien(‘19456’, name, function,

location, taxonid)^

taxonid > 9600

(b). Example of retrieval operation followed by a selection and a projection

Condition:

taxonid > 9600

Select (2)

Attrs: name,

function,

location,

taxonid

Project (3)

Datasource: Papers

Input:

Output:

Papers(paperid,conf, year)

Retrieve (1a)

Q(paperid, conf, year, loc):-

Papers(paperid, conf, year)^

Conference(conf, year, loc)

(c). Example of independent retrieval operation followed by a join

Condition:

conf=conf &

year = year

Join (2)

Attrs: paperid,

conf, year, loc

Project (3)

Datasource: Conference

Input:

Output:

Conference(conf, year, loc)

Retrieve (1b)

Datasource: Papers

Input:

Output:

Papers(id,conf, year)

Retrieve (1)

Q(id, conf, year, author, email):-

Papers(id, conf, year)^

PaperDetails($id, author,

year, institute, email)

(d). Example of dependency due to binding restrictions

Condition:

id = id &

year = year

Join (4)

Attrs: id, conf,

year, author,

email

Project (5)

Datasource: PaperDetails

Input: id

Output:

PaperDetail(id, author

year, institute, email)

Retrieve (3)

Datasource:

HSProteinInteractions

Input: fromid = ‘19456’

Output:

HSProteinInteractions(fromid,

toid, source, verified)

Retrieve (1a)

Q(fromid, toid, source):-

HSProteinInteractions($fromid,

toid, source, verified)^

fromid = ‘19456’

Q(fromid, toid, source):-

MMProteinInteractions($fromid,

toid, source, verified)^

fromid = ‘19456’

(e). Example of independent retrieval operation followed by a Union

Output:

Q(fromid,

toid,

source,

verified)

Union (2)

Attrs: fromid,

toid, source

Project (3)

Datasource:

MMProteinInteractions

Input: fromid = ‘19456’

Output:

MMProteinInteractions(fromid,

toid, source, verified)

Retrieve (1b)

Attrs: id

Project (2)

Fig. 19 Example Mapping Between Datalog and Theseus

34 Snehal Thakkar, José Luis Ambite, Craig A. Knoblock

the select predicate (taxonid > 9600) is translated to a select operation
(operation 2).

Project : A project operation in datalog is denoted by variables in the
head of a rule. The project operation in data translates to a project oper-
ation in Theseus. The project operation in Theseus accepts a relation and
attributes to be projected and provides a new relation consisting of tuples
with the specified attributes. In the example given in Figure 19(a), Q(name,
function, location, taxonid) is translated to a project operation (operation
2). The arrow between operations 1 and 2 denotes the dataflow, i.e. the out-
put of the operation 1 is provided is input to the operation 2. Intuitively, we
cannot perform the project operation until we have obtained at least one
tuple from the retrieval operation. Once the retrieval operation returns the
first tuple, it can be streamed to the project operation. Similar to the select
operation, the project operation also depends on the retrieval operation.

Join: A datalog statement containing two relations with one or more
common attribute names specifies a join. If the common attribute name in
the join is a free attribute in both relations, then the join is replaced by a
join operation in the Theseus plan. A join operation in Theseus accepts two
relations and a join condition, and outputs a joined relation. Figure 19(c)
shows an example of translating a join between two data sources resulting
in a two independent retrieval operations followed by a join operation.

If the common attribute in the join has a binding constraint in one of
the relations, then the join is translated into a dependency between two
operations in Theseus. In the example shown in Figure 19(d) there is a join
between the Paper and the PaperDetails predicates on the attributes id and
year. The id attribute is a required input for the PaperDetails data source.
Therefore, the generated Theseus plan first obtain id, conf and year for all
papers, projects the id attribute, and utilizes the values of the id attribute
to obtain information from PaperDetails data source. These operations are
followed up by a join operation on id and year attributes.

Union: In datalog two rules having the same head represent a union.
The union in datalog is translated to a union operation in Theseus. The
union operation in Theseus operation accepts two or more relations as input
and provides one output relation that is the union of the given relations.
Figure 19(e) shows an example of a translation of a union operation.

5.3 Translating Recursive Plans to Dataflow Programs

The recursive datalog rules are translated to recursive Theseus plans. The
recursive Theseus plans are typically divided in five parts: (1) data process-
ing, (2) result accumulation, (3) loop detection, (4) termination check, and
(5) recursive callback. Figure 20 shows an example recursive plan obtained
by generating the optimized Theseus plan for the example shown in Fig-
ure 13(b) (corresponding to the datalog rules of Figure 12). The same plan
is shown in the Theseus’ plan language in Section A.6 of the appendix.

Composing, Optimizing, & Executing Plans for Bioinformatics Services 35

InteractionsPlan

Condition:

taxonid = ‘9606’

Output:

HSInput

Select (1a)

Condition:

taxonid = ‘10090’

Output:

MMInput

Select (1b)

Datasource:

HSProteinInteractions

Input: proteinid

Output:

HSout(fromid, toid,

source, verified)

Retrieve (2a)

Output:

Current(fromid,

toid, source,

verified)

Union (3)

InteractionsSoFar

- Current

Output:

Newin(fromid,

toid, source,

verified)

Minus (4b)

Datasource:

MMProteinInteractions

Input: proteinid

Output:

MMout(fromid, toid,

source, verified)

Retrieve (2b)

Output:

Newout(fromid,

toid, source,

verified)

Union (4a)

If Newin is null

Output := Newout

Else

Nextproteinid := Newin

NextInteractionsSoFar := Newout

End if

Null (5)

InteractionsSoFar

Proteinid, taxonid

fromid, toid

InteractionsPlan

proteinid, taxonid,

InteractionsSoFar = empty set

Fig. 20 Example Recursive Theseus Plan

The first part of a recursive Theseus plan is data processing. Data pro-
cessing in a recursive Theseus plan may involve accessing data from a data
source and processing the data. In the example Theseus plan shown in Fig-
ure 20, operations 1a, 1b, 2a, 2b, and 3 perform data processing. This part
typically corresponds to the non-recursive part of the datalog statement and
is translated in the same manner as the non-recursive datalog statements.
In this case the two filters based on the taxonid attribute are translated
to select operations 1a and 1b. The data access operations to retrieve data
from the HSProteinInteractions and MMProteinInteractions are translated
to the retrieval operations 2a and 2b. A union operation is used to combine
the information from both data sources.

