
A DATA INTEGRATION APPROACH TO DYNAMICALLY FUSING
GEOSPATIAL SOURCES

by

Snehal Thakkar

A Thesis Presented to the
FACULTY OF THE GRADUATE SCHOOL

UNIVERSITY OF SOUTHERN CALIFORNIA
In Partial Fulfillment of the
Requirements for the Degree

MASTER OF SCIENCE
(COMPUTER SCIENCE)

December 2007

Copyright 2007 Snehal Thakkar

Dedication

To my parents,

for their unrelenting encouragement and love in face of never ending ambitions.

ii

Acknowledgments

I would like to thank my thesis advisors Professor Craig Knoblock and Professor José

Luis Ambite for their constant encouragement and valuable feedback on every aspect of

my research. Their feedback has been instrumental in both shaping and presenting my

research ideas. They have taught me how to present my ideas in research papers and in

presentations. I also want to thank them for not just giving me the freedom to explore

different ideas for research, but also for encouraging me to continue with the research

despite several paper rejections. I would not have been able to complete this dissertation

without their feedback and encouragement.

I am also grateful to Professor Cyrus Shahabi for his support when I started at USC in

August 2000. In addition to helping me with my PhD research, Professor Shahabi funded

my work when I was pursuing Masters degree and also put me in touch with Professor

Knoblock. He also recommended me to Professor Knoblock and advised me to stay at

ISI after Masters.

I also want to extend thanks to Professor John Wilson, the outside member on my

committee. Professor Wilson’s comments have helped in connecting my research work

with the existing efforts in the GIS community. In particular, he pointed me to several

related papers in the field and inspired me to integrate my work with ESRI’s toolkit. I

iii

believe that his feedback has made sure that my research will be useful to GIS researchers

as well.

I would also like to thank Professor Louiqa Raschid and Professor Felix Neumann for

their feedback on my work. Professor Raschid took a personal interest in my work and

put me in touch with the team working on the Sahana disaster response framework. The

information I received by reading experiences with the Sahana framework has helped me

in understanding the requirements of such applications. I had several discussions with

Professor Neumann about representing quality in a data integration systems and he also

gave me pointers to several papers on quality-driven data integration. I would also like

to thank Dr. Jason Chen and Dan Goldberg for their support of my work. I utilize

the quality information from the experiments discussed in Jason’s thesis. Dan’s work on

‘reverse-engineering’ ArcIMS services inspired me to think about including support for

ArcIMS services in my work.

I would also like to thank my co-workers at the Information Integration group at

ISI. In particular, I would like to thank Maria Muslea for her help in programming the

Prometheus data integration system and helping me out with programming issues. I

would also like to thank Dr. Greg Barish for his help with various Theseus issues and

advise about graduate school. I would also like to thank the administrative staff at

ISI, in particular Alma Nava, for their help during my stay at ISI. I would also like

to thank my officemates Matt Michelson, Martin Michalowski, Rattapoom Tuchinda,

and Mark Carman for providing me excellent work environment, proof-reading my paper

drafts, giving me feedback on research ideas, and providing encouragement even when

iv

my research seem to be heading nowhere. I would also like to thank Wesley Kerr for

‘donating’ his television and playstation 2 for our entertainment.

Finally, I would also like to thank my family for there support during the long years

of research. First I would like to thank Sharad uncle and Meena auntie, who treated

me as their own son after coming to USA and inspired me to be the best that I could

be. In addition to financial support they provided me a home and an emotional outlet

that I could always count on. Next, I would like to thank my parents. They have always

supported me in every imaginable way during my studies. From the time when I was a

little kid, they instilled the habits to work hard and value the feedback from other people.

In order to wake me up to study, they endured sleepless nights. When I grew up and

came to USA, they sacrificed established careers in India and then again sacrificed their

careers in Dayton, Ohio to support me in my quest. I would also like to thank my brother

Hetal for his support during this journey. Throughout my life he has been my best friend.

Like my parents, he too endured hard times to support my studies and also proof-read

several papers for me. Finally, I would also like to thank my wife Kruti for supporting

my studies and providing an outlet to discuss the happenings at work. She also took

the brunt of the tension when things weren’t going according to plan at work. The love,

encouragement, and support of my family over the years is the true reason behind the

research described in this thesis.

This research is based upon work supported in part by the National Science Founda-

tion under Award No. IIS-0324955, in part by the Air Force Office of Scientific Research

v

under grant numbers FA9550-04-1-0105 and FA9550-07-1-0416, and in part by the De-

fense Advanced Research Projects Agency (DARPA), through the Department of the

Interior, NBC, Acquisition Services Division, under Contract No. NBCHD030010.

The U.S.Government is authorized to reproduce and distribute reports for Govern-

mental purposes notwithstanding any copyright annotation thereon. The views and con-

clusions contained herein are those of the author and should not be interpreted as nec-

essarily representing the official policies or endorsements, either expressed or implied, of

any of the above organizations or any person connected with them.

vi

Table of Contents

Dedication ii

Acknowledgments iii

List Of Tables x

List Of Figures xii

Abstract xv

Chapter 1:Introduction 1

1.1 Motivation and Problem Statement . 1
1.2 Approach . 7
1.3 Thesis Statement . 11
1.4 Contributions . 12
1.5 Thesis Organization . 12

Chapter 2:Representing Geospatial Data 14

2.1 Geospatial Domain Concepts . 14
2.1.1 Domain Concepts for Geospatial Data 15
2.1.2 Domain Concepts for Geosptial Data Quality 20

2.2 Geospatial Sources . 23
2.2.1 Describing Contents of the Sources 24
2.2.2 Representing Quality of Geospatial Sources 28

2.3 Representing Operations . 30
2.3.1 Spatial Selection Operations . 30
2.3.2 Aggregate Operations . 32
2.3.3 Mathematical Operations . 35

2.4 Representing User Queries . 36

Chapter 3:Large Scale Source Modeling for Geospatial Sources 42

3.1 Discovering Geospatial Sources . 42
3.2 Automatic Source Description Generation 44

3.2.1 Matching Sources with Domain Concepts 44
3.2.2 Managing Coordinate Systems . 52

3.3 Automatically Estimating the Quality of Geospatial Data 56
3.3.1 Estimating Quality Attributes of Vector Data Sources 57

vii

3.3.1.1 Estimating Completeness 61
3.3.1.2 Estimating Accuracy . 63

3.3.2 Estimating Quality of Raster Datasets 66
3.4 Experimental Evaluation . 69

3.4.1 Experimental Evaluation of Automated Labeling Technique 70
3.4.2 Experimental Evaluation for Quality Estimation 73

3.4.2.1 Quality Estimation of Vector Data Sources 73
3.4.2.2 Completeness Estimation of Raster Data Sources 77

Chapter 4:Query Answering 81

4.1 Motivating Example . 84
4.2 Plan Graph Generation . 94

4.2.1 Previous Work: Inverse Rules . 95
4.2.2 Converting Datalog Program to Plan Graph 101
4.2.3 Handling Binding Restrictions . 107

4.3 Plan Optimization . 109
4.3.1 Identifying and Reusing Common Sub-expressions 111
4.3.2 Quality-driven Plan Optimization 112

4.3.2.1 Evaluating the Quality Criteria 113
4.3.2.2 Pruning Based on Quality Criteria Results 115

4.4 Plan Execution . 117
4.4.1 Brief Overview of Theseus Plan Language 117
4.4.2 Translating Plan Graph to Theseus Plan 122

4.4.2.1 Translating Nodes to Theseus Operations 122
4.4.2.2 Translating Relationships Between Nodes in Plan Graph 125

4.5 Experimental Evaluation . 128
4.5.1 Experimental Setup . 129
4.5.2 Experimental Results . 130

Chapter 5:Related Work 137

5.1 Geospatial Data Integration . 137
5.2 GIS Standards and Commercial Mapping Applications 142
5.3 Data Integration Systems . 143
5.4 Source Modeling . 146
5.5 Visualizing and Improving Quality in the Geospatial Domain 147
5.6 Database Query Optimization . 148

Chapter 6:Discussion and Future Work 151

6.1 Contributions . 151
6.2 Application Areas . 152

6.2.1 Urban Planning Applications . 152
6.2.2 Disaster Response . 154

6.3 Future Work . 155
6.3.1 Source Discovery . 155
6.3.2 Automatic Source Description Generation 155
6.3.3 Quality Estimation . 156

viii

6.3.4 Query Answering . 157
6.3.5 Using QGM in Other Domains . 158

Appendices 165

Appendix A .
List of Data Layers . 166

Appendix B .
Final Theseus Plan for Running Example 172

Appendix C .
Generating Subplans to Access Geospatial Sources 175

ix

List Of Tables

2.1 Categories and Sub-categories of Vector Data 17

2.2 Categories and Sub-categories of Raster Data 18

2.3 Examples of relational representations of sources 25

3.1 Example of name and descriptions extracted from shapefiles 45

3.2 Major categories with manual labeling . 71

3.3 Results of automatic labeling . 72

3.4 Completeness estimation using different sampling methods 75

3.5 Results of Vectors within accuracy bounds estimation 76

3.6 Results of Completeness Estimation for Raster Data 79

4.1 Quality Information for Vector Sources . 85

4.2 Quality Information for Image Sources . 86

4.3 Possible Answers to User Query and Their Quality 94

4.4 Rows Computed for Q1Quality Predicate 114

4.5 Comparison of Response Time on Simple Quality Query 132

4.6 Comparison of Response Time on Quality Query with Aggregate 132

4.7 Comparison of Response Time on Quality Query with SkylineMin 133

4.8 Comparison of Response Time as Number of Relevant Sources Increase . 134

x

4.9 Quality of Data . 135

xi

List Of Figures

1.1 (a) Satellite Imagery, (b) Hospitals, and (c) Road Network 2

1.2 Example of Inaccuracies in Geospatial Data 3

1.3 QGM Architecture . 8

1.4 Examples of Layer descriptions . 10

2.1 Partial QGM Domain Concepts Hierarchy 18

2.2 Domain Hierarchy Rules . 19

2.3 Example Black-and-white Image . 21

2.4 Example Multi-spectral Image . 22

2.5 Example of Buffer Around Actual Vector Location 23

2.6 Example Source Descriptions for Vector Data Sources 27

2.7 Example Source Descriptions for Image Data Sources 28

3.1 Example capabilities file from Web Map Server 46

3.2 Example ArcIMS Server capabilities file 47

3.3 Example Source Descriptions for Web Map Servers 50

3.4 Example Source Descriptions for ArcIMS Servers 51

3.5 Three different sampling patterns for geospatial data 60

3.6 Examples of buffers for points, lines, and polygons 63

xii

3.7 Algorithm to Compute Accuracy Values for New Source 64

3.8 Algorithm to Compute Accuracy Values for New Source 67

3.9 Example of coverage estimation process for raster data 68

4.1 QGM’s Algorithm to Answer Queries . 83

4.2 Coverage of Available Data Sources . 85

4.3 Example Source Descriptions for Vector Data Sources 87

4.4 Source Descriptions for Raster Data Sources 88

4.5 Vector Source Quality Relation Definitions 89

4.6 Raster Source Quality Relation Definitions 90

4.7 Relevant Rules to Describe Domain Concepts Hierarchy 91

4.8 Datalog Representation for Motivating Query 92

4.9 Inverted Source Descriptions for Vector Data Sources 96

4.10 Inverted Source Descriptions for Raster Data Sources 97

4.11 Inverted Descriptions for Vector Source Quality Relations 98

4.12 Inverted Descriptions for Raster Source Quality Relations 99

4.13 QGM’s Algorithm to Generate Relevant Rules 100

4.14 QGM’s Algorithm to Generate Plan Graph 102

4.15 Initial Plan Graph . 104

4.16 Plan Graph for Q1Quality . 106

4.17 Graph Representation for Q1Data . 107

4.18 Subtree for Q1Quality after Binding Restriction Satisfaction 110

4.19 Subtree for Q1Data after Binding Restriction Satisfaction 110

4.20 QGM’s Algorithm to Identify Common Subexpressions 112

xiii

4.21 Graph After Replacing Q1Quality Subtree 114

4.22 QGM’s Algorithm Prune Nodes Based on Quality Results 116

4.23 Graph After Pruning Based On Quality Results 117

6.1 Example Architecture for Urban Response Systems 153

6.2 Hierarchy of QGM Instances . 158

xiv

Abstract

Accurate and efficient integration of geospatial data is an important problem with im-

plications in critical areas such as emergency response and urban planning. Some of the

key challenges in supporting large-scale geospatial data integration are: (1) automatically

representing a large number of geospatial source available on the web by utilizing various

geospatial data access standards, (2) handling different geospatial data formats and access

patterns, (3) assessing the quality of the data provided by a large number of geospatial

sources, and (4) automatically providing high quality answers to the user queries based

on a quality criteria supplied by the user. In this thesis I describe my research on efficient

and accurate integration of geospatial data from a large number of sources. In particu-

lar, I describe a representation methodology for declaratively describing the content and

the quality of data provided by sources in a data integration system. I discuss methods

to automatically generate the descriptions of both the content and the quality of data

provided by geospatial sources. I describe a quality-driven query answering algorithm

that exploits the descriptions of the content provided by the geospatial sources to gen-

erate an initial data integration plan that answers a given user query and optimizes the

generated plan by utilizing the description of the quality of data provided by the sources

and the quality criteria specified by the user. I also present a mapping of the generated

xv

integration plan into a program that can be efficiently executed by a streaming, dataflow-

style execution engine. I implement my techniques in a framework called Quality-driven

Geospatial Mediator (QGM). My experimental evaluation in automatically representing

over 1200 real-world geospatial sources shows that QGM accurately generates the descrip-

tions of the content and the quality of geospatial sources. The empirical evaluation of

QGM’s query answering techniques using over 1200 real-world sources shows that QGM

provides better quality data in response to the user queries compared to the traditional

data integration systems and does so with lower response time.

xvi

Chapter 1

Introduction

1.1 Motivation and Problem Statement

There are a variety of government agencies, university departments, and commercial

companies that provide different types of geospatial data of different quality and coverage.

In fact, according to a report by the US Federal Geographic Data Committee (FGDC),

geographic location is a key feature of 80-90% of all government data [42]. Many critical

applications such as responding to unexpected events and urban planning, depend on the

ability to efficiently access and integrate data from the available geospatial sources. In

a book for University Consortium of Geographic Information Systems (UCGIS) titled,

“A Research Agenda for Geographic Information Science”, Onsrud et. al. [56] identify a

framework to dynamically integrate geospatial data as one of the key research agendas

for future work.