The second part of the recursive Theseus plan is the update of the cu-
mulative results. A recursive Theseus plan needs to keep track of all results
that have been acquired through recursion. In our example, this part is
responsible for adding all tuples from the current and InteractionsSoFar
relations to the relation Newout using a union operation as shown in the
operation 4a of the example plan in Figure 20.

The third part of the recursive plan is loop detection. In datalog, the in-
terpreter is responsible for handling loops. Therefore, the datalog programs
do not require explicit statements to perform loop detection. Theseus does
not automatically handle loop detection. Therefore, when translating data-
log programs to Theseus plans, the mediator must add Theseus operations
to handle loop detection. Intuitively, recursion can be viewed as a graph
traversal problem, where each recursive step is to follow an edge from one
node in the graph to the other. We handle loop detection in recursive plans
by keeping track of all visited nodes in the graph and in each recursive step
only follow the edges that lead to unvisited nodes.

Each tuple in the output relation of the Theseus plan defines a node
in the graph. The tuples in the output of the previous iteration are all the

36 Snehal Thakkar, José Luis Ambite, Craig A. Knoblock

visited nodes. In the example Theseus plan shown in Figure 20, Interaction-
sSoFar is the relation containing tuples collected during previous iterations.
We can obtain the list of unvisited nodes by removing all the visited nodes,
i.e. by removing tuples existing in the InteractionsSoFar relation, from the
list of tuples obtained in the data processing segment (i.e. the tuples ob-
tained by the union operation shown in the operation 3 of the Figure 20).
A minus operation in Theseus is used to filter out all tuples in one relation
from the other relation. A minus operation in Theseus accepts two relations
and returns a new relation that contains only the tuple that are present in
the first relation. In the given example, a minus operation (4b) is used to
filter out tuples with previously seen protein interactions.

Once the plan has determined the new tuples for the next iteration (this
may be an empty set), Theseus needs to check for the termination condition
to determine if the plan should be recursively called again or the plan should
terminate and provide the cumulative output as output. When translating
datalog programs to Theseus plans, the termination condition is satisfied
when no new input tuples can be found for the next iteration. In the example
plan, the null operation (operation 5 of Figure 20) checks for the termination
condition. The null operation in Theseus accepts three relations, if the first
relation is contains no tuples, the second relation is returned, otherwise the
third relation is returned. In this case, if there are no new tuples, the null
operation returns all the tuples collected as cumulative results as the output
of the recursive plan. If there are new tuples, the null operation recursively
calls the plan with the new proteins as well as the cumulative results found
in the second part.

5.4 Execution of the Composed Web Services

Once the mediator has translated the datalog program for the composed
web service into a Theseus plan, it can host the generated plan as a web
service. When a user sends a request to the composed web service, the
Theseus execution engine executes the Theseus plan using the parameters
given by the user. In this Section, we describe the benefits of using the
Theseus execution engine.

The Theseus plan shown in Figure 20 consists of 8 operations for each re-
cursive iteration of the plan. The Theseus execution engine executes several
operations in parallel to reduce the response time of the composed service.
For example, the operations 1a and 1b are executed in parallel as there is
no dependency between them. Similarly, operations 2a and 2b and opera-
tions 4a and 4b are also executed in parallel. As a result of the optimized
execution the composed web service executes much more efficiently.

Furthermore, Theseus streams tuples between different operations as
well. Imagine that operations 2(a) and 2(b) each provide 50 tuples in the first
iteration. As soon as Theseus receives the first tuple from either operation
it passes the resulting tuple to the Union operation (operation 3). The

Composing, Optimizing, & Executing Plans for Bioinformatics Services 37

Union operation passes the tuple to the Minus operation (4b) and the Union
operation(4a). Streaming in Theseus results in more efficient execution.

6 Experimental Results

In order to evaluate the different techniques described in this paper, we
performed three sets of experiments with different real-world datasets. We
wanted to test the following three hypothesis: (1) data integration tech-
niques (as described in Section 3.3) can be used to generate composition
plan for new web services from a large number of existing services, (2) the
tuple-level filtering optimization algorithm described in Section 4 can be
used to improve the execution time of the composition plans, and (3) the
response time of the generated integration plan (and hence the response
time of the composed service) can be reduced by translating the integration
plan into a program that can be executed by a dataflow execution engine,
such as Theseus as described in Section 5. All the experiments were per-
formed on a PC running Windows XP with 1 GB of memory and 2.40 GHz
of processor speed. The results are average of 10 runs.

6.1 Generating Large Composition Plans

In this experiment, we show that the data integration techniques described
in Section 3.3 can be used to generate plans for new web services that in-
tegrate data from a large number of existing services. To show this, we
modeled a set of web services hosted by the National Cancer Institute
(NCI) under a project called cancer Bioinformatics Infrastructure Objects
(caBIO).10 There are about 60 different web services each corresponding to
different entities found in bioinformatics research, such as genes, proteins,
or relationships between different entities. Moreover, all the web services
can be accessed using different binding restrictions. For example, the web
service to query information about a gene can be queried based on id, name,
symbol, clusterid, or locuslinkid. We modeled all of those web services with
different binding restrictions as data sources in the mediator model. The
domain model consisted of 60 domain relations corresponding to 60 entity
types and 496 data sources as each binding restriction resulted in one data
source.