While it is hard to estimate the total number of available geospatial data sources in

the web, a quick check on collections of available data reveals the following statistics: (1)

The Geospatial Information Database project at the Navy Research Laboratory provides

1

Figure 1.1: (a) Satellite Imagery, (b) Hospitals, and (c) Road Network

a list of over 1400 Web Map Servers that provide over 200,000 map data layers. (2)

For vector data, a Google search for keywords ‘download shapefile’ produces over 344,000

result pages. These simple statistics clearly show that there are lots of available geospatial

data sources on the web.

However, access to the available data is limited to a very small number of people

who are good at locating geospatial data and have the correct GIS software to view the

data in different formats. In fact, a number of disaster management and urban planning

applications would greatly benefit from access to an integrated view of geospatial data.

Consider the example of finding information about recent wild fires in Los Angeles,

CA. Given the coordinates of the fire, we would like to find satellite imagery, hospitals,

and road networks in the area. We can obtain this information separately from different

publicly available web sources. Figure 1.1 shows the result of querying this information

from different Web Map Servers. However, this data is not easily accessible as users have

to find the correct data source among thousands of available sources.

2

Figure 1.2: Example of Inaccuracies in Geospatial Data

Moreover, it is also important to assure the quality of integrated data. Geospatial

data from different sources often has different accuracy levels due to different data col-

lection methods and projections. Figure 1.2 shows Tigerlines vector data overlaid on the

high-resolution satellite imagery from Google Maps. We can clearly see several positional

inaccuracies in the vector data superimposed over the image. In several disaster man-

agement applications such inaccuracies are not acceptable. Therefore, when we integrate

geospatial data, we must ensure the quality of the integrated data.

Another example of geospatial data integration is the Green Visions project [62] for

addressing the need for more green space in Los Angeles. Urban planning applications

similar to the Green Visions project often require ad-hoc queries such as finding the total

area of public parks within half a mile of a given property parcel. In addition to selecting

3

the best-quality sources, a data integration system must also retrieve relevant data (parks

in the given area), perform necessary filtering (distance between parks and the given

parcel), and aggregate the data. In such applications the quality of the answers depends

heavily on the quality of the information. Therefore, the ability of a data integration

system to dynamically produce the best-quality data is a very important capability.

Large-scale geospatial data integration problems requires solving several challenges.

Some of these challenges are similar to the challenges faced by traditional data integration

systems. For example, geospatial data is often in different formats and schemas of geospa-

tial sources are often different. There are also several new challenges when integrating

geospatial data sources. First, there may be a very large number geospatial data sources

relevant to the user query. While the traditional data integration systems may be able

to generate programs to integrate a large number of sources, executing the generated

programs may take a long time and may generate low quality results. Second, as the

geospatial data is often very large, it can take a long time to retrieve and process geospa-

tial data. Therefore, a geospatial data integration system must only retrieve necessary

data. For example, if we have access to five different sources of road vector data, only

the sources that provide data for the given area should be queried. Third, often there

are many available geospatial sources that provide the same type of data with different

quality. For example, if we have access to five different sources of road vector data for

the given area with different quality levels, then we need to only retrieve the best-quality

data. A geospatial data integration system must carefully select data sources to ensure

that the best-quality data is returned to the user. Finally, the quality of geospatial data

can be measured using different dimensions, such as the resolution at which the data was

4

collected or the date on which the data was collected. Depending on the user require-

ments, some dimensions may be more important than others. Therefore, we cannot use

a pre-defined quality ranking of all available sources, but we must provide the user the

flexibility to define his/her quality requirements.

The existing work in the field does not support efficient, accurate, and flexible inte-

gration of data from a large number of geospatial sources. The work on geospatial data

integration can be broadly classified in four areas: (1) web-based GIS mapping sites and

warehouses, (2) desktop GIS systems, (3) data integration applied to geospatial domain,

and (4) geospatial fusion. There are a large number of web-based mapping sites, such as

Google Maps1 and Microsoft Virtual Earth.2 These sites allow users to look at satellite

imagery and road maps of different areas. It is also possible for users to display their own

data on top of the mapping sites. There are also web-based geospatial data warehouses,

such as Geospatial One-Stop3, National Atlas4, and Geography Network.5 These sites

allow users to select layers of interest and superimpose them on top of each other to create

different maps. While these websites are great for accessing a large amount of geospatial

data, they provide very limited querying or integration capability and put the burden of

selecting the best-quality data on the user.

Desktop GIS systems, such as ESRI’s ArcGIS6, Cadcorp Systems Map Browser7, and

GiDB client8 allow users to retrieve and visualize geospatial data. Most desktop GIS

1http://maps.google.com
2http://local.live.com
3http://www.geodata.gov
4http://www.nationalatlas.gov
5http://www.geographynetwork.com
6http://www.esri.com
7http://www.cadcorp.com
8http://dmap.nrlssc.navy.mil/dmap/

5

systems utilize the OpenGIS9 standards to retrieve geospatial data from different web

sources. The desktop GIS systems allow users to quickly visualize and query geospatial

data. However, the user is responsible for selecting data sources and data layers.

There has been some work on applying traditional data integration techniques to the

geospatial domain [1, 22, 35, 26, 70]. The major contribution of these works is to show the

feasibility of applying traditional data integration techniques to the geospatial domain.

However, most of this work does not focus on the quality of the geospatial data returned

by the integration framework.

There exists a body of work on conflation techniques [60] to accurately fuse different

types of geospatial datasets. There are several manual, semi-automatic, and a very few

automatic techniques to dynamically align different geospatial datasets. I refer to this

body of work as physical integration of geospatial datasets as it requires altering the

data. Conflation operations often improve the quality of geospatial data. However, work

on conflation operations has not been utilized in a geospatial data integration system to

improve the quality of results.

This thesis is motivated by the lack of algorithms to accurately and efficiently retrieve

and integrate different types of geospatial data from a large number of sources. In partic-

ular, my thesis addresses the task of quickly learning representations of a large number

of geospatial sources, automatically estimating and representing quality and complete-

ness of the sources, and using those representations to dynamically generate and execute

integration plans that produce the best-quality data in response to user queries.

9http://www.opengis.org

6

1.2 Approach

This thesis provides a novel approach to efficiently and accurately integrating geospatial

data from a large number of sources. Based on the issues described in the previous

section, the key requirements for large-scale geospatial data integration are (1) represent

geospatial sources that provide different types of geospatial data in a variety of formats,

(2) dynamically determine relevant sources of data based on a user or application query,

and (3) dynamically generate and execute plans that produce the best-quality integrated

data based on the quality requirements of the user or application. In this section, I

outline a geospatial data integration framework called Quality-driven Geospatial Mediator

(QGM). QGM addresses the problem of dynamically and accurately integrating a large

number of geospatial sources by declaratively representing both the content and the

quality of geospatial data sources and utilizing the representations to provide high quality

data in response to user queries.

Data integration systems, such as TSIMMIS [30], HERMES [1], SIMS [2], the In-

formation Manifold [47], Disco [25], Infomaster [31], ARIADNE [45], provide a uniform

query interface to multiple information sources with heterogeneous schemas and inter-

faces. The data integration systems utilize a set of domain relations that are utilized in

formulating user queries. The set of available sources are represented as source relations.

A domain expert provides a set of rules that serve as the mapping between the source

relations and the domain relations. The set of domain relations, source relations, and

the mapping rules together are often called the domain model. In this thesis, I describe

7

Source & Operator
Descriptions

Quality
Descriptions

Domain
Knowledge

Q
uery +

Q
uality M

etric

Query
Reformulation

Query
Execution

Theseus

Operator
Library

R
es

po
ns

e

Quality-driven Geospatial Mediator (QGM)

Sources Domain
Relations

Automatic Source
Description Generator

Inverse Rules

Database-style
Optimizations

Quality-Driven
Reformulation

Figure 1.3: QGM Architecture

my approach to developing a general-purpose domain model for integrating geospatial

sources.

Figure 1.3 shows the architecture of the QGM framework. QGM is divided in four

parts: (1) descriptions of sources and domain knowledge, (2) automatic source description

generator, (3) query reformulation and optimization, and (4) plan execution.

Representing Geospatial Sources: The existing geospatial data integration sys-

tems only represent the content of the geospatial sources. In QGM, I declaratively rep-

resent not just the content of the geospatial sources, but also the quality of the data

provided by the geospatial sources. QGM represents the quality of data by allowing a

8

domain expert to specify a set of relations to represent quality of data. The users can

specify the quality criteria using the quality relations defined at the domain level. As a

part of the source description, QGM also allows the source provider to specify quality of

data provided by the source using a quality relation corresponding to the source. The

declarative specification of quality allows flexible definition of quality based-on application

requirements.

The existing geospatial data integration systems provide all results that meet the

content criteria to the user and it is the user’s responsibility to select the best-quality

data from that. However, this is a very tedious task for the user to select the best-quality

result from a large number of results. For example, a query for road network in city of

El Segundo against the set of sources listed on Mapdex10 returns over 600 images and

over 20 vector data sources. Selecting the best-quality data from such a large collection is

very time-consuming and error-prone task. Needless to say that making over 620 requests

to different data sources also takes a long time. The declarative specification of quality

allows QGM to filter out low quality data from the results.

Dynamically generating representations for geospatial sources: There are a

very large number of geospatial data sources on the Internet. Each source provides limited

types of data and has limited coverage. Therefore, many geospatial data integration

applications require integrating a very large number of geospatial sources to ensure enough

coverage. Manually representing so many sources is a very tedious and error-prone task.

However, there are a large number of geospatial sources that provide some metadata

description of its data using OpenGIS standards, ArcXML descriptions, or XML files.

10http://www.mapdex.org

9

Figure 1.4: Examples of Layer descriptions

QGM can dynamically generate the representations of the data using the metadata.

There are three key elements in the description of a geospatial data source: (1) what type

of data does a source provide, (2) what is the area covered by the data, and (3) what is the

quality of data provided by the source. If a source supports GIS standards, it must provide

a capabilities file similar to one shown in Figure 1.4 that lists available data layers and

their coverage. However, the names of the available data layers may not directly map to

data layers in the domain ontology. QGM utilizes string matching techniques to link layer

names from the sources with the layer names in the domain ontology. Moreover, sources

may utilize different coordinate systems. The automatic source description generator

module of QGM includes the necessary coordinate conversion operations.

As an example, consider the task of providing data to disaster management applica-

tions. Due to the unpredictable nature of disasters, we must cover the maximum possible

area and layers. Therefore, we must find a large number of sources. QGM utilizes the

10

Google Search Engine11 to find all available Web Map Servers. Next, QGM’s automated

source description generator module generates the source descriptions of all the servers.

By utilizing this method, QGM generates over 293,000 source descriptions.

The third part of the description of a data sources is the description of the quality of

data provided by a source. QGM samples the data from the new sources and compares it

with sources of known quality and overlapping coverage to generate an estimate for some

of the quality attributes of the new sources.

Quality-driven plan selection: When a user or an application asks QGM a query,

it utilizes the source descriptions to generate an integration plan that answers the user

query. QGM utilizes the user-supplied quality metric and the descriptions of the quality

of data provided by the available sources to prune source requests that do not satisfy the

quality criteria from the generated integration plan.

I evaluate my approach by presenting results of experiments on a large number of

real-world geospatial datasets to show that my approach can (1) integrate geospatial

data from a large number of sources and (2) provide the best-quality data for several

real-world user queries and quality metrics.

1.3 Thesis Statement

This thesis demonstrates that by discovering geospatial sources available on

the web, automatically learning the representations of both the content and

the quality of data provided by the discovered sources, and exploiting the

11http://www.google.com

11

representations of the sources during query answering we can provide high

quality geospatial data in response to user queries.

1.4 Contributions

The key contribution of this thesis is a Quality-driven Geospatial Mediator (QGM) frame-

work to accurately and efficiently integrate geospatial sources and operations. There are

four novel research contributions of the QGM framework:

• A declarative specification of both the content and the quality of geospatial sources

in a data integration system.

• Algorithms to automatically generate source descriptions and estimate the quality

of data provided by geospatial data sources available on the Internet.

• A quality-driven query reformulation algorithm to dynamically generate and opti-

mize an integration plan that provides high-quality data for the given user query

and quality metric.

• An approach to map the generated integration plans and source requests to a pro-

gram that is efficiently executed by a streaming, dataflow-style execution engine.

1.5 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 describes the representa-

tion of geospatial domain concepts, sources, and operations in QGM. Chapter 3 presents

an approach to automatically generate descriptions for geospatial sources and estimate

12

the quality of the data. Chapter 4 discusses the quality-driven query answering algorithm.

Chapter 5 reviews the work related to this research. Chapter 6 recaps the contributions

of this thesis and presents ideas for future work.

13

Chapter 2

Representing Geospatial Data

A key aspect of any mediation system [1, 2, 23, 25, 30, 31, 45, 47] is an integration model

that defines the domain relations, sources, their relationships, and domain rules that

define relationships between different domain relations. In this chapter, I describe my

approach to representing geospatial domain concepts, sources, and operations in my medi-

ation framework called Quality-Driven Geospatial Mediation (QGM). The representation

task is divided into four parts: (1) defining a set of domain relations, (2) describing the

available geospatial sources and their quality, (3) defining operations, and (4) representing

user queries. I describe each in turn.

2.1 Geospatial Domain Concepts

A domain model for any mediator system has a mediated schema [30] consisting of a set

of relations that refer to different entities in the domain. The relations in the mediated

schema provides a uniform interface for the users to pose queries to the mediator. In this

section, I describe a hierarchy of domain relations referring to different types of geospatial

14

data and their quality. I utilize the domain concept hierarchy as a mediated schema for

QGM.

2.1.1 Domain Concepts for Geospatial Data

Traditionally, a domain expert analyzes different queries and available data in the domain

to determine the mediated schema. I merged domain concepts from the FGDC list of

geographic concepts1, the hierarchy of geospatial data types from the National Atlas2,

and the National Geospatial Agency (NGA) spatial data types3 to determine different

geospatial data types and corresponding domain relations.

I divide the data in geospatial domain into Raster and Vector types based on the

major data types in the NGA spatial data types. An example of Raster data is a map of

an area, while a set of line segments denoting roads in the area is an example of Vector

data. Raster data represents a rectangular grid, with each element in the grid containing

some data value. In contrast, Vector data represents features with geometric shapes, such

as points, lines, or polygons.