Once we modeled all the web services, we randomly generated requests to
create different web services requiring the mediator to combine information
about as many as 30 different entities by integrating information from as
many as 60 web services (496 source descriptions). Figure 21 shows the
composition time in milliseconds (ms) as we increase the complexity of the
composed web service. As the results show, we can create a composition

10 http://ncicb.nci.nih.gov/core/caBIO

38 Snehal Thakkar, José Luis Ambite, Craig A. Knoblock

1000

1100

1200

1300

1400

1500

1600

0 10 20 30 40 50 60

of Web Services in the Composition Plan

C
o

m
p

o
s
it

io
n

 T
im

e
 (

m
s
)

Fig. 21 Composing Web Service from Large Number of Existing Web Services

plan for a new web service that integrates information from 60 different
web services in less than two seconds.

Executing the resulting composition plans using an efficient execution
engine, such as Theseus, would typically take over 30 seconds. The reason
behind the large execution time is simply that to answer the given query
the execution may need to send several requests to each of the existing web
services and execution time of each request to a web service is between one
and five seconds. Therefore, the composition time is much smaller than the
execution time. This experiment supports the hypothesis that it is possible
to utilize data integration techniques to compose new web services from a
large number of existing web services.

6.2 Improvements Resulting From Tuple-level Filtering

The goal of this set of experiments was to support the claim that by utilizing
tuple-level filtering we can generate more efficient integration plans. In order
to do this, we used the reformulation techniques described in Section 3.2
to generate the composition plan shown in Figure 13. Then, we hosted a
web service using the generated composition plan. Next, we used the tuple-
level filtering algorithm to optimize the generated composition plan and
hosted a separate web service with the optimized composition plan shown
in Figure 13(b).

Composing, Optimizing, & Executing Plans for Bioinformatics Services 39

As the HSProteinInteractions data source, we used the Database of In-
teraction Proteins (DIP) website.11 We used Fetch AgentBuilder tools to
wrap the website and convert it into a web service.12. We wrapped and
used the Biomolecular Interaction Network Database (BIND) as the MM-
ProteinInteractions data source.13

In order to show that tuple-level filtering is useful regardless of the execu-
tion engine, we executed the generated integration plans using the Theseus
execution engine and an open source Prolog interpreter termed XSB.14 Since
XSB does not have the ability to call web services, we used a Java program
that accepted the input values for the proteinid and the taxonid attributes
from the user, made necessary web service calls, and formatted the results
of the web service calls as facts that were given as a part of the composi-
tion plan to XSB. As a result we had four new web services: (1) composition
plan without optimization executed with XSB, (2) composition plan without
optimization executed with the Theseus execution engine, (3) composition
plan with optimization executed with XSB, and (4) composition plan with
optimization executed with the Theseus execution engine.

We sent requests to all new web services using different values of the
proteinid and taxonid attribute. We measured the response time of all web
services as the number of tuples returned by the composed web services in-
creased. We divided all the proteins into groups based on number of protein-
protein interactions, e.g. one group of proteins for which the composed web
service returned between 15-30 tuples. There is a significant difference be-
tween the response time of the DIP and the BIND websites. Therefore, the
response times of the composed web service varied depending on the organ-
ism of the input protein. To minimize the effect of the different response
times, we randomly selected 5 human proteins and 5 mouse proteins from
each group as inputs to all web services and averaged the response time of
each web service over the 10 requests.

As shown in Figure 22, the web service containing the optimized plan
significantly outperformed the web service without the optimized plan re-
gardless of which execution system we used. In fact, as the number of tuples
returned by the composed service increased above 100 tuples, the web ser-
vice executed with XSB with the optimized plan resulted in improvement
of as much as 53.8% over the corresponding web service with unoptimized
composition plans.

In this example web service, there is very little difference in the response
time of the web service with optimized plan executed using XSB and the
web service with optimized plan executed with Theseus. This is expected
as the optimized web service implemented by the plan in Figure 16(b) only
requires one retrieval operation per recursive iteration, which means that

11 http://dip.doe-mbi.ucla.edu/dip/Search.cgi?SM=3
12 http://www.fetch.com
13 http://bind.ca/
14 XSB is available at http://xsb.sourceforge.net. Note that XSB is a prolog
interpreter and can handle Minus operation.

40 Snehal Thakkar, José Luis Ambite, Craig A. Knoblock

0

200

400

600

800

1000

1200

0 100 200 300 400 500 600

Number of Tuples Returned

R
e
s
p

o
n

s
e
 T

im
e
 (

S
e
c
o

n
d

s
)

Theseus W/o Optimization

XSB W/o Optimization

XSB With Optimization

Theseus With Optimization

Fig. 22 Comparison of Execution Times of Web Service Plans with and without
the Tuple-level Filtering Optimization

no retrieval operations can be executed in parallel. However, Theseus is
still able to stream tuples between operations. Therefore, the web service
executing the optimized plan using Theseus outperforms the web service
executing the optimized plan using XSB.

6.3 Improvements Resulting From Theseus Execution Engine

Finally, our third set of experiments show that we can execute integra-
tion plans that require combining data from multiple data sources more
efficiently by utilizing the Theseus execution engine to execute the plans
instead of using a datalog evaluator such as XSB. Intuitively, Theseus can
execute the integration plans more efficiently as it can stream tuples be-
tween different operations and execute multiple independent operations in
parallel. While datalog evaluators are very efficient, they do not have the ca-
pability to execute multiple operations in parallel and stream tuples between
different operations. In order to evaluate performance of Theseus compared
to XSB, we hosted the optimized integration plan shown in Figure 16 as a
web service. The optimized composition plan for this web service may send
as many as 10 web service requests per recursive iteration.