I define twelve different categories for the Vector data, such as Transportation and

Hydrography, by merging the categories in NGA vector data products, FGDC major

categories, and categories from the National Atlas. Raster data is divided into three

subclasses representing maps, images, and elevation data.4 The three categories for the

raster data are based on three types of raster data available from NGA. I further divide

1http://clearinghouse1.fgdc.gov/servlet/FGDCWizard
2http://www.nationalatlas.gov
3http://earth-info.nga.mil/publications/specs/
4Depending on the organization of elevation data, it can be included within raster or vector types. If

the elevation data is in the form of contour lines, it is vector data, while elevation data in the form of a
uniform grid is considered raster data. Therefore, in my generic model I add elevation data to both types.

15

each category of Raster and Vector into several subcategories. The different categories

of the Vector data are divided into 35 subcategories, while the three categories of the

Raster data are divided into six subcategories. Table 2.1 and Table 2.2 show all Vector

and Raster data categories and subcategories, respectively.

Each subcategory consists of different data layers. A data layer refers to a specific

type of data and is identified by the name of the layer, such Rivers or Airports. There

are 167 different Vector data layers and 12 Raster data layers. Appendix A provides

complete list of data layers in my geospatial domain model.

I developed a geospatial model that has concepts for Vector and Raster data, cate-

gories for both types of data, subcategories, and data layers. Figure 2.1 shows a partial

set of domain relations from the resulting domain hierarchy.

I represent each concept in the hierarchy as a relation with a set of attributes. The

relations for the Raster and Vector domain concepts are as follows:

Raster(type, format, size, resolution, cs, bbox, source, rasterobj)

Vector(type, format, cs, bbox, source, vectorobj)

For the Raster domain concepts, I use the following attributes: type, format, size,

resolution, cs, bbox, source, and rasterobj. These attributes are based on the attributes

associated with images by various image sources, such as Microsoft TerraServer. The

type attribute contains the name of the domain relation, for example, Raster. The type

attribute is used in the queries to combine the data objects with the quality information.

The format attribute contains information about the image format, such as JPEG or

GeoTIFF. The size attribute refers to the height and the width of the image. The cs

16

Type Category Subcategory

Vector

Boundaries
Administrative

Political
Other

Buildings

Schools
Churches
Hospitals

Other
Cartography Property

Elevation
Contours

Other

Hydrography
Other
Coast

Rivers/Lakes

Industry

Agriculture
Buildings

Other
Facilities

Commercial
Physiography Physiography
Population Population

Transportation

Air
Other

Ground
Water

Utilities

Communication
Pipelines
Power
Other

Vegetation
Other

Agriculture

Weather

Temperature
Rainfall
Wind

Stations
Warnings

Table 2.1: Categories and Sub-categories of Vector Data

17

Type Category Subcategory

Raster

Image
Aerial Photos

Satellite Images

Maps
Topo Maps

Transporation Maps
Weather Maps

Elevation Elevation Grids

Table 2.2: Categories and Sub-categories of Raster Data

Figure 2.1: Partial QGM Domain Concepts Hierarchy

attribute represents the coordinate system in which the bounding box of the image is

described. The bbox attribute contains the bounding box of the image. The source

attribute provides information about the source of the image. Finally, the rasterobj

attribute contains a pointer to the actual image.

For the Vector domain concept, I use the following set of attributes: type, format,

cs, bbox, source, and vectorobj. The type attribute is used for the same purpose as the

type attribute in the Raster class. The format attribute contains information about the

format of the vector data, such as a Shapefile or GML. The cs attribute represents the

coordinate system in which the bounding box of the vector data is described. The bbox

attribute contains the bounding box of the vector data. The source attribute provides

information about the source of the data. Finally, the vectorobj attribute contains a

pointer to the actual vector data.

18

D1:Vector(‘Vector’, format, cs, bbox, source, vectorobj):-
Transportation(type, format, cs, bbox, source, vectorobj)

D2:Transportation(‘Transportation’, format, cs, bbox, source,
vectorobj):-

GroundTransportation(type, format, cs, bbox, source, vectorobj)

Figure 2.2: Domain Hierarchy Rules

While I have chosen these attributes for my domain model, QGM’s query answering

mechanism does not rely on a specific schema for domain relations and users can choose

their own schema. However, when selecting the schema for the domain relations, users

must ensure that they select attributes that allow QGM to join the domain relations

for different concepts with the corresponding quality relations. I selected this schema

as it allows me to easily express different types of queries I found in various real-world

geospatial data integration applications.

In addition to the set of domain concepts, I define the relationships between different

domain concepts. I use logic rules to describe the class-subclass relationships in the

domain hierarchy. Figure 2.2 shows the rules that describe the relationship between the

Vector and Transportation and Transportation and GroundTraponsportation relations.

The rule D1 states that transportation data is one type of vector data, while the rule D2

states that ground transportation data is one type of transportation vector data.

I believe that the domain concept hierarchy that I developed will be useful in most

general-purpose geospatial data integration system. However, for specific applications

a domain expert can specify a mediated schema of their choice to QGM or modify the

model that I developed.

19

2.1.2 Domain Concepts for Geosptial Data Quality

In addition to describing different types of geospatial data, I also describe the quality of

data using a set of domain relations with one or more attributes per quality measure. In

this thesis, I utilize an extended version of the quality standards5 proposed by the Federal

Geographic Data Committee (FGDC) to describe the quality of information provided by

the sources. For more specific applications, QGM allows a domain expert to define his or

her choice of quality attributes.

I represent the quality of each type of data as a relation with a set of attributes. The

quality relation for the Raster domain relation has six attributes: one attribute for the

type of the image object, one attribute for the source, and four attributes corresponding

to the dimensions of quality for images.

ImageQuality(source, type, date, originalresolution, multispectral,

completeness)

The original resolution defines the area of the ground represented in each pixel in x and

y components. An example value for the original resolution attribute is 1 meters/pixel.

The multi-spectral attribute equals ‘false’ if the image in the raster object is a black-and-

white image. If the image has values for all four bands (Red, Green, Blue, and InfraRed),

the multi-spectral attribute has value ‘true’. Figure 2.3 shows an example of black-and-

white image, while Figure 2.4 shows an example of multi-spectral satellite image. The

attribute completeness refers to the percentage area of the bounding box given in the

source description for which the source provides raster data.

5http://www.fgdc.gov/standards/projects/FGDC-standards-projects/metadata/base-metadata/

20

Figure 2.3: Example Black-and-white Image

The quality relation for the Vector domain relation contains eight attributes based

on the FGDC quality metadata standards.

VectorQuality(source, type, resolution, date, horizontalaccuracy,

verticalaccuracy, vectorswithinaccuracybounds,

attributecompleteness, completeness)

The resolution attribute refers to the resolution of the image that was used to collect

the vector data. The date attribute refers to the date on which the image used to collect

the vector data was taken. The horizontal accuracy and vertical accuracy refer to the

21

Figure 2.4: Example Multi-spectral Image

accuracy in the x and y dimension. The vectors within accuracy bounds6 attribute refers

to the percentage of vectors out of all vectors provided by the source that fall within

the buffer around the actual location of the feature with width and height defined by

the horizontal and vertical accuracy, respectively. The three attributes relate to the

following quality information that is often present in the metadata provided by sources:

The location of the provided features is accurate within ‘n units’ for ‘k %’ features.

The ‘n units’ refer to the accuracy bounds for the dataset, while the ‘k%’ refers to the

features within accuracy bounds attribute. Figure 2.5 shows an example of buffer around

the actual vector data and the same segment obtained from a source. The attribute

6In the FGDC metadata standard this attribute is called completeness. To avoid confusion with the
traditional view of completeness in the data integration literature, I use the phrase vectors within accuracy
bounds.

22

Actual Vector
Location

Vector Data
from Source

Figure 2.5: Example of Buffer Around Actual Vector Location

completeness refers to the percentage of vectors for which attribute values are available.

The completeness attribute refers to the percentage of actual feature vectors out of all

existing vectors provided by the data source.

I assume that all the subclasses of the Raster and Vector domain concepts have

the same attributes for the quality measures. While I have selected the quality attributes

recommended by FGDC for our motivating example, the quality representation in QGM is

generic. Depending on the application requirements, users can define different dimensions

of quality.

2.2 Geospatial Sources

An integral part of a domain model is a set of definitions for all available sources that

relate the sources with the domain concepts. In this section, I describe my approach to

defining the sources in QGM. I divide the task of defining a source into two parts. First,

I describe the content of the sources with respect to the domain concepts. Second, I

discuss my approach to describing the quality of data provided by the sources.

23

2.2.1 Describing Contents of the Sources

In this section, I show my approach to relating the contents provided by different sources

with the domain concepts from the domain concepts hierarchy described in Section 2.1. I

divide the task of defining contents of a source into two parts. First, I assign a relational

representation for the source and second, I describe the contents of the source with respect

to the domain relations.

Similar to the domain concepts, I represent each source as a relation of a set of

attributes. The set of attributes for a source are all of its input attributes (if any) and

all the output attributes. If values for any input attributes are required, I use the suffix

:b after an attribute to denote a binding restriction [47] on that attribute and suffix :f to

denote an attribute without a binding restriction.

Table 2.3 shows examples of relational representations of several sources that provide

raster and feature vector data. The Tigerlines source7 requires a bounding box and

provides the road network data for that area. The LARivers data source8 requires a

bounding box and provides a vector object containing the rivers for the area covered by

the bounding box. The CasilTransportation source9 requires both the bounding box and

the type of the transportation vector data (Roads, Railroads, or Airports), and provides

a vector object containing the requested data. The TerraServer data source10 requires a

bounding box, size of the image, type of the image (topographic maps, b/w satellite image,

or multi-spectral satellite image), resolution of the image, format of the image (JPG, GIF,

7http://www.census.gov/tiger
8http://greenvisionsplan.net/html/datasets.html
9http://gis.ca.gov/

10http://terraserver.microsoft.com

24

Sources
Tigerlines(bbox:b,vectorobj:f)
LARivers(bbox:b,vectorobj:f)
CasilTransportation(bbox:b,vectortype:b,vectorobj:f)
TerraServer(bbox:b, size:b, imagetype:b, resolution:b, format:b, imageobj:f)
NOAAImages(bbox:b,imageobj:f)

Table 2.3: Examples of relational representations of sources

or PNG), and provides a URL to the requested image. The NOAAImages data source

requires a bounding box and provides a URL to a high-resolution multi-spectral satellite

image.

The next step is to define the relationship between the contents of the sources and the

domain concepts. I utilize the Local-As-View model [46, 47] to describe the relationships

between the sources and domain relations. In the Local-As-View model, we define each

source as a view over the domain relations. In the geospatial domain, sources usually

provide information about one or more types of data layers in some region. Therefore,

I represent each source with a set of rules to describe the contents of the source and

the coverage restrictions. Each logic rule contains the source relation in the head and

a conjunction of domain relations and constraints with spatial or relational selections in

the body of the rule. The coverage restrictions are described using constraints.

I define the sources that provide different types of feature vector data as views over

the domain relations representing different subclasses of the Vector domain concept. For

example, the Tigerlines data source road vector data for the continental United States

is described using the rule S1 in Figure 2.6. The rule S1 describes the Tigerlines data

source over the Roads domain relation. We also specify the coverage restrictions using

25

a spatial selection operation (coveredby) on the bbox attribute to denote that the source

only provides data for bounding box within the United States.

The LARivers data source provides vector data describing all rivers in the Los Angeles

metro area. The rule S2 describes this source as a view over the Rivers domain relation.

The CasilTranportation data source provides three different types of vector data covering

the state of California. Therefore, I use three rules to describe the data source. Note that

while the head relation of the three rules are CasilTransportation1, CasilTransportation2,

and CasilTransportation3, the source attribute in all rules is set to ‘Casil’. I use three

rules with different predicates in the head to avoid disjunctive rules. In general case

disjunctive source descriptions in a Local-As-View model may result in increasing the

complexity of the query reformulation process from polynomial time to co-NP [20]. The

rule S3 describes the CasilTransportation1 as a view over the Roads relation, while the

rules S4 and S5 describe the sources CasilTransportation2 and CasilTransportation3 as

views over the Railroads and the Airport relation, respectively. Note that in each rule, the

second attribute in the head relation contains the name of the data layer. This ensures

that all requests to the source will only result in data referring to a particular layer, such

as Roads.

Similar to vector data sources, we can also describe raster data sources as views

over different domain concepts. For example, consider the TerraServer data source that

provides topographic maps, black and white satellite imagery, and multi-spectral satellite

imagery for the continental United States. We describe this source using three rules, one

per each type of raster data provided by the sources. These rules are shown in Figure 2.7.

Rules S6,S7, and S8 describe the three types of raster data provided by TerraServer. For

26

S1:Tigerlines(bbox,vectorobj):-
Roads(type, format, cs, bbox, source, vectorobj)^
bbox coveredby ‘[[17,65],[71,-168]]’^
vectorobj coveredby bbox^
cs = ‘EPSG:4326’^ format = ‘Shape’^
source = ‘Tigerlines’^ type = ‘Road’

S2:LARivers(bbox,vectorobj):-
Rivers(type, format, cs, bbox, source, vectorobj)^
bbox coveredby ‘[[33,-117],[35,-120]]’^
vectorobj coveredby bbox^
cs = ‘EPSG:4326’^ format = ‘Shape’^
source = ‘LARivers’^ type = ‘River’

S3:CasilTransportation1(bbox,‘Roads’,vectorobj):-
Roads(type, format, cs, bbox, source, vectorobj)^
bbox coveredby ‘[[32,-115],[37,-123]]’^
vectorobj coveredby bbox^
cs = ‘EPSG:4326’^ format = ‘Shape’^
source = ‘Casil’^ type = ‘Road’

S4:CasilTransportation2(bbox,‘Railroads’,vectorobj):-
Railroads(type, format, cs, bbox, source, vectorobj)^
bbox coveredby ‘[[32,-115],[37,-123]]’^
vectorobj coveredby bbox^
cs = ‘EPSG:4326’^ format = ‘Shape’^
source = ‘Casil’^ type = ‘Railroad’

S5:CasilTransportation3(bbox,‘Airports’,vectorobj):-
Airports(type, format, cs, bbox, source, vectorobj)^
bbox coveredby ‘[[32,-115],[37,-123]]’^
vectorobj coveredby bbox^
cs = ‘EPSG:4326’^ format = ‘Shape’^
source = ‘Casil’^ type = ‘Airport’

Figure 2.6: Example Source Descriptions for Vector Data Sources

all types of data, TerraServer requires a bounding box, type of the image, resolution of

the image , and size of the image and returns the image. Note that the type attribute is

not necessarily same as the value for the layer name passed to the source. For example,

the values for the imagetype attribute passed to TerraServer are different from the names

associated with the concepts in the domain hierarchy in rules S6-S8.