The data sources for the interactions were the same data sources we used
in previous set of experiments, i.e. DIP and BIND. For the HSProtein and

Composing, Optimizing, & Executing Plans for Bioinformatics Services 41

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200 250 300 350

Number of Tuples Returned

R
e
s
p

o
n

s
e
 T

im
e
 (

S
e
c
o

n
d

s
)

XSB With Optimization

Theseus With Optimization

Fig. 23 Comparison of Execution Times of Web Service Plans Executed with
XSB and Theseus

MMProtein we wrapped the protein database provided by NCBI Entrez.15

For the TransducerProtein and MembraneProtein we wrapped the TigrFams
web site.16

We hosted two copies of the composed web service, one which used the
Theseus execution engine to execute the composed web service and the
second which utilized the XSB datalog interpreter with external Java pro-
gram to request necessary data from the existing web services. We randomly
picked several values of the proteinid attribute and sent requests to both
web services. Figure 23 shows the comparison of the response times for both
web services. As the number of tuples returned grew the Theseus-based web-
service outperformed the XSB-based web service by as much as 33.6%. The
improvement for the Theseus execution engine is due to the fact that The-
seus can execute multiple web service requests in parallel and stream data
between operations. As the number of requests to the existing web services
increase, the improvement due to Theseus also increases. In this experiment,
we only had access to two web services that provide information about pro-
teins. As the number of available service increase, the improvement due to
Theseus would be more pronounced.

15 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Protein
16 http://www.tigr.org/TIGRFAMs/index.shtml

42 Snehal Thakkar, José Luis Ambite, Craig A. Knoblock

7 Related Work

The work presented in this article is closely related to research in several
areas. The first area of related research is on data integration systems,
such as, the Information Manifold [LRO96], InfoMaster [GKD97], InfoS-
leuth [BJBB+97], and Ariadne [KMA+01]. One can utilize any of the above-
mentioned system to develop a framework for web service composition simi-
lar to what we have described in this paper. However, none of these systems
were designed to work with parameterized queries. Therefore, they do not
contain optimization techniques to optimize generalized composition plans
that get generated from a parameterized query. One would need to augment
their framework with techniques similar to the tuple-level filtering to handle
generalized integration plans.

It should be noted that the tuple-level filtering algorithm can be used
in conjunction with any mediator system that utilizes Local-As-View ap-
proach. In this article we have used the Inverse Rules [Dus97] algorithm
to provide concrete example of how the optimization techniques and trans-
lation techniques would work. However, the techniques described in this
paper are not specific to the Inverse Rules algorithm. The optimization and
translation techniques described in this paper can be utilized with any sys-
tem that utilizes Local-As-View [LRO96,Len02] model, i.e. we could use the
Minicon algorithm [PL00] or the Bucket algorithm [Lev00] instead of the
Inverse Rules algorithm. However, the Minicon and Bucket algorithm can-
not handle recursive queries. Therefore, if we use either of these algorithms,
we cannot generate integration plans that require recursion. The tuple-level
filtering algorithm would not be applicable if the data integration system
utilizes the Global-As-View [GMHI+95] approach as no source descriptions
would be available in the Global-As-View model.

There has been work on streaming query execution in the data in-
tegration community [BK05,HFC+00,IFF+99,NDM+01]. However, these
streaming query execution engines have their own plan languages or rely
on xquery and cannot directly execute datalog programs generated for web
service composition.

The second area of relevant research is the data integration work applied
to the problem of composing bioinformatics web services, such as, BioMedia-
tor [MSHTH02,MHTH01], DiscoveryLink [HKR+00], BioKleisli [DOTW97,
BCD+99], TAMBIS [SGP+03,GSN+01] and Eckman et al. work [LRE04,
ELR01,EKJ01]. While all the papers address different problems when inte-
grating information from various bioinformatics data sources, the focus of
these works is on: (1) application of data integration techniques to answer
specific queries by combining data from various bioinformatics data sources,
(2) use cost-based optimization techniques to optimize the generated inte-
gration plan, and (3) support for a wide variety of binding patterns and
access patterns. While we can support different binding patterns, we would
need to utilize some of the techniques described in [ELR01] to support
different access patterns, such as queries on multi-valued attributes. One

Composing, Optimizing, & Executing Plans for Bioinformatics Services 43

key difference between our work and the existing work is that we compose
plans for hosting a web service. Therefore, we need to compose and opti-
mize parameterized plans, as oppose to plans for specific queries. While the
existing approaches can be modified to generate parameterized integration
plans that can be hosted as web services, they would need to utilize opti-
mization techniques similar to the tuple-level filtering technique described
in this paper to do so efficiently.

The third area of related work is on optimization of data integration
plans. In [KLN+03], the authors describe strategies to optimize the recur-
sive and non-recursive datalog programs generated by the Inverse Rules
algorithm. The research focus of their work is to remove redundant data
accesses and to order access to different sources to reduce the query exe-
cution time in the presence of overlapping data sources. Our optimization
algorithm optimizes a plan for parameterized query as opposed to a specific
query. Moreover, our optimization algorithm may insert sensing operations
to optimize the query.

In [AKL97], we described the idea of using sensing operations to op-
timize data integration plans for specific user queries. In this paper, we
have generalized the idea of using the sensing operations by utilizing the
source descriptions and the generated integration plan to insert the sensing
operations. Moreover, in this paper we have extended the existing data in-
tegration techniques to generate parameterized integration plans that can
be hosted as web services.