27

S6:TerraServer1(bbox:b, imagetype:b, size:b, resolution:b, format:b,
imageobj):-

TopographicMaps(type, format, size, resolution, cs, bbox,
source, imageobj)^

bbox coveredby ’[[17,65],[71,-168]]’^
source = ‘TerraServer’^
type = ‘TopographicMap’^
imagetype = ‘Topographic Maps’

S7:TerraServer2(bbox:b, imagetype:b, size:b, resolution:b, format:b,
imageobj):-

BWImages(type, format, size, resolution, cs, bbox,
source, imageobj)^

bbox coveredby ‘[[17,65],[71,-168]]’^
source = ‘TerraServer’^
type = ‘BWImages’^
imagetype = ‘B/W Image’

S8:TerraServer3(bbox:b, imagetype:b, size:b, resolution:b, format:b,
imageobj):-

MultiSpectralImage(type, format, size, resolution, cs, bbox,
source, imageobj)^

bbox coveredby ’[[17,65],[71,-168]]’^
source = ‘TerraServer’^
type = ‘MultiSprectralImage’^
imagetype = ‘Urban Image’

Figure 2.7: Example Source Descriptions for Image Data Sources

2.2.2 Representing Quality of Geospatial Sources

In addition to the source descriptions, I also declaratively specify the quality of informa-

tion provided by each source.

In addition to the quality relations for the domain concepts, I define quality relations

for each layer provided by the source as a relation with a set of attributes. I limit the

set of attributes in the source quality relations to the attributes of the quality domain

relations.

28

For example, consider the Tigerlines data source from our motivating example. As

it provides only the road vector data, the source quality relation only contains attributes

from the RoadQuality domain relation (which has the same attributes as the VectorQual-

ity domain relation). However, the source and the type attributes are not present as the

source and the type are already in the name of the relation.

TigerlineRoadQuality(resolution, date, horizontalaccuracy,

verticalaccuracy, vectorswithinaccuracybounds, attributecompleteness,

completeness)

Note that in my domain model I represent the quality at source level, i.e. any data

object retrieved from the data source has the same quality. Therefore, the source quality

relations do not refer to a particular data object, but they contain a reference to the

source and the type of the data. If the application required QGM to associate different

quality values based on some other attribute, we can change the set of attributes in the

quality relations to address that.

As the source quality relations are virtual, I use facts to provide the tuples for the

relations. For example, I represent the results reported in [18] for the quality of the

Tigerlines dataset using the facts shown below.

TigerlineRoadQuality(1:100000K, 1/1/2000, 3.6, 3.6, 21, 95, 94)

TigerlineRoadQuality(1:100000K, 1/1/2000, 7.2, 7.2, 40, 95, 94)

TigerlineRoadQuality(1:100000K, 1/1/2000, 10.8, 10.8, 53, 95, 94)

Notice that, based on different values of the horizontal and vertical accuracy, we

get different values for vectors within accuracy bounds. Moreover, higher values for the

29

accuracy attribute mean a larger buffer size. Typically, at higher values of the accuracy

attributes, most sources will have a higher percentage of vectors within accuracy bounds.

I define similar facts for all vector and raster data sources. QGM can utilize multiple facts

about the quality during the query processing. For example, if the user asks to retrieve

road vector datasets such that with horizontal accuracy and vertical accuracy bounds less

than 8 meters, the datasets have at least 35% data within the accuracy bounds, QGM

can utilize the second quality fact in the list shown above to determine that the Tigerlines

dataset satisfies the quality criteria.

2.3 Representing Operations

In this section I discuss my approach to representing different types of operations and

their impact of the quality data. In order to support processing data from different

sources, I represent four types of operations in QGM: (1) spatial selection operations

[37], (2) aggregate operations, (3) mathematical operations, and (4) coordinate conversion

operations [34].

2.3.1 Spatial Selection Operations

In order to select data using spatial restrictions, QGM supports spatial selection op-

erations. Spatial selection operations, such as intersects, are very important part of a

geospatial data integration system as they are used in many tasks. The most common

uses of the spatial selection operations are to define coverage of sources, define an area of

interest for user queries, and to define constraints on geospatial features.

30

QGM handles the spatial selection operations in the same manner as all selection

operations, such as equality order constraints. Spatial selections can be used in any

constraints in the source descriptions, domain rules, or user queries. The syntax for the

spatial selection operations is the same as the syntax for the equality operation. An

example of a constraint with spatial selection operation are the constraints on the bbox

attribute in the source description shown below:

S1:Tigerlines(bbox,vectorobj):-

Roads(type, format, cs, bbox, source, vectorobj)^

bbox coveredby ‘[[17,65],[71,-168]]’^

vectorobj coveredby bbox^

cs = ‘EPSG:4326’^

format = ‘Shape’^

source = ‘Tigerlines’^

type = ‘Road’

The first constraint on the bbox attribute shows the coveredby operation applied to an

attribute and a constant value, while the second constraint including the vectorobj and

the bbox attributes shows the coveredby operation used to define the relationship between

two attributes.

As a part of the generic-domain model I implemented three spatial selection opera-

tions: (1) coveredby, (2) intersects, (3) disjoint. I use the Geotools open source toolkit to

implement all three operations.

31

2.3.2 Aggregate Operations

The second group of operations supported by QGM are aggregate operations. Unlike the

spatial selection operations, QGM only allows the aggregate operations in domain rules

and user queries. Each aggregate operation is represented using a relation similar to the

source relations and domain relations.

I implemented eight aggregate operations in QGM. In this section, I describe each

operation and provide an example of how I utilize the operation in QGM.

Pack: The pack operation is used to create an embedded relation. Once a relation

has been packed, QGM can apply other aggregation operations on it. The pack operation

operating on a relation with one attribute is represented using a relation with two argu-

ments. The first argument refers to the attribute(s) to pack, while the second argument

refers to the result of the operation. The rule shown below provides an example of pack

operation.

AllRoadCompletenesss(completenessrel):-

RoadQuality(source, type, resolution, date, horizontalaccuracy,

verticalaccuracy, vectorswithinaccuracybounds,

attributecompleteness, completeness)

pack(completeness, completenessrel)^

bbox coveredby ‘[[17,65],[71,-168]]’

In the example rule, I use the pack operation to create an embedded relation providing

information about all values of the completeness attribute for the road vector data. The

result of the operation is a relation called completenessrel that has exactly one attribute

32

and one tuple. The value of the attribute in the tuple contains a relation with one column

that lists all the completeness values of the road quality relation.

In general, the pack operation can be used to create a nested relation with arbitrary

number of attributes.

Unpack: The unpack operation performs exactly the opposite operation to the pack

operation. It takes an attribute containing an embedded relation and unpacks the rela-

tion. The rule below shows and example of the unpack operation.

AllRoadCompleteness(completeness):-

AllRoadCompletenesss(completenessrel)^

unpack(completenessrel, completeness)

The first argument for the unpack operation contains the attribute with a relation,

while the rest of the arguments are the attributes of the nested relation. In general, the

unpack operation can be used to unpack arbitrary number of attributes.

Sum, Average, Min, Max: The sum operation adds all rows in the given relation.

The average operation is similar to the sum operation, except that it finds the average

of all values in the given relation. The min operation finds the minimum value from all

values in the given relation. The max operation finds the maximum value from all values

in the given relation.

All four operations are modeled as relations with two attributes. The first attribute

contains a relation with one attribute, while the second attribute is the result of the

operation. The first attribute must be a relation produced by using the pack operation.

33

The rule below shows an example of finding the sum of all values of the completeness

attribute of the RoadQuality relation:

TotalCompleteness(sumofcompleteness):-

RoadQuality(source, type, resolution, date, horizontalaccuracy,

verticalaccuracy, vectorswithinaccuracybounds,

attributecompleteness, completeness)

pack(completeness, completenessrel)^

sum(completenessrel, sumofcompleteness)

SkylineMin: Skyline queries [9, 57] are used to find all points in a multi-dimensional

space which are not dominated by any other point. I utilize the skyline operator to define

quality restrictions on the data. The general skyline operations are defined over arbitrary

number of attributes. In the current implementation of QGM I implement the skyline

operations with two attributes.

The skylineMin operation is represented as a relation with two arguments. The first

argument is an attribute containing a nested relation with two attributes. The second

attribute denoting the result of the operation is also a nested relation containing two

attributes. However, all rows present in the relation in the second attribute are not

dominated by any other tuples.

SkylineMinExample(mincompleteness,mindate):-

RoadQuality(source, type, resolution, date, horizontalaccuracy,

verticalaccuracy, vectorswithinaccuracybounds,

attributecompleteness, completeness)

34

pack(completeness, date, resultrel)^

skylineMin(resultrel, skylineresultsrel)^

unpack(skylineresultsrel, mincompleteness, mindate)

This rules obtains all values of completeness and date attributes such that no other

tuple contains lower values for both attributes using the skylineMin operation. First,

it uses the pack operation to create a relation with all pairs of completeness and date

values. Next, it uses the skylineMin operation to find all non-dominated rows. Finally,

it unpacks the relation using the unpack operation.

SkylineMax: The skylineMax operation is similar to the skylineMin operation except

that it find tuples that have higher values for the attributes instead of lower values.

2.3.3 Mathematical Operations

I also implemented four mathematical operations to assist in computation in QGM. Those

operation are: (1) add, (2) subtract, (3) multiply, and (4) divide. All of these operations

can appear in domain rules and user queries. All these operations are represented with

a relation containing three attributes. These operations use the values of the first two

attributes as inputs and the third attribute contains the result of the operation. For the

subtract operation, the second attribute is subtracted from the first attribute. Similarly,

for the divide operation the first attribute is divided by the second attribute.

35

2.4 Representing User Queries

The source descriptions, domain rules, operation descriptions, and quality relations to-

gether make up the domain model for QGM. Once we have described our domain model,

users can ask QGM different queries. A user query in QGM is specified by three logic

rules. The first rule specifies the join between the content and the quality criteria. The

second rule specifies the quality criteria while the third rule specifies the content crite-

ria. The head of the quality criteria rule contains a predicate with a set of attributes,

while the body of the quality criteria rule contains predicates referring to quality rela-

tions defined at domain level, any operations, and necessary constraints. Similarly, the

content rule contains predicates referring to the domain relations for the content, any

necessary operations, and constraints. I explain more details of the query by discussing

some examples.

Consider a query to obtain the most recently collected road vector data in the area

defined by a bounding box ‘[[33,-114],[35,-119]]’. In QGM, we can describe this query in

two parts. The first part describes the data necessary for the query, while the second

part describes the quality requirements for the data. Each part is described using one or

more logic rules.

Q1(vectorobj, date):-

Q1Quality(source, type, date)^

Q1Data(source, type, vectorobj)

Q1Quality(source, type, date):-

36

RoadQuality(source, type, resolution, date, horizontalaccuracy,

verticalaccuracy, vectorswithinaccuracybounds,

attributecompleteness, completeness)^

pack(date, vdaterel)^

max(vdaterel, maxvdate)^

date = maxvdate

Q1Data(type, source, vectorobj):-

Roads(type, format, cs, bbox, source, vectorobj)^

bbox = ‘[[33,-114],[35,-119]]’

The rule with the Q1Data relation in the head describes the data requirement of the

query, while the rule with the Q1Quality relation represents the quality requirements for

the query. The combination of pack and max operations in the Q1Quality rule identify

the vector data with the most recent date. The result of this query is a set of URLs

pointing to the vector data covering the area of interest in the query. Each result in the

URL either provides more coverage of the query area compared to the other results in

the set or has been collected more recently compared to other results in the set. If one

source provides the most recent data for the entire area, the result of the query is a set

with only one URL.

The rule describing the quality metric can also include constraints. For example, the

rule below describes a quality metric to find the most recently collected road vector data

with at least 75% completeness.

37

Q2Quality(source, type, date, completeness):-

RoadQuality(source, type, resolution, date, horizontalaccuracy,

verticalaccuracy, vectorswithinaccuracybounds,

attributecompleteness, completeness)^

pack(date, vdaterel)^

max(vdaterel, maxvdate)^

date = maxvdate ^

completeness > 75

In addition, QGM also supports skyline queries [9, 57]. Given a set of points in a

multi-dimensional space the skyline query returns a set of points such as that for each

point there is no point that is better in all dimensions. Skyline queries are very useful in

evaluating trade-offs between different quality measures. For example, consider the query

to find most recent and most complete road vector data for the same area. I can describe

this query to QGM using the following quality metric rule.

Q3Quality(source, type, date, completeness):-

RoadQuality(source, type, resolution, date, horizontalaccuracy,

verticalaccuracy, vectorswithinaccuracybounds,

attributecompleteness, completeness)^

pack(date, completeness, datecompresultrel)^

skylineMax(datecompresultrel, skylineresultrel)^

unpack(skylineresultrel, skylinevdate, skylinevcompleteness)^

date = skylinevdate ^

38

completeness = skylinevcompleteness

The rule contains a request to a skylineMax operator that finds all rows such that the

value for at least one attribute in the skylineMax operation (vdate or vcompleteness) is

not dominated by the other rows.

The users are not limited to retrieving just one type of data. Users can also retrieve

multiple types of vector or raster data. An example of this is shown in a rule below which

retrieves multi-spectral, high-resolution satellite imagery and road vector data for one

area.

Q4Data(vsource, vtype, isource, iname, vectorobj,imageobj):-

Roads(vtype, vformat, cs, bbox, source, vectorobj)^

Multi-spectralImage(iname, itype, iformat, size, resolution, cs, bbox,

isource, imageobj)

bbox = ‘[[33,-114],[35,-119]]’^

size = ‘[600,600]’

When retrieving multiple datasets, the quality metric can either be independent for

each dataset or may have some dependency. For example, use can ask to find vector data

and imagery so that the difference between the resolution at which both are collected is

minimized using the following quality query.