The fourth area of relevant research is on optimizing datalog programs.
Kifer and Lozinskii [KL90] describe an approach to ‘push’ selections and
projections in the datalog programs close to the sources. This is similar to
tuple-level filtering without sensing operations. However, tuple-level filter-
ing ‘pushes’ the selections that are in the source description. Those selec-
tions may or may not appear in the datalog program. Moreover, tuple-level
filtering may insert sensing operations. There are many techniques in the
literature to optimize datalog programs [Ull88], such as magic sets. One
can easily imagine an extension to our system that optimizes the generated
datalog program using these techniques before translating a program to a
Theseus plan.

Finally, there has been some research on automatic web service compo-
sition [BFHS03,MS02,WPS+03]. In particular [WPS+03], describe an AI
planning system to automatically compose web services. In addition to the
input and output constraints, their system can also handle web services
with preconditions and effects. In [MS02], the authors use Golog [LRL+97]
templates to compose different web services. While this representation is
powerful and can handle web services with preconditions and effects, their
system requires a human to write different plan templates before the sys-
tem can reformulate different user queries. The focus of these papers is on
composing web services and they do not address the issue of optimizing the
execution of composed web services. The key advantages of their approaches
is the ability to handle web services with world-altering preconditions and

44 Snehal Thakkar, José Luis Ambite, Craig A. Knoblock

effects. However, the bioinformatics web services are largely information-
providing services that our approach can handle efficiently.

8 Conclusion and Future Work

In this paper we have described a mediator-based approach to automat-
ically generate integration plans that can be hosted as web services. We
showed that we can extend existing data integration techniques to gener-
ate integration plans for new web services. However, the generated plans
are often inefficient. We described a novel optimization algorithm termed
tuple-level filtering to optimize the integration plans using the order con-
straints in the source descriptions. The key new contribution of the tuple-
level filtering algorithm is that unlike traditional optimization algorithms,
the tuple-level filtering algorithm can be applied to parameterized integra-
tion plans and it may also insert sensing operations to improve the efficiency
of the plans. Furthermore, we described techniques to translate recursive
and non-recursive composition plans into integration plans that can be exe-
cuted using a dataflow-style execution engine. Our experimental evaluation
on real-world bioinformatics data sources shows that we can achieve a sig-
nificant reduction in the response time of the composed web service using
our optimization techniques.

We are working on extending our mediator to support a wide variety of
operations on heterogeneous data. For example, dealing with complex XML
structures or analyzing imagery data produced by different web services.

In addition, we are also looking into associating source descriptions with
the composed web services for web service discovery purposes. Intuitively,
the initial parameterized query used to generate the composition plan for the
web service can be used as the source description of the composed service.
Once we associate source descriptions to the composed web services, the
mediator can utilize the composed web service automatically to create new
more complex web services.

Acknowledgements

We would like to thank Mark Carman, Louiqa Raschid, and the anonymous
reviewers for their insightful comments that helped to improve the paper.

This research is based upon work supported in part by the National
Science Foundation under Award No. IIS-0324955,in part by the Defense
Advanced Research Projects Agency (DARPA), through the Department
of the Interior, NBC, Acquisition Services Division, under Contract No.
NBCHD030010, in part by the Defense Advanced Research Projects Agency
(DARPA) and Air Force Research Laboratory, Air Force Materiel Com-
mand, USAF, under agreement number F30602-00-1-0504, and in part by
the Air Force Office of Scientific Research under grant number FA9550-
04-1-0105. The U.S.Government is authorized to reproduce and distribute

Composing, Optimizing, & Executing Plans for Bioinformatics Services 45

reports for Governmental purposes notwithstanding any copyright annota-
tion thereon. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of any of the above
organizations or any person connected with them.

APPENDIX

A Datalog to Theseus Translation

A.1 Datalog and Theseus Plans with Source Access (Figure 19(a))

Figure 19(a) shows a datalog query that corresponds to retrieving name,
function, location and taxonid information about the protein identified by
proteinid ‘19456’ from the DIPProtein data source.

Q(name,function, location, taxonid):-

DIPProtein("19456", name, function, location, taxonid)

The corresponding Theseus plan is shown below. In Theseus, data flows through
the program as relations. In the given example, the Theseus plan accepts one re-
lation called inrel as input. The inrel relation is used to call a subplan termed
DIPProtein. A project operation is used to project relevant attributes to the outrel
stream, which is returned as output. The DIPProtein subplan, uses the xwrapper
operation to retrieve XML data over HTTP. In the example plan, the XML data
is retrieved from an agent that queries the information from the DIP website. As
the XML data returned by the agent may contain lot of information, the xquery
operation is used to extract the desired information. The resulting XML document
looks like XML representation of a relation. This XML document is converted to a
relation using the xml2rel operation. Finally, a project operation is used to project
the necessary attributes to the outrel.

RELATION inrel:id char

19456

PLAN Q

{

INPUT: stream inrel

OUTPUT: stream outrel

BODY

{

DIPProtein(inrel : dipout)

project(dipout, "name, function, location, taxonid" : outrel)

}

}

PLAN DIPProtein

{

INPUT: stream inrel

OUTPUT: stream outrel

BODY

46 Snehal Thakkar, José Luis Ambite, Craig A. Knoblock

{

xwrapper("http://localhost:8080/agent/runner?plan=

DIPProtein/plans/production", "nodeid=id",

inrel, "wrapper_data" : wrapperout)

xquery(wrapperout, "wrapper_data",

"<proteins>

{for $b in input()//Document//Row

return <protein>

<name>{$b/name/text()}</name>

<function>{$b/function/text()}</function>

<location>{$b/location/text()}</location>

<taxonid>{$b/taxonid/text()}</taxonid>

</protein> }

</proteins>", "answer" : xqueryout)

xml2rel(xqueryout, "answer", "/proteins/protein", "index" : x2ro)

project(x2ro,"proteinid, name, function, location, taxonid"

: outrel)

}

}

A.2 Datalog and Theseus Plans with a Select (Figure 19(b))

Figure 19(b) shows a datalog query that corresponds to retrieving name, function,
location and taxonid information about the protein identified by proteinid ‘19456’
from the DIPProtein data source and performing a selection based on taxonid
attribute.

Q(name, function, location, taxonid):-

DIPProtein("19456", name, function, location, taxonid) ^

taxonid > 9600

Below is the corresponding Theseus plan. The Theseus plan accepts one rela-
tion called indata. The input stream is used to call a subplan termed DIPProtein.
A select operation is used to filter out tuples that with value of taxonid attribute
less than or equal to 9600. A project operation is used to project relevant attributes
to the outdata stream, which is returned as output. The DIPProtein subplan is
the same as the DIPProtein plan decribed in Appendix A.1.

RELATION indata:id char

19456

PLAN Q

{

INPUT: stream indata

OUTPUT: stream outdata

BODY

{

DIPProtein(indata : dipproteinout)

select(dipproteinout, "taxonid > 9600" : selectout)

project(selectout, "name, function, location, taxonid" : outdata)

}

}

Composing, Optimizing, & Executing Plans for Bioinformatics Services 47

A.3 Datalog and Theseus Plans with a Join (Figure 19(c))

Figure 19(c) shows a datalog query with a join between two relations.

Q(paperid, conf, year, loc):-

Papers(paperid, conf, year) ^

Conference(conf, year, loc)

Below is the corresponding Theseus plan. In this plan, Theseus executes both
papers and conference subplans in parallel as there is no dependency between
them. A join operation is used to combine information from both plans. A project
operation is used to project relevant attributes to the outdata stream, which is
returned as output. The subplans for the Papers and Conference data sources are
not shown as they are very similar to the DIPProtein plan shown in Appendix A.1.

PLAN Q

{

INPUT:

OUTPUT: stream outdata

BODY

{

papers(: papersout)

conference(: conferenceout)

join(papersout, conferenceout, "l.conf=r.conf and l.year=r.year"

: jout)

project(jout, "paperid, conf, year, loc" : outdata)\\

}

}

A.4 Datalog and Theseus Plans with a Dependent Join (Figure 19(d))

Figure 19(d) shows a datalog query that results in a dependency between opera-
tions due to binding restrictions.

Q(id, conf, year, author, email):-

Papers(id, conf, year) ^

PaperDetails($id, author, year, institute, email)

Below is the corresponding Theseus plan. In this plan, there is a dependency
between the call to papers and the call to paperdetails subplans. Therefore, The-
sue first executes the papers subplan. As soon as the papers subplan returns the
first tuple, it is used to call paperdetails subplan. A join operation is used to com-
bine information from both plans. A project operation is used to project relevant
attributes to the outdata stream, which is returned as output.

PLAN Q

{

INPUT:

OUTPUT: stream outdata

BODY

{

48 Snehal Thakkar, José Luis Ambite, Craig A. Knoblock

papers(: papersout)

project(papersout, "id" : paperdetailsin)

paperdetails(paperdetailsin : paperdetailsout)

join(papersout, paperdetailsout, "l.id=r.id and l.year=r.year"

: jout)

project(jout, "id, conf, year, author, email" : outdata)

}

}

A.5 Datalog and Theseus Plans with a Union(Figure 19(e))

Figure 19(d) shows a datalog query that contains a union operation.

Q(fromid, toid, source):-

HSProteinInteractions(fromid, toid, source, verified) ^

fromid = 19456

Q(fromid, toid, source):-

MMProteinInteractions(fromid, toid, source, verified) ^

fromid = 19456

Below is the corresponding Theseus plan. In this plan, Theseus executes both
HSProteinInteractions and MMProteinInteractions subplans in parallel as there is
no dependency between them. A union operation is used to combine information
from both plans. A project operation is used to project relevant attributes to the
outdata stream, which is returned as output.

RELATION indata:fromid char

19456

PLAN Q

{

INPUT: stream indata

OUTPUT: stream outdata

BODY

{

HSProteinInteractions(indata : HSout)

MMProteinInteractions(indata : MMout)

union(HSout, MMout : uout)

project(uout, "fromid, toid, source" : outdata)

}

}

A.6 Example Theseus Plan with Recursion (Figure 20)

Below is the Theseus plan for the recursive integration plan shown in Figure 20.
Note that the last statement of the plan calls itself back denoting recursion. The
plan accepts two relations as input: one relation called indata containing proteinid
and taxonid and the other called InteractionsSoFar containing proteinid and toid.
The select operator is used to determine which tuples should be pass as inputs

Composing, Optimizing, & Executing Plans for Bioinformatics Services 49

to the HSProteinInteractions and MMProteinInteractions. The output from both
services is unioned to generate all interactions found in the current iteration. The
resulting relation is unioned with the InteractionsSoFar relation to obtain interac-
tions found in all iterations so far. In parallel Theseus performs a minus operation
between the interactions found in the current iterations and InteractionsSoFar re-
lation to obtain all new interactions found in the current relation. A null operator
is used to check if any new interactions were found in this iteration. If no new
interactions were found, then Theseus passes the relation containing all interac-
tions seen so far as the output. Otherwise, it passes a relation containing new
interactions found in the current iteration and a relation containg all interactions
seen so far as the input to the next recursive iteration.

RELATION indata:proteinid char, taxonid char

105096|9606

110596|10090

RELATION InteractionsSoFar:proteinid char, toid char

PLAN InteractionsPlan

{

INPUT:stream indata, stream InteractionsSoFar

OUTPUT:stream outdata

BODY

{

select(indata, "taxonid=’9606’": select1out)

select(indata, "taxonid=’10090’": select2out)

HSProteinInteractions(select1out:HSout)

MMProteinInteractions(select2out:MMout)

union(HSout, MMout: Current)

union(InteractionsSoFar, Current : Newout)

minus(Current, InteractionsSoFar : Newin)

null(Newin, Newout, Newin : outdata, nextin)

project(nextin, "toid, taxonid": prjnextin)

InteractionsPlan(prjnextin, newout : outdata)

}

}

References

[AKL97] N. Ashish, C. A. Knoblock, and A. Levy. Information gathering plans
with sensing actions. In European Conference on Planning, ECP-97,
Toulouse, France, 1997.