Q5Quality(vsource, vtype, isource, itype, resdiff):-

RoadQuality(vsource, vtype, vresolution, vdate, horizontalaccuracy,

verticalaccuracy, vectorswithinaccuracybounds,

attributecompleteness, vcompleteness)^

39

Multi-spectralQuality(isource, itype, idate, iresolution,

multispectral, icompleteness)^

subtract(iresolution,vresolution, resdiff)^

pack(resdiff, resdiffrel)^

Min(resdiffrel, minresdiff)^

resdiff = minresdiff

User can also use a Skyline query to describe the quality metric. For example query to

find road vector data and multi-spectral, high-resolution imagery such that the difference

in the date and the resolution at which the data is collected are minimized.

Q6(vectorobj,imageobj, resdiff, datediff):-

Q6Quality(vsource, vtype, isource, itype, resdiff, datediff)^

Q6Data(vectorobj,imageobj, vsource, vtype, isource, itype)

Q6Quality(vectorobj,imageobj):-

RoadQuality(vsource, vtype, vresolution, vdate, horizontalaccuracy,

verticalaccuracy, vectorswithinaccuracybounds,

attributecompleteness, vcompleteness)^

Multi-spectralQuality(isource, itype, idate, iresolution,

multispectral, icompleteness)^

subtract(iresolution,vresolution, resdiff)^

subtract(idate,vdate, datediff)^

pack(resdiff,datediff, aggregateresultrel)^

SkylineMin(aggregateresultrel,skylineresultrel)^

40

unpack(skylineresultrel, skylineresdiff, skylinedatediff)^

skylinedatediff = datediff ^

skylineresdiff = resdiff

Q6Data(vectorobj, imageobj, vsource, vtype, isource, itype):-

Roads(vtype, vformat, cs, bbox, vsource, vectorobj)^

Multi-spectralImage(itype, iformat, size, resolution,

cs, bbox, isource, imageobj)^

bbox = ‘[[33,-114],[35,-119]]’^

size = ‘[600,600]’

I provide more discussion on the results of different queries and quality metrics in

Section 4 where I describe how QGM formulates plans to answer user queries.

41

Chapter 3

Large Scale Source Modeling for Geospatial Sources

In this chapter, I describe techniques to automatically model a large number of data

sources available on the web and estimate the quality of data provided by the sources.

First, I discuss several methods to discover geospatial sources. Second, I describe my

approach to automatically generate source descriptions for the sources. Third, I describe

an approach to estimate values for some of the quality attributes of the data provided by

the new sources. Finally, I describe the empirical evaluation of the techniques.

3.1 Discovering Geospatial Sources

The focus of my work is on large-scale integration of geospatial sources. Therefore, I

need to identify a large number of geospatial sources. I use two different methods to find

geospatial sources. First, I use a search engine to find spatial data sources providing data

of different types. I use terms, such as ‘download shapefiles’ and ‘download geospatial

data’ to locate different types of geospatial data available on the web. For each search

term, QGM’s source modeling module analyzes all results for links using the Geotools

42

Open Source Toolkit1 to identify links pointing to shapefiles (or zipped shapefiles). Using

this technique, I have been able to locate over 16,000 different shapefiles containing differ-

ent types of geospatial data. However, manually checking all the shapefiles to determine

the type of data they provide, their coverage, and the quality of data they provide is

not feasible due to the large number of files. Therefore, I utilize QGM’s source modeling

module to automatically determine the type of data provided by the shapefiles, their

coverage, and the quality of data.

Second, I traverse spatial data repositories to find all sources of geospatial data. There

are several geospatial data repositories on the web. I use three such repositories to identify

over 300,000 geospatial data layers from over 3,700 sources. The repositories that I have

used are: (1) Mapdex2, (2) GiDB Portal3, and (3) Geography Network4. Mapdex and

Geography Network provide lists of thousands of ArcIMS services available on the web,

while GiDB Portal provides links to a large number of Web Map Servers.5 In the future,

we can write a specialized geospatial data crawler to identify geospatial sources. I discuss

this in Chapter 6.

Once I have discovered the set of sources, I utilize QGM’s automatic source description

generation capability to generate descriptions for the sources.

1http://www.geotools.org
2http://mapdex.org
3http://dmap.nrlssc.navy.mil/
4http://geographynetwork.com
5http://www.opengeospatial.org/standards/wms

43

3.2 Automatic Source Description Generation

In this section, I describe my approach for automatically generating source descriptions

for the identified sources. I divide the description of a geospatial data source into two

modules. The first module identifies the type of data that the source provides and its

coverage, while the second module determines the coordinate system used by the data

source.

3.2.1 Matching Sources with Domain Concepts

In this section, I describe the process of mapping information about available data layers

from the discovered sources with the concepts from the domain concepts hierarchy dis-

cussed in Section 2.1. For each domain concept I have a name and a set of keywords for

the data layer. For example, the Country Boundaries domain concept has the keywords

‘political boundaries’ and ‘country polygons’. For each data source discovered by search-

ing the web or crawling the repositories, QGM finds the list of data layers provided by

the source and matches the names and the keywords for the discovered layers with the

names and keywords of the layers in the domain concepts hierarchy.

QGM can automatically generate descriptions of three different types of geospatial

data sources: (1) shapefiles, (2) Web Map Servers or Web Feature Servers, and (3) ArcIMS

Servers.

The shapefile data sources usually contain only one data layer. QGM utilizes the

Geotools open source toolkit to process shapefiles. For each data layer, a shapefile stores

the name of the layer, optional set of keywords that describe the layer, a set of features,

44

Name Description
scpop2000 South Carolina 2000 Population Cartogram

usast usstates
counties uscounties
indiads India States and Districts
schools

Table 3.1: Example of name and descriptions extracted from shapefiles

and a table with some metadata for each feature. QGM extracts the name and the

keywords of the data layer provided by the shapefile and utilizes the information to

match the layer with the domain concepts. Table 3.1 shows examples of layer names and

descriptions extracted from shapefiles.

Web Map Servers and Web Feature Servers provide one or more layers of raster

data using the standard protocol described by the OpenGIS Consortium. According to

the protocol, a server must implement two required operations called GetCapabilities and

GetMap and one optional operation called GetFeatureInfo. The GetCapabilities operation

provides an XML specification of all the data layers provided by the source. Figure 3.1

shows a segment of the capabilities file for a Web Map Server. The tag Name contains

the name of the data layer, while the tag Title provides the description. In some cases,

the Name tag may contain an internal id for the layer, which would not be informative

for the end-user. Therefore, QGM extracts information from both of these tags for all

data layers provided by a server from the capabilities file and matches each layer with

the domain concepts.

The third type of geospatial sources supported by QGM are the ArcIMS servers.

ArcIMS Servers are similar to Web Map Servers, but they utilize ESRI’s protocol instead

of the OpenGIS protocol. Similar to Web Map Servers, ArcIMS servers also provide

45

<Layer>
<Title>Demis World Map</Title>
<Abstract/>
<SRS>EPSG:4326</SRS>
<LatLonBoundingBox minx="-180" miny="-90" maxx="180" maxy="90"/>
<BoundingBox SRS="EPSG:4326" minx="-184" miny="-90" maxx="180" maxy="90"/>
<Layer queryable="1">

<Name>Bathymetry</Name>
<Title>Bathymetry</Title>
<BoundingBox SRS="EPSG:4326" minx="-180" miny="-90" maxx="180" maxy="90"/>

</Layer>
<Layer queryable="1">

<Name>Countries</Name>
<Title>Countries</Title>
<BoundingBox SRS="EPSG:4326" minx="-184" miny="-90" maxx="180" maxy="85"/>

</Layer>
<Layer queryable="1">

<Name>Topography</Name>
<Title>Topography</Title>
<BoundingBox SRS="EPSG:4326" minx="-184" miny="-90" maxx="180" maxy="90"/>

</Layer>
<Layer queryable="0">

<Name>Hillshading</Name>
<Title>Hillshading</Title>
<BoundingBox SRS="EPSG:4326" minx="-180" miny="-90" maxx="180" maxy="90"/>

</Layer>

Figure 3.1: Example capabilities file from Web Map Server

one or more data layers and provide a capabilities file as an XML document. ArcIMS

servers provide the specification of data layers using ArcXML6 schema. Figure 3.2 shows

a segment of the capabilities file for an ArcIMS server. The name attribute of the LAY-

ERINFO tag provides the name of the data layer. QGM extracts information from the

name attribute for all data layers provided by a server from the capabilities file and

matches each layer with the domain concepts.

Once QGM has extracted names and descriptions of all data layers provided by the

source, it matches the tokens from the name and the keywords extracted from the source

with the name and the keywords of the domain concepts using the Dice similarity score

6http://edndoc.esri.com/arcims/9.0/

46

file:///C:/Documents%20and%20Settings/thakkar/Desktop/test.xml

1 of 1 5/4/2007 2:31 PM

This XML file does not appear to have any style information associated with it. The document tree is shown below.

− <ARCXML version="1.1">
− <RESPONSE>
− <SERVICEINFO>
− <ENVIRONMENT>

<LOCALE language="en" country="US"/>
<UIFONT name="Arial" color="0,0,0" size="12" style="regular"/>
<SEPARATORS cs=" " ts=";"/>
<IMAGELIMIT pixelcount="2097152"/>
<SCREEN dpi="96"/>
<CAPABILITIES forbidden="" disabledtypes="bmp,tif" servertype="arcmapserver" returngeometry="xmlmode"/>

</ENVIRONMENT>
− <LAYOUTINFO pageunits="inches">

<ENVELOPE minx="0" miny="0" maxx="8.5" maxy="11"/>
</LAYOUTINFO>

− <PROPERTIES>
<FEATURECOORDSYS
string="GEOGCS["GCS_Assumed_Geographic_1",DATUM["D_North_American_1927",SPHEROID["Clarke_1866",6378206.4,294.97869 82]],PRIMEM["Greenwich",0.0],
id="104000"/>
<FILTERCOORDSYS
string="GEOGCS["GCS_Assumed_Geographic_1",DATUM["D_North_American_1927",SPHEROID["Clarke_1866",6378206.4,294.97869 82]],PRIMEM["Greenwich",0.0],
id="104000"/>
<MAPUNITS units="decimal_degrees"/>
<BACKGROUND color="255,255,255"/>
<ENVELOPE minx="-205.513538400732" miny="-94.11077166389" maxx="206.07539375395" maxy="91.3014948978037" name="Initial_Extent"/>

</PROPERTIES>
− <LAYERINFO type="featureclass" name="Ocean" id="4" visible="true">

<FCLASS type="polygon"/>
</LAYERINFO>

− <LAYERINFO type="featureclass" name="Countries" id="3" visible="true">
<FCLASS type="polygon"/>

</LAYERINFO>
</SERVICEINFO>

</RESPONSE>
</ARCXML>

Figure 3.2: Example ArcIMS Server capabilities file

[67]. For each layer, QGM concatenates the name and the keywords and tokenizes the

concatenated string to create a set of tokens. QGM also performs similar operation on the

names and keywords of the domain concepts. QGM computes a matching score between

each data layer and each domain concept using the dice formula shown below.

Dice(TokenSet1, T okenSet2) =
2 ∗ (TokenSet1 ∩ TokenSet2)
|TokenSet1|+ |TokenSet2|

The formula finds all matching tokens between the two sets and divides that number

by the sum of the number of tokens from both sets. The tokens are considered matching if

they match using any of the following transformations: (1) equality, (2) prefix, (3) suffix,

47

and (4) stemming. For the prefix and suffix transformations, QGM only considers tokens

with at least three characters. This measure avoids matches on single characters and very

small strings. Matches using all transformations are weighed equally. In future, we can

improve QGM’s matching technique by utilizing different weights for each transformation.

For each layer, QGM finds the match by selecting the domain concept with the highest

similarity score above 0.5. The threshold allows QGM to ignore matches on words that

occur very frequently or matches on just one term such as ‘polygon’. If no domain concept

matches a layer from a shapefile or ArcIMS service, QGM matches that layer to the Vector

domain concept, while a layer from a Web Map Server with no matching domain concept

is matched with the Raster domain concept.

For each data layer provided by a source, QGM also needs to determine the coverage

of the source, i.e. the area for which the source provides data for the layer. Depending on

the type of the source, QGM obtains the coverage differently. If the data is stored in the

shapefile format, the metadata component of the shapefile contains the bounding box of

the area covered by the source. QGM utilizes the Geotools open source toolkit to obtain

the coverage. If a source is a Web Map Server or a Web Feature Server, QGM obtains the

coverage from the BoundingBox or LatLonBoundingBox tags (see Figure 3.1). In case

of the ArcIMS sources the coverage information is provided in the ENVELOPE tag (see

Figure 3.2).

Once QGM has determined the coverage of all data layers provided by a source and a

matching domain concept for each layer, QGM can generate a description for the source.

For each data layer provided by the source, QGM generates one logic rule describing the

source as a view over the domain concept matching with the layer. For example, QGM

48

generates the following rule for a shapefile data source that provides roads in the area

specified by the bounding box ‘[[17,65],[71,-168]]’ (which covers the United States) .

usroadssshapefile(bbox,vectorobj):-

Roads(vtype, format, cs, bbox, source, vectorobj)^

bbox coveredby ‘[[17,65],[71,-168]]’^

vectorobj coveredby bbox^

cs = ‘EPSG:4326’^

format = ‘Shape’^

source = ‘usroads’^

vtype = ‘Road’

The source is defined as view over the Roads domain concept as the data layer provided

by the source matches with the Roads domain concept. The constraint on the bbox

attribute is defined based on the coverage information extracted from the source. I

discuss the constraint on the coordinate system(cs) attribute in Section 3.2.2.

In case of Web Map Servers, Web Feature Servers, or ArcIMS servers, QGM generates

one rule per data layer provided by the source. While the head of all the rules is different

to avoid disjunctive rules, the source attribute in all rules is set to the name of the source.

The request to obtain data of any layer from the Web Map Servers, Web Feature Servers,

or ArcIMS Servers must contain the name of the data layer. Therefore, QGM encodes

that information in the logic rules for the source description. For the example Web Map

Server capabilities file shown in Figure 3.1, QGM generates the rules shown in Figure 3.3.

49

DemisWMS1(bbox, name, size, resolution, format, imageobj):-
Raster(itype, iformat, size, resolution, cs, bbox,

source, imageobj)^
name = ‘Bathymetry’^
bbox coveredby ’[[-90,-180],[90,180]]’^
source = ‘DemisWMS’^
itype = ‘Raster’

DemisWMS2(bbox, name, size, resolution, format, imageobj):-
CountryMaps(type, format, size, resolution, cs, bbox,

source, imageobj)^
bbox coveredby ‘[[-90,-180],[90,180]]’^
source = ‘DemisWMS’^
name = ‘Countries’^
type = ‘CountryMaps’

DemisWMS3(bbox, name, size, resolution, format, imageobj):-
TopoMaps(type, format, size, resolution, cs, bbox,

source, imageobj)^
bbox coveredby ’[[-90,-180],[90,180]]’^
source = ‘DemisWMS’^
name = ‘Topography’
type = ‘TopoMaps’

DemisWMS4(bbox, name, size, resolution, format, imageobj):-
Raster(type, format, size, resolution, cs, bbox,

source, imageobj)^
name = ‘Hillshades’^
bbox coveredby ’[[-90,-180],[90,180]]’^
source = ‘DemisWMS’^
type = ‘Raster’

Figure 3.3: Example Source Descriptions for Web Map Servers

50

ArcIMS1(bbox, name, vectorobj):-
Oceans(vtype, format, cs, bbox, source, vectorobj)^
bbox coveredby ‘[[33,-117],[35,-119]]’^
vectorobj coveredby bbox^
cs = ‘EPSG:4326’^
format = ‘ArcXML’^
source = ‘ArcIMS1’^
vtype = ‘Oceans’^
name = ‘Oceans’

ArcIMS2(bbox, name, vectorobj):-
Countries(vtype, format, cs, bbox, source, vectorobj)^
bbox coveredby ‘[[33,-117],[35,-119]]’^
vectorobj coveredby bbox^
cs = ‘EPSG:4326’^
format = ‘ArcXML’^
source = ‘ArcIMS1’^
vtype = ‘Countries’^
name = ‘Countries’

Figure 3.4: Example Source Descriptions for ArcIMS Servers

Each rule corresponds to different layers described in the capabilities file. In the

example layers shown in Figure 3.1, QGM finds matching data layers for two of the four

layers. The first layer titled ‘Bathymetry’, QGM does not find a suitable match in the

domain concepts hierarchy, so it matches it with the Raster domain concept. The second

and third layers are matched with the CountryMaps and the TopoMaps domain concepts.

The fourth layer titled ‘Hillshades’ is also matched with the Raster concept as it does not

match with any concept. In all rules, QGM puts a constant value for the name attribute

in each rule to match with the name of the layer specified in the Web Map Server’s

capabilities file.

For the ArcIMS Server capabilities file shown in Figure 3.2, QGM generates the rules

shown in Figure 3.4. Both rules are similar to the rules generated for the Shapefile data

51

source. The key difference is that the second attribute of the head relation contains the

name of the layer in the data source. QGM puts a constant value for the attribute in each

rule to match with the name of the layer specified in the ArcIMS Server’s capabilities file.

3.2.2 Managing Coordinate Systems

Geospatial sources on the web often use different coordinate systems to store geospatial

data. As a user may not be familiar with different coordinate systems, he or she may

want the results of the queries in certain coordinate system. Therefore, a geospatial data

integration system that integrates data from a large number of geospatial sources, must

be able to transform data from one coordinate system to another. In this section, I

describe QGM’s approach to handling sources that provide data in different coordinate

systems.

As described in Section 2.3, QGM supports a coordinate conversion operation, that

accepts a geospatial data object, its coordinate system, and a target coordinate systems

and transforms the geospatial data to the target coordinate system. I utilize the coordi-

nate conversion operation to address different coordinate systems.

In QGM I can use different strategies for handling coordinate systems by providing

different source descriptions and domain rules to handle coordinate conversions. I inves-

tigated three different methods: (1) keep all datasets in their own coordinate systems

and only change coordinate systems to meet user requirements, (2) change all datasets to

one coordinate system and change coordinate systems based on user requirements, and

(3) internally keep only the coverages of datasets in one coordinate system and change

coordinate systems as needed.

52

The key problem with the first approach is that every query requires converting all

coverages into the coordinate system specified in the query. Once the coordinate con-

versions are performed, QGM can determine which sources are relevant to the query.

Next, QGM retrieves the data from the relevant sources and performs necessary coordi-

nate conversion operations. In this approach, QGM performs many coordinate system

transformations for each query resulting in a slow response time.

The second approach requires that QGM has complete control over sources, which

is not the case for Web Map Server or ArcIMS Servers. We can materialize the data

provided by the sources, but the materialization process can take a very long time and

many resources. Therefore, this approach is not practical.

The third method is a compromise between the first two methods. By keeping the

coverage information in one coordinate system, QGM is able to determine if a source

provides data for the query area without performing any coordinate conversion operations.

If a source provides relevant data in the query area, QGM retrieves the data and performs

a coordinate transformation. Also, converting coverages into one coordinate system is

not as time-consuming as converting all data records. This method results in the lowest

number of coordinate conversions and the fastest query response time. Therefore, in my

geospatial domain, I use this method.

This method requires that when QGM generates a source description for a new source,

it determines the coordinate system of the source, determines the coverage of the source,

converts the coverage into the common coordinate system, and inserts proper coordinate

system transformation operations in the source description. For my sample domain, I

utilize the EPSG:4326 coordinate system as the common coordinate system. EPSG:4326

53

is a common geographic projection that refers to WGS84 latitude/longitude coordinates

in degrees with Greenwich as the central meridian. However, this parameter is part of

QGM’s configuration and can be changed easily to suit different applications.

Different types of geospatial sources store the coverage information differently. The

geospatial data stored in shapefiles often contains a projection file that records the co-

ordinate system of the data source. Web Map Servers provide the coordinate system

information in the SRS tag of the capabilities file (see Figure 3.1), while the ArcIMS

Servers specify the coordinate system in the FEATURECOORDSYS and FILTERCO-

ORDSYS tags (see Figure 3.2). QGM extracts the coordinate system information from

the sources.

If the coordinate system of the source does not match with the QGM’s coordinate

system, QGM must generate a model of the source in the common coordinate system to

ensure that it can determine if a source is relevant to the user query without performing

any coordinate conversions. Moreover, it must make sure that any source requests made

to the source specifies the required inputs to the source, such as a bounding box, in the

source’s coordinate system and any data objects retrieved from the source are converted to

QGM’s common coordinate system. QGM performs this task by declaring a virtual source

predicate is identical to the original source except that the values for the bounding box and

the vector object attributes are translated to QGM’s common coordinate system. QGM

defines the virtual source predicate using a domain rule. For example, consider a shapefile

data source that provides roads for some area and uses the EPSG:4269 coordinate system,

which is similar to the EPSG:4326, but uses the NAD83 specification for the globe. Below

54

is a domain rule for that specifies the virtual source predicate for this source and the

relationship between the virtual source predicate and the original source:

VirtualRoadsShapefile(cbbox, cvectorobj):-

RoadsShapeSrc(bbox,vectorobj)^

CoordinateTransformation(ccs, cs, cbbox, bbox)^

CoordinateTransformation(cs, ccs, vectorobj, cvectorobj)^

cvectorobj coveredby cbbox^

cs = ‘EPSG:4269’^

ccs = ‘EPSG:4326’

The domain rule contains the original source relation (RoadsShapeSrc) and two co-

ordinate conversion operations in the body of the rule. The first coordinate conversion

operation converts the bounding box attribute (cbbox) from QGM’s common coordinate

system to the source’s coordinate system. The second coordinate conversion operation

ensures that any data object retrieved from the source is converted into QGM’s coordinate

system.

Once QGM has defined the virtual source predicate, it generates a Local-As-View

description using the techniques described in Section 3.2.1. Describing the virtual source

predicate using a Local-As-View rule allows QGM to specify exact constraints describing

the contents and the coverage. For the example virtual source, QGM generates the

following rule:

VirtualRoadsShapefile(bbox,vectorobj):-

55

Roads(vtype, format, cs, bbox, source, vectorobj)^

vtype = ‘Roads’^

format = ‘Shape’^

cs = ‘EPSG:4326’^

bbox coveredby ‘[[33,-117],[35,-119]]’^

vectorobj coveredby bbox^

source = ‘RoadsShapeSrc’

Note that the Local-As-View rule does not contain any coordinate conversion oper-

ations and the coverage restrictions are specified using the common coordinate system.

QGM’s ability to push all coordinate conversion operations to the domain rules allows it

to determine relevant sources to answer a user query without performing any coordinate

conversions.

3.3 Automatically Estimating the Quality of Geospatial Data

In addition to automatically generating a source description for new sources, QGM can

also automatically estimate the values for some of the quality attributes by analyzing

data provided by the new sources. The Vector and the Raster data sources have different

quality attributes associated with them. Therefore, I divide the automatic estimation of

quality into two parts. Section 3.3.1 describes automatic estimation of quality of data

provided by vector data sources, while Section 3.3.2 describes automatic estimation of

quality of data provided by raster data sources.

56

3.3.1 Estimating Quality Attributes of Vector Data Sources

In this section I discuss QGM’s approach of automatically estimating values for quality

attributes for vector data sources. QGM can automatically estimate the values of the

following attributes: (1) completeness, (2) horizontal accuracy, (3) vertical accuracy,

and (4) features within accuracy bounds. Manually populating values for those four

attributes would require analyzing a large number of features from a data source and

comparing them with information from a source with known quality of data or a high

resolution satellite image. Therefore, QGM’s ability to automatically estimate values

for those attributes saves users from the painful task of manually populating values for

those attributes. The values for other attributes such as the date data was collected or

the resolution at which the data was collected is often available in text documentation

provided by a data source. In future, we can utilize information retrieval techniques to

extract values for those attributes from the text documentation.

Automatic estimation of quality attributes for vector data sources in QGM relies on

some assumptions: (1) QGM has access to a source of known quality providing the same

layer as the new source and with overlapping coverage and (2) the quality of data provided

by the new source is uniform, i.e., quality is similar in all areas covered by the source.

QGM begins the quality estimation process by identifying a source with known quality

that provides the same data layer and has overlapping coverage with the new source for

each data layer provided by the new source. If QGM cannot find a qualifying source, it

cannot automatically estimate some of the quality attributes by utilizing any of the known

sources. If no qualifying sources exists, QGM adds the source with unknown quality to the

57

list of available sources with unknown quality of data. After QGM successfully assesses

the quality of data provided by any new source, it checks to see if the expanded coverage

due to the new source allows QGM to evaluate any new sources. For example, consider

that QGM needs to assess the quality of road network data covering the city San Diego

provided by some data source. However, the only source with known quality road network

data only covers the city of Los Angeles. As there is no overlap, QGM adds the road

network source covering the city of San Diego to the list of sources with unknown quality

of data. Next, QGM needs to assess the quality of road network data covering entire

Southern California region provided by some data source. As the Southern California

region overlaps with the city of Los Angeles, QGM can assess the quality of road network

data for the source covering the Southern California region. Once QGM finishes assessing

the quality of data provided by the source, it checks the list of sources with unknown

quality and discovers that it can now assess the quality of the source that provides the

road network data for the city of San Diego.

If QGM finds a source with overlapping data, it samples the data from the overlapping

coverage from both sources and estimates the values for the quality attributes for the new

source. As geospatial data sources often provide a very large amount of data and do not

allow querying the entire data source all at once, QGM must sample some data to estimate

the quality.

As a part of my research, I evaluated three different patterns to sample geospatial

data. Each pattern involves dividing the overlapping area into a grid and retrieving data

from some cells in the grid. The size of the grid cells and the number of cells we select

depends on the percentage of data we select to sample. As geospatial data may not be

58

distributed uniformly, it is important to select cells that represent the distribution of the

data provided by a source. In my research I selected three different patterns to sample

the data.

The first pattern I evaluated was to select all cells in one or more columns or rows

in the center of the overlapping area. The rationale behind selecting this pattern was

that by selecting all cells in a row or column, we would get cells at the edges as well

as cells in the middle. As a geospatial source may have sparse features along the cells

toward the edge of the coverage and may have higher feature density in the center, this

sampling pattern gives us a more representative sample. Depending on the cell size and

the percentage of sample data, QGM selects to sample one or more rows or columns. For

example, if each cell covers about 1/100th of the area covered by a source and the user

asks QGM to sample 20% data, QGM will select two columns (or rows) in the center of

the area as shown in Figure 3.5 (a). The filled areas indicate the selected cells. If QGM

needs to sample data from more cells, it will randomly select cells from a third column.

The second pattern was to select all cells in the diagonal pattern. The rationale here

was similar to the rationale for the first pattern. However, I expected the diagonal pattern

to work better in cases where source may have one or more areas of densely populated

features located toward the corners of the coverage areas. Similar to the first pattern

the number of cells along the diagonals that QGM samples data from depends on the

cell size and the percentage of data QGM needs to sample. For example, if each cell

covers about 1/100th of the area covered by a source and the user asks QGM to sample

20% data, QGM will select 20 cells from the two major diagonals as shown in Figure 3.5

59

(a) (b) (c)

Figure 3.5: Three different sampling patterns for geospatial data

(b). If QGM needs to select more cells, it will randomly select a minor diagonal from

neighboring diagonals and randomly select necessary cells from them.

Finally, the third pattern was to select the cells in the center of the grid. The rationale

behind selecting this pattern was that we may get maximum number of features by

sampling in the center of the area as geospatial source often have high density of features

toward the center of the coverage area. Similar to the first two patterns, the number of

cells selected to sample depends on the cell size and the percentage of data QGM needs

to sample. For example, if each cell covers about 1/100th of the area covered by a source

and the user asks QGM to sample 20% data, QGM needs to sample data from 20 cells

located at the center of the grid. QGM begins sampling data from the four cells at the

center of the grid. Next, it samples data from the twelve neighbor cells of the four center

cells. The next set of neighboring cells include 21 cells adjunct to the 16 selected cells.

However, QGM can only select four of those cells as it only needs to sample data from

20 cells. Therefore, QGM randomly selects four of the 21 neighbor cells. Figure 3.5 (c)

shows an example of cells that would be selected for this example.

60

Once QGM obtains the sampled data from both the reference source and the new

source, it computes the completeness and the accuracy of the new source.