[BCD+99] Peter Buneman, Jonathan Crabtree, Susan B. Davidson, Christian
Overton, Val Tannen, and Limsoon Wong. Bioinformatics: Databases
and Systems, chapter BioKleisli, pages 201–217. Kluwer Academic
Publishers, 1999.

[BFHS03] Tevfik Bultan, Xiang Fu, Richard Hull, and Jianwen Su. Conversa-
tion specification: A new approach to design and analysis of e-service
composition. In Proceedings of 12th International World Wide Web
Conference (WWW), 2003.

50 Snehal Thakkar, José Luis Ambite, Craig A. Knoblock

[BGRV99] Laura Bright, Jean-Robert Gruser, Louiqa Raschid, and Maria Es-
ther Vidal. A wrapper generation toolkit to specify and construct
wrappers for web accessible data sources (websources). Journal of
Computer Systems Science and Engineering, 14(2), 1999.

[BJBB+97] Roberto J. Bayardo Jr., William Bohrer, Richard S. Brice, An-
drzej Cichocki, Jerry Flower, Abdelsalam Helal, Vipul Kashyap,
Tomasz Ksiezyk, Gale Martin, Marian Nodine, Mosfeq Rashid, Marek
Rusinkiewicz, Ray Shea, C. Unnikrishnan, Amy Unruh, and Darell
Woelk. Infosleuth: Agent-based semantic integration of informa-
tion in open and dynamic environments. In In Proceedings of ACM
SIGMOD-97, 1997.

[BK05] Greg Barish and Craig A. Knoblock. An expressive language and
efficient execution system for software agents. Journal of Artificial
Intelligence Research, 23:625–666, 2005.

[DOTW97] Susan B. Davidson, G. Christian Overton, Val Tannen, and Limsoon
Wong. Biokleisli: A digital library for biomedical researchers. Int. J.
on Digital Libraries, 1(1):36–53, 1997.

[Dus97] Oliver M. Duschka. Query Planning and Optimization in Information
Integration. PhD thesis, Stanford University, 1997.

[EKJ01] Barbara A. Eckman, Anthony S. Kosky, and Leonardo A. Laroco
Jr. Extending traditional query-based integration approaches for
functional characterization of post-genomic data. Bioinformatics,
17(7):587–601, 2001.

[ELR01] Barbara A. Eckman, Zo Lacroix, and Louiqa Raschid. Optimized
seamless integration of biomolecular data. In Proceedings of the 2nd
IEEE International Symposium on Bioinformatics and Bioengineer-
ing (BIBE’01), pages 23–32, 2001.

[GKD97] Micheal R. Genesereth, Arthur M. Keller, and Oliver M. Duschka.
Infomaster: An information integration system. In In Proceedings of
ACM SIGMOD-97, 1997.

[GMHI+95] Hector Garcia-Molina, Joachim Hammer, Kelly Ireland, Yannis Pa-
pakonstantinou, Jeffrey Ullman, and Jennifer Widom. Integrating
and accessing heterogeneous information sources in tsimmis. In Pro-
ceedings of the AAAI Symposium on Information Gathering, Stan-
ford, CA, 1995.

[Gol98] Keith Golden. Leap before you look: Information gathering in the
puccini planner. In In Proceedings of the Fourth International Con-
ference on Artificial Intelligence Planning Systems, 1998.

[GSN+01] Carole A. Goble, Robert Stevens, Gary Ng, Sean Bechhofer, Nor-
man W. Paton, Patricia G. Baker, Martin Peim, and Andy Brass.
Transparent Access to Multiple Bioinformatics Information Sources.
IBM Systems Journal Special issue on deep computing for the life
sciences, 40(2):532 – 552, 2001.

[HFC+00] Joseph M. Hellerstein, Michael J. Franklin, Sirish Chandrasekaran,
Amol Deshpande, Kris Hildrum, Sam Madden, Vijayshankar Raman,
and Mehul A. Shah. Adaptive query processing: Technology in evo-
lution. IEEE Data Engineering Bulletin, 23(2):7–18, 2000.

[HKR+00] Laura M. Haas, Prasad Kodali, Julia E. Rice, Peter M. Schwarz,
and William C. Swope. Integrating life sciences data-with a lit-
tle garlic. In Proceedings of the IEEE International Symposium on

Composing, Optimizing, & Executing Plans for Bioinformatics Services 51

Bio-Informatics and Biomedical Engineering (BIBE’00), pages 5–13,
2000.

[IFF+99] Zachary G. Ives, Daniela Florescu, Marc Friedman, Alon Levy, and
Daniel S. Weld. An adaptive query execution system for data inte-
gration. In ACM SIGMOD Conference, 1999.

[KL90] Michael Kifer and Eliezer L. Lozinskii. On compile-time query opti-
mization in deductive databases by means of static filtering. ACM
Trans. Database Syst., 15(3):385–426, 1990.

[KLN+03] Subbarao Kambhampati, Eric Lambrecht, Ullas Nambiar, Zaiqing
Nie, and Senthil Gnanaprakasam. Optimizing recursive information
gathering plans in emerac. Journal of Intelligent Information Sys-
tems, 2003.