3.3.1.1 Estimating Completeness

In this section, I explain how QGM estimates the completeness of a new source given the

sampled data from the new source and a reference source and the completeness of the

new source. The completeness of a geospatial source refers to the percentage of existing

features that the source provides. For example, if there are three hospitals in a given area

and the source provides two of them, it is considered to be 66.7% complete. As QGM does

not know about all existing features in the area, it estimates all existing features using a

reference source. For example, if the reference source is 50% complete and it provides two

features in an area, QGM estimates that there are four features in the area. If a source

provides point or polygon data, QGM estimates the completeness for the new source by

comparing the number of features provided by the new source with the estimated number

of features in the area using the following formula:

Cnew =
of featuresnew

of featuresreference

∗ Creference

The formula takes into account the fact that the reference source may not be complete.

The term #offeaturesnew refers to the number of features sampled from the new data

source, while the term #offeaturesreference refers to the number of features sampled

from the reference data source. The term Creference refers to the completeness of the

reference source, while the term Cnew refers to the completeness of the new source. First,

61

the formula computes the completeness of the new source compared to the reference source

and multiplies that number with the completeness of the reference source to obtain the

completeness of the new source.

In case of polylines, the number of features is not a good indicator as different sources

may use different granularities to define features. For example, a freeway may be described

using many segments or may be approximated using a small number of segments. In both

cases the freeway is represented in the source, so the completeness should be similar.

Therefore, if a source provides polylines, QGM utilizes a slightly different formula that

takes into account the length of the polylines, instead of the number of polylines.

Cnew =
∑

(length of all polylinesnew)∑
(length of all polylinesreference)

∗ Creference

As geospatial sources may store a road as a single polyline or a set of line segments,

using the number of features does not work well with polyline sources. Therefore, QGM

utilizes the sum of the lengths of all features instead of the total number of features.

The completeness estimates generated by QGM depend heavily on the accuracy of

the completeness value of the reference set. If the actual value for the completeness

attribute of the reference set is lower than the value for the completeness of the reference

set provided to QGM, it will underestimate the total number of features. For example,

if the actual completeness of the reference set is 25% and the value given to QGM is

50%, QGM will underestimate the total number of features. This will result in QGM

computing a higher value of the completeness attribute for the new set. Similarly, if the

value of the actual completeness of the reference set is higher than the value provided

62

Figure 3.6: Examples of buffers for points, lines, and polygons

to QGM it will compute a lower value of the completeness attribute for the new source.

Assuming that we obtain representative samples from both the reference source and the

new source, the error in the estimated value of the completeness is double the error in

the completeness value for the reference source. Intuitively, this is due to the fact that

the error in completeness of the reference source effects the calculation of the error in

the completeness of the new source in two ways. First, it effects the total number of

features retrieved from the reference source and second, it impacts QGM’s estimation of

total number of actual features.

3.3.1.2 Estimating Accuracy

In this section, I describe QGM’s approach to estimating the accuracy of the data provided

by the new source. The accuracy of the data source is measured using three attributes:

(1) horizontalaccuracy, (2) verticalaccuracy, and (3) vectorsinaccuracybounds. The first

two attributes are used to define a buffer around the actual location of a feature, while

the third attribute defines the percentage of roads that fall in the buffer. Figure 3.6 shows

examples of buffers for points, polylines, and polygons.

63

Algorithm 3.3.1: ComputeVectorAccuracy(RefSrc, NewSrc)

procedure ComputeVectorAccuracy(RefSrc,NewSrc)
horizacc← horizacc(RefSrc)
vertacc← vertacc(RefSrc)
withinaccbnds← withinaccbnds(RefSrc)
RefSrcFeatures← SampleFeatures(RefSrc)
NewSrcFeatures← SampleFeatures(NewSrc)
Buffers← CreateBuffer(RefSrcFeatures, horizacc, vertacc)
if typeOf(NewSrc) == Points
then

newwithinaccbnds = NoOfPointsWithin(Buffers,NewSrcFeatures)
if typeOf(NewSrc) == Polylines
then

newwithinaccbnds = LengthOfPointsWithin(Buffers,NewSrcFeatures)
if typeOf(NewSrc) == Polylines
then

newwithinaccbnds = AreaOfPolygonsWithin(Buffers,NewSrcFeatures)
return (newwithinaccbnds, horizacc, vertacc)

Figure 3.7: Algorithm to Compute Accuracy Values for New Source

As QGM does not have access to the actual location of a feature, it utilizes the features

from the reference set to approximate the actual location of the feature and computes

the values for the horizontalaccuracy, verticalaccuracy, and vectorsinaccuracybounds at-

tributes for the new source using the algorithm shown in Figure 3.7.

First, QGM retrieves the horizontalaccuracy, verticalaccuracy, and vectorsinaccura-

cybounds attributes for the reference set. Next, QGM utilizes the values of the accuracy

attributes to generate a buffer around locations of all features retrieved from the refer-

ence set in the sampled data. Next, QGM determines the percentage of features from

the sample data retrieved from the new source that fall within the generated buffer. If

64

the source provides point data, QGM counts the number of points that are within the

buffer. If the source provides polylines, QGM computes the total length of all parts of

the polylines that are within the buffer. If the source provides polygons, QGM computes

the total area of all parts of the polygons that are within the buffer. The computed value

is the value for the vectorswithinaccuracybounds attribute for the new source, while the

values of the horizontalaccuracy and the verticalaccuracy are the same as the values for

the horizontalaccuracy and the verticalaccuracy attributes for the reference set as those

values were used to construct the buffer around the features.

One of the limitations of this approach is that if the reference set is very inaccurate,

QGM cannot produce a good estimate of the three quality attributes for the new source.

In particular, if we try to estimate the quality of a very accurate dataset using an inac-

curate dataset, QGM will only be able to estimate that the accurate dataset is as good

as the reference set. This is due to the fact that the values of the vertical and horizontal

accuracy bounds will be the same for both sources. Moreover, the value computed for the

features within accuracy bounds for the more accurate source depends on the location of

the features reported by the inaccurate source as well. It is not possible to provide an

error bound for QGM’s estimation of accuracy as it depends on a good representative

sample from both sources, error in the accuracy values for the reference source, and type

of positional inaccuracies in the locations of features provided by the reference source.

However, my experiments with real-world data described in Section 3.4 show that the

error in estimating the accuracy is less than 10% for sources that provide point, polyline,

or polygon data.

65

3.3.2 Estimating Quality of Raster Datasets

In this section I discuss QGM’s process of estimating the quality of raster data sources.

For the raster sources QGM can automatically estimate the value of the completeness

attribute and learn more accurate coverage of the data sources. This is very important

on the Internet as Web Map Servers and ArcIMS Servers often overstate their coverage.

This is due to the fact that OpenGIS protocol requires sources to define its coverage of

a given data layer using only one bounding box. If a source provides raster data for

two disjoint areas, it usually will return a rectangle covering both areas as its coverage.

The value for the completeness attribute refers to the percentage of reported coverage

area for which the source provides raster data. QGM utilizes the methods described in

this section to estimate the area for which the source actually returns the raster data by

sampling data from the source.

Figure 3.8 shows QGM’s algorithm to estimate the completeness and an accurate

coverage for raster sources. Figure 3.9 shows an example of the process of estimating the

true coverage for a raster source. QGM first samples the data from the raster sources.

In the sampling process QGM divides the area covered by a data source into a uniform

grid with cells of the given cell size. QGM sends a source request to obtain an image of

600 pixels width and 600 pixels height at the given resolution in center of each cell. For

most data sources and resolution values the image request does not cover entire cell as

most sources cover very large areas resulting in large cell sizes. For example TerraServer’s

reported coverage is a rectangle around the United States. The grid in Figure 3.9 (a)

66

Algorithm 3.3.2: EstimateRasterQuality(Src, CellSize, resolution)

completeness← 0
procedure EstimateRasterQuality(Src, CellSize, resolution)
CellList← SampleData(Src, CellSize, resolution)
actualCoverage← ComputeCoverage(Src, CellList)
return (actualCoverage, completeness)

procedure SampleData(Src,CellSize)
CellList← CreateGrid(Src, CellSize)
for each cell ∈ CellList{
cell.Image← getImage(cell, resolution)

return (CellList)

procedure ComputeCoverage(Src,CellList)
srcReportedCoverage← coverage(Src)
voronoiDiagram← CreateV oroNoi(CellList)
actualCoverage← coverage(voronoiDiagram)
completeness← area(srcReportCoverage)/actualCoverage
return (actualCoverage)

Figure 3.8: Algorithm to Compute Accuracy Values for New Source

shows an example grid and image requests. The areas in gray indicate the areas covered

by the image requests.

If the source returns an image QGM stores the image, otherwise it stores label no

image for that cell. In Figure 3.9 (b), the areas with no image are indicated by white

cells. Next, QGM utilizes Fortune’s Sweepline algorithm [29] to create a Voronoi diagram

representation of all the labeled cells returned from the sampling process. Figure 3.9 (c)

shows the example Voronoi diagram. Next, QGM merges the adjunct Voronoi cells con-

taining images into one cell. Finally, QGM computes a minimum bounding rectangle

67

(a) Grid cells and sample areas

(b) Results of the sampling

(c) Voronoi Diagram (d) Final Coverage

Figure 3.9: Example of coverage estimation process for raster data

around each Voronoi cell with images. The union of the minimum bounding rectangles

is the more accurate coverage of the source, while the area of the more accurate coverage

divided by the area of the reported coverage is the completeness of the source for the

given resolution. Figure 3.9 (d) shows an example of the estimated coverage.

Once QGM has more accurate coverage information, it updates the constraint on the

bounding box attribute to specify the more accurate bounding box instead of source’s re-

ported bounding box. For example, if a source’s report coverage was ‘[[33,-117],[35,-120]]’

and the more accurate coverage is ‘[[33,-117],[34,-119]]’, QGM will update the constraint

on the bounding box attribute from ‘bbox coveredby ‘[[33,-117],[35,-120]]” to ‘bbox cov-

eredby ‘[[33,-117],[34,-119]]”. If the more accurate coverage contains more than one

disjoint rectangles QGM describes the coverage by having one description per polygon.

68

In our given example if the more accurate coverage was union of the polygons ‘[[33,-

117],[34,-119]]’ and ‘[[34,-119],[35,-120]]’, QGM will modify source’s description have two

similar rules with coverage constraints ‘bbox coveredby ‘[[33,-117],[34,-119]]” and ‘bbox

coveredby ‘[[34,-119],[35,-120]]”.

In the current implementation, I configured QGM to compute the more accurate

coverage and completeness for four different resolutions: (1) 1 meter/pixel, (2) 5 me-

ters/pixel, (3) 10 meters/pixel, and (4) 50 meters/pixel. QGM then computes a source’s

completeness by averaging the values of completeness computed for each resolution. More-

over, QGM utilizes the union of the coverages computed by all resolutions to update the

bounding box constraint.

3.4 Experimental Evaluation

In this section, I describe the empirical evaluation using real-world datasets to support

the automatic source description generation and quality estimation techniques described

in Sections 3.2 and 3.3.

The performance of the automatic labeling technique can be divided into assigning

the correct matching domain concept for a data layer provided by a source and correctly

identifying the coverage of the data source and its coordinate system. As the coverage

and the coordinate system are provided by a data source, QGM always identifies them

correctly. Therefore, I only measure the performance of QGM in identifying the correct

matching domain concept for a data layer. I describe the experimental evaluation for the

automatic labeling technique in Section 3.4.1. I describe my evaluation of the quality

69

estimation process in Section 3.4.2. For the quality estimation techniques, I evaluate

QGM’s performance in estimating the completeness and the accuracy of different sources.

All the experiments involved real-world data sources and were conducted on a server

running Windows 2003 Server operating system with dual Xeon processors running at

1.8MHz with 3 GB memory.

3.4.1 Experimental Evaluation of Automated Labeling Technique

In this section, I show that the automatic source description generating techniques gener-

ate an accurate representation for real-world geospatial data sources. I used the methods

described in Section 3.1 to identify 253 shapefile data sources, 152 Web Map Servers,

and 107 ArcIMS servers. All those sources together provide 1248 data layers. I manually

matched each layer provided by the sources with a domain concept by looking at the

name of the layer, the description of the layer, and the data provided for the layer by

the source. While I can identify a lot more sources using the techniques described in

Section 3.1, I kept this number small as I had to manually match each layer to a domain

concept to identify the ground truth. Table 3.2 shows the top 15 domain concepts and

the number of layers assigned to each domain concept using the manual labeling.

Next, I tasked QGM with automatically generating representations of these data

sources. I compare the labels generated by QGM with the manual labels to measure

the accuracy of the automatic labeling. Table 3.3 outlines the precision, recall, and F-

measure values for different domain concepts. Precision, recall, and F-measure are used

to measure performance of information retrieval systems, such as search engines. In my

case, the term precision refers to the total number of correct matches returned by QGM

70

Category Subcategory Layer Number of Layers
Transportation Ground Roads 361

Imagery Aerial Photos Orthophoto 167
Raster 119
Vector 57

Hydrography Rivers/Lakes Rivers 53
Transportation Ground Bridge/Overpasses 47
Transportation Tracks Cart Tracks 46
Transportation Ground Ramp Lines 46

Maps Topo Maps Topographic Maps 43
Transportation Air Airports 36

Buildings Schools Schools 31
Boundaries Political Administrative Areas 27
Boundaries Political Counties 22
Boundaries Administrative Flood Zones 18
Boundaries Administrative Census Blocks 18

Table 3.2: Major categories with manual labeling

divided by the total number of matches returned by QGM. The term recall refers to

the total number of correct matches returned by QGM divided by the total number of

possible correct matches. The F-measure is the harmonic mean of the precision and recall

values. The formulas below provide equations to compute values for the three terms.

Precision =
#CorrectMatches

#TotalMatchesMade

Recall =
#CorrectMatches

#PossibleMatches

F −Measure =
2 ∗ Precision ∗Recall

Precison + Recall

The experimental results indicate that major errors occur in the Orthophoto, Raster,

and Vector layers. The errors in the Raster and the Vector layers are due to QGM not

being able to find a suitable match on the layers. I believe this can be fixed by adding

71

Layer Precision Recall F-measure
Roads 98.02 95.84 96.92

Orthophoto 82.44 64.67 72.48
Raster 70.63 84.87 77.10
Vector 71.62 92.98 80.92
Rivers 94.55 98.11 96.30

Cart Tracks 100.00 97.83 98.90
Bridge/Overpasses 100.00 91.49 95.56

Ramp Lines 95.45 91.30 93.33
Topographic Maps 95.35 95.35 95.35

Airports 97.30 100.00 98.63
Schools 70.73 93.55 80.56

Administrative Areas 71.05 100.00 83.08
Counties 87.50 95.45 91.30

Flood Zones 100.00 100.00 100.00
Census Blocks 84.21 88.89 86.49

Totals 88.21 89.66 88.93

Table 3.3: Results of automatic labeling

new layers to QGM’s domain concepts hierarchy. In general, I found that data layers

about different weather conditions that have very long name or descriptions, such as

‘total precipitation in last fifteen days’, caused errors. This was due to the fact that the

threshold for matching 0.5 was too high for those layers. We can address this problem

by removing stop words from the layer names, by utilizing TF-IDF weighting of different

tokens, and by utilizing the actual data in labeling the layers. I discuss the possible

improvements in Chapter 6.