[KMA+01] Craig A. Knoblock, Steven Minton, Jose-Luis Ambite, Naveen
Ashish, Ion Muslea, Andrew Philpot, and Sheila Tejada. The ariadne
approach to web-based information integration. International Jour-
nal on Intelligent Cooperative Information Systems (IJCIS), 10(1-
2):145–169, 2001.

[KWD97] Nick Kushmerick, Daniel Weld, and Robert Doorenbos. Wrapper
induction for information extraction. In Proceedings of the Interna-
tional Conference on Artificial Intelligence, IJCAI-97, 1997.

[Len02] Maurizio Lenzerini. Data integration: A theoretical perspective. In In
Proceedings of ACM Symposium on Principles of Database Systems,
Madison, Winsconsin, USA, 2002.

[Lev00] Alon Levy. Logic-based techniques in data integration. In Jack
Minker, editor, Logic Based Artificial Intelligence. Kluwer Publish-
ers, 2000.

[LR02] Zo Lacroix and Louiqa Raschid. A map of biological resources to
support a complete characterization of scientific entities. Technical
report, University of Maryland, 2002.

[LRE04] Zoe Lacroix, Louiqa Raschid, and Barbara A. Eckman. Techniques
for optimization of queries on integrated biological resources. Journal
of Bioinformatics and Computational Biology, 2(2):375–411, 2004.

[LRL+97] Hector J. Levesque, Raymond Reiter, Yves Lesperance, Fangzhen
Lin, and Richard B. Scherl. GOLOG: A logic programming language
for dynamic domains. Journal of Logic Programming, 31(1-3):59–83,
1997.

[LRO96] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Query-
answering algorithms for information agents. In In Proceedings of
AAAI-96, 1996.

[LS97] Alon Y. Levy and Dan Suciu. Deciding containment for queries
with complex objects. In Proceedings of the 16th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems,
pages 20–31, 1997.

[MHTH01] Peter Mork, A. Halevy, and Peter Tarczy-Hornoch. A model for
data integration systems of biomedical data applied to online genetic
databases. In Proceedings of the American Medical Informatics As-
sociation Fall Symposium (AMIA), 2001.

[MMK00] Ion Muslea, Steven Minton, and Craig A. Knoblock. Selective sam-
pling with redundant views. In Proceedings of the 17th National Con-
ference on Artificial Intelligence, 2000.

52 Snehal Thakkar, José Luis Ambite, Craig A. Knoblock

[MS02] Sheila McIlraith and Tran Cao Son. Adapting golog for composition
of semantic web services. In Proceedings of the 8th International
Conference on Knowledge Representation and Reasoning (KR ’02),
Toulouse, France, 2002.

[MSHTH02] Peter Mork, Ron Shaker, Alon Halevy, and Peter Tarczy-Hornoch.
Pql: A declarative query language over dynamic biological schemata.
In Proceedings of the American Medical Informatics Association Fall
Symposium (AMIA), San Antonio, TX, 2002.

[MTK05] Martin Michalowski, Snehal Thakkar, and Craig Knoblock. Automat-
ically utilizing secondary sources to align information across sources.
AI Magazine, Special Issue on Semantic Integration, 26(1):33–45,
2005.

[NDM+01] Jeffrey F. Naughton, David J. DeWitt, David Maier, Ashraf Aboul-
naga, Jianjun Chen, Leonidas Galanis, Jaewoo Kang, Rajasekar
Krishnamurthy, Qiong Luo, Naveen Prakash, Ravishankar Rama-
murthy, Jayavel Shanmugasundaram, Feng Tian, Kristin Tufte,
Stratis Viglas, Yuan Wang, Chun Zhang, Bruce Jackson, Anurag
Gupta, and Rushan Chen. The niagara internet query system. IEEE
Data Engineering Bulletin, 24(2):27–33, 2001.

[PL00] Rachel Pottinger and Alon Levy. A scalable algorithm for answering
queries using views. VLDB Journal, pages 484–495, 2000.

[Sch87] Marcel Schoppers. Universal plans for reactive robots in unpre-
dictable environments. In Proceedings of the International Conference
on Artificial Intelligence, IJCAI-87, 1987.

[SGP+03] Robert Stevens, Carole Goble, Norman W. Paton, Sean Bechhofer,
Gary Ng, Patricia Baker, and Andy Brass. Complex Query Formu-
lation Over Diverse Information Sources in TAMBIS. In Zoe Lacroix
and Terence Critchlow, editors, Bioinformatics: Managing Scientific
Data. Morgan Kaufmann, May 2003.

[TAK03] Snehal Thakkar, Jose Luis Ambite, and Craig A. Knoblock. A view
integration approach to dynamic composition of web services. In In
Proceedings of 2003 ICAPS Workshop on Planning for Web Services,
Trento, Italy, 2003.

[TAK04] Snehal Thakkar, Jose Luis Ambite, and Craig A. Knoblock. A data
integration approach to automatically composing and optimizing web
services. In In Proceedings of 2004 ICAPS Workshop on Planning and
Scheduling for Web and Grid Services, 2004.

[TK03] Snehal Thakkar and Craig A. Knoblock. Efficient execution of recur-
sive integration plans. In In Proceeding of 2003 IJCAI Workshop on
Information Integration on the Web, Acapulco, Mexico, 2003.

[TKM02] Sheila Tejada, Craig A. Knoblock, and Steven Minton. Learning
domain-independent string transformation weights for high accuracy
object identification. In Proceedings of the Eighth ACM SIGKDD
International Conference, Edmonton, Alberta, Canada, 2002.

[Ull88] Jeffrey Ullman. Principles of Data and Knowledge-Base Systems.
Computer Science Press, New York, 1988.

[WPS+03] Dan Wu, Bijan Parsia, Evren Sirin, James Hendler, and Dana Nau.
Automating daml-s web services composition using shop2. In 2nd
International Semantic Web Conference (ISWC2003), 2003.