The errors in labeling the Orthophoto layer were due to the fact that a lot of satel-

lite image layers were labeled ‘OrthoImage’ and QGM incorrectly labeled them as ‘Or-

thoPhoto’. Similarly, some ‘OrthoPhoto’ layers were incorrectly labeled ‘OrthoImage’.

When I labeled the layers, I was able to utilize the metadata to determine if the image

was taken by a plane (Orthophoto) or by a satellite (OrthoImage) by looking at the text

72

description of the metadata. I believe this problem can be addressed in future by de-

veloping a specialized information extraction to extract information about the data from

the textual metadata.

Overall, I believe that the experimental results show that relatively simple similarity

measure, such as the Dice similarity results in 88.93% F-measure in labeling a large sample

of real-world datasets.

3.4.2 Experimental Evaluation for Quality Estimation

In this section, I describe the results of estimating the quality of geospatial data sources

using QGM. The goal of the experiments is to show that QGM can generate a reasonable

estimate of quality for the datasets it discovers on the web. I divide the evaluation into

two parts. First I discuss the evaluation of estimating the quality of vector data sources

and second I show QGM’s performance at estimating completeness of raster data sources.

3.4.2.1 Quality Estimation of Vector Data Sources

In this section I describe the evaluation of QGM’s vector data quality estimation. The

goal of the experiments is to show that QGM can accurately estimate the quality of vector

data sources available on the web. In order to test this hypothesis, I provided QGM with

the Navteq rivers, roads, hospitals, schools, lakes, and parks datasets as sources of known

quality. I selected the Navteq datasets as I had access to Navteq data covering the entire

United States and the Navteq data has high quality.

Next, I asked QGM to estimate quality of 126 shapefiles and 276 data layers from

ArcIMS servers. I limited the shapefiles and ArcIMS data layers to the layers containing

73

rivers, roads, hospitals, schools, lakes, and parks. Moreover, I did not consider the sources

that provided data outside of United States as I did not have access to reference datasets

outside of the United States.

For all layers, I downloaded all the data and computed the values for the completeness,

horizontal accuracy, vertical accuracy, and vectors within accuracy bounds attributes for

all the new data layers by comparing all of their data with the corresponding data from

the Navteq datasets. Next, I use the three sampling techniques described in Section 3.3

to sample the data from the new sources and compute the values for the four attributes

using the sampled data.

For each technique, I sampled 5%, 10%, 20%, and 25% data. The values for the hori-

zontal accuracy and the vertical accuracy attributes only determine the size of the buffer

to compute the values for the vectors within accuracy bounds attribute. Moverover, the

values for the horizontal accuracy and vertical accuracy do not depend on the sampling

technique. Therefore, I compare the values of the completeness attribute and the vec-

tors within accuracy bounds attribute computed by the complete data sets and sampled

datasets.

QGM’s performance in point datasets was almost the same for both schools and

hospitals datasets. For the polyline datasets, QGM performed slightly better with road

network datasets compared to the rivers datasets. However, the difference in performance

for all techniques was less than 1.5%. For polygon datasets, QGM’s performance was

about the same for 8 lake datasets and 4 park datasets. Therefore, I only show results at

the level of point, polyline, and polygon datasets.

74

Type Sample # of Layers Avg. Completeness % Error with Sampling
Size % With 100% Sampling Diag. Center Column

Points 5 93 91.76 17.22 18.67 17.86
Points 10 93 91.76 17.54 21.53 15.19
Points 20 93 91.76 14.27 18.85 13.20
Points 25 93 91.76 13.68 16.94 12.04

Polylines 5 297 38.09 30.18 32.42 26.65
Polylines 10 297 38.09 24.69 29.84 24.71
Polylines 20 297 38.09 20.74 29.57 18.20
Polylines 25 297 38.09 19.68 28.58 17.94
Polygons 5 12 68.12 19.54 28.01 24.70
Polygons 10 12 68.12 25.61 28.53 24.19
Polygons 20 12 68.12 24.97 27.75 24.26
Polygons 25 12 68.12 23.68 27.47 23.14

Table 3.4: Completeness estimation using different sampling methods

Table 3.4 shows the results of estimating the completeness of the layers provided

by the new sources. The ‘Sample Size % ’ column shows the percentage of data in the

sample set. The ‘Avg. Completeness With 100% Sampling’ column lists the average value

of completeness for the relevant data layers using all the data provided by the source.

The last three columns show the average error using different sampling methods. The

diagonal sampling and vertical slice (column) sampling perform better than the center

cell sampling method. This is mainly due to the fact that in a lot of sources the data is

concentrated in the center cells, while the outer cells often contain more missing features.

Therefore, the center cells sampling method tends to overestimate the completeness of the

sources. The vertical slice and the diagonal methods sample data from cells on the edges

as well as cells in the center. Therefore, they get better estimates of the completeness.

Table 3.5 shows the results of estimating the value for the vectors within accuracy

bounds attribute for the layers provided by the new sources. The ‘Avg. Vec. in Bounds

With 100% Sampling’ column lists the average value of the vectors within accuracy bounds

75

Type Sample # of Layers Avg. Vec. in Bounds % Error with Sampling
Size% With 100% Sampling Diag. Center Column

Points 5 93 95.6 12.27 8.69 11.71
Points 10 93 95.6 9.83 8.27 8.96
Points 20 93 95.6 7.95 7.20 7.18
Points 25 93 95.6 7.71 7.14 7.23

Polylines 5 297 80.28 9.8 8.14 8.63
Polylines 10 297 80.28 8.68 7.73 6.81
Polylines 20 297 80.28 8.95 8.50 6.98
Polylines 25 297 80.28 8.67 8.26 6.84
Polygons 5 12 82.19 10.63 10.28 10.53
Polygons 10 12 82.19 9.81 11.36 9.68
Polygons 20 12 82.19 10.12 9.64 9.41
Polygons 25 12 82.19 9.97 9.83 9.43

Table 3.5: Results of Vectors within accuracy bounds estimation

attribute for the relevant data layers using all the data provided by the sources. The

last three columns show the average error using different sampling methods. The key

observation here is that the center cells sampling method does better with less data

compared to the other methods. This is expected as the center area usually contains

more feature. Therefore, the center sampling results in larger number of features. In

estimating the percentage of vectors that fall within the accuracy bounds the larger

sample produces more accurate result. However, in some datasets that cover a big city

and its suburbs, such as Los Angeles, the center sampling method tends to overestimate

the value for the vectors within accuracy bounds as the features in the center of the area

tend to have more accurate positioning compared to features at the edge of the coverage.

Overall, QGM’s quality estimation can measures the completeness attribute with

about 20% error and features within accuracy bounds attribute with about 10% error.

Depending on the positional inaccuracies in the location of features provided by the

reference source and the new source, QGM may overestimate or underestimate values for

76

both attributes. While the error seems high, the estimated values are good enough to

prune sources that provide low quality data for most user queries. All sampling techniques

perform better with points compared to polylines or polygons. This is mainly due to the

fact that point datasets usually had fewer features and were more complete.

3.4.2.2 Completeness Estimation of Raster Data Sources

In this section I describe evaluation of QGM’s techniques to estimate the completeness of

raster data sources. In order to evaluate QGM’s performance, I randomly selected 50 data

layers provided different raster data sources. The different types of data layers included

satellite images, aerial photos, topographic maps, and transportation maps. For each

selected data layer, I asked QGM to measure the completeness and an estimate of the

true coverage of the source. Computing the actual coverage of raster data source would

require making a very large number of requests to the available sources using different

resolutions. For example, finding true coverage for TerraServer would require asking it

for images covering all areas in entire United States at different resolutions. As I do not

have access to true coverage of the data source, I could not compare QGM’s estimates to

ground truth. Therefore, I used the following method to measure QGM’s performance. I

randomly selected 15 bounding boxes that intersected with reported coverage of at least

one selected data layer. I fixed the image size parameter to 600 pixels by 600 pixels.

An image covering any of the fifteen bounding boxes and with the selected image size

would have resolution 1 meters per pixel. Similarly, I selected 15 bounding boxes for the

resolutions 5 meters/pixel, 10 meters/pixel, and 50 meters/pixel.

77

For each of the 60 bounding boxes, I asked QGM to first use the reported coverages

to select the sources that provide raster data for the area. If the reported coverage of

the source intersected with the bounding box, QGM selected the source as providing

raster data for the area. Next, I asked QGM to retrieve the raster data from the selected

sources for the given bounding box. I counted the number of blank images returned by

the sources and the number of images containing data. As long as at least some portion

of the image contained data, I counted that image as containing data.

Next, I asked QGM to use the estimated coverages of sources to select the sources

that provide raster data for the area. If the estimated coverage of the source intersected

with the bounding box, QGM selected the source as providing raster data for the area.

Next, I asked QGM to retrieve the raster data from the selected sources. I counted the

number of blank images returned by the source and the number of images containing

data. Based on the number of image returned by utilizing the reported coverages and the

number of images returned by utilizing the estimated coverages I compute the precision

and recall values for the estimated coverages and the reported coverages. The precision

was computed by dividing total non-empty images returned by total images returned.

The recall was computed by total non-empty images returned divided by total possible

non-empty images. I computed the total possible non-empty images as the total non-

empty images returned based on the reported coverage. This is accurate as all sources

overstate their coverage. Table 3.6 shows the results of the evaluation.

The report coverage has 100% recall for all resolutions as it does not miss any images.

However, it has lower precision values as it results in many blank images. On an average

over 25% images generated by using the reported coverage are empty. This is a very

78

Resolution Reported Coverage Estimated Coverage
1 meter/pixel Precision Recall F-measure Precision Recall F-measure

1 72.15 100.00 83.82 94.12 84.21 88.89
5 82.43 100.00 90.37 91.38 86.89 89.08
10 81.82 100.00 90.00 92.86 86.67 89.66
15 81.58 100.00 89.86 90.00 87.10 88.52

Total 79.23 100.00 88.41 91.94 86.22 88.99

Table 3.6: Results of Completeness Estimation for Raster Data

significant number as the users not only have to filter out empty images from the results,

but a data integration system also spends time to obtain the blank images from the

sources. When using the estimated coverages, the recall was little lower as it missed some

images due to incorrect estimation of coverages. However, there were very few empty

images when utilzing the estimated coverages. Therefore, the precision was much higher.

In addition, the coverage estimation technique also found supported resolutions for

sources. For example, the precision when using 1 meters/pixel resolution for reported

coverage was low as every query tried to retrieve topographic maps from TerraServer,

which provides topographic maps for United States. However, the minimum resolution

for the topographic maps from TerraServer is 2 meters/pixel. Therefore all requests

returned empty images. The estimated coverage for topographic maps from TerraServer

at resolution 1 meter/pixel is empty indicating that the source does not provide images at

that resolution. By utilizing the techniques discussed in Section 3.3.2, QGM automatically

determines this information and avoids sending extra queries.

Overall, the experimental evaluation suggests that QGM’s completeness estimation

for raster datasets results in missing some images containing data. However, it results in

significant reduction in the number of empty images resulting in higher F-measure score

79

compared to using the reported coverages. In future we can improve the performance of

the system by doing smarter sampling as I discuss in Section 6.

80

Chapter 4

Query Answering

In this chapter, I describe QGM’s process of generating, optimizing, and executing an

integration plan in response to user queries. As I mentioned earlier QGM’s goal is to ef-

ficiently and accurately integrate geospatial data from a large number of sources. There-

fore, it is important for QGM to efficiently answer user queries to ensure low response

time. Moreover, as QGM may have access to sources of varying quality it is also important

to only provide high quality data.

QGM’s query answering algorithm is shown in Figure 4.1. I divide the algorithm into

three parts. The first part is to utilize the domain model and the query given by the user

to generate a plan graph containing requests to all sources and operations pertaining to

the user query and quality criteria. QGM generates the plan graph by first inverting the

source descriptions using the Inverse rules algorithm [20]. The inversion of the rules is

a linear time operation in terms of the number of sources and the number of predicates

in the source descriptions. Therefore, QGM can quickly invert a large number of source

descriptions. Moreover, as the results of the inversion on depend only on the domain

model and not on the user query, QGM can invert the rules once and reuse the results

81

for future queries. Next, QGM generates a datalog program containing only the relevant

rules to the user query by expanding the query rule. This is a very important step in

the plan graph generation as it results in selection of only the relevant sources to the

user query. For example, in my experiments QGM had access to over 1250 sources of

geospatial data and as a result of this step QGM generated a datalog program containing

requests to about 63 relevant sources to the user query. The generated datalog program

is still not executable as it may not satisfy all the binding restrictions of the sources.

Therefore, QGM converts the datalog program to a plan graph and makes changes to

satisfy the binding restrictions.

The second step in the query answering process is to optimize the generated plan

graph. QGM performs two optimizations. First, it identifies and reuses common subex-

pressions in the generated graph. Second, it utilizes the quality criteria to prune the

source requests that do not satisfy the quality requirements from the generated plan.

While the number of source requests QGM can prune depend on the quality criteria, in

my experiments on an average QGM pruned just over half of the source requests from the

generated plans. So, if a plan contained requests to twelve sources, after pruning based on

quality results would result in a plan with six source requests. As geospatial sources often

have high response times, removal of half of the sources from the generated plan results

in large reduction in the response time. The third step in the query answering algorithm

is to translate the generated integration plan into a program that can be executed using

a streaming, dataflow-style execution engine called Theseus [5], and execute the plan.

The Theseus execution engine streams data between different operations and executes

82

Algorithm 4.0.1: QGMQueryAnswering(DomainModel,Query)

procedure QGMQueryAnswering(DomainModel,Query)
PlanGraph← GeneratePlan(DomainModel,Query)
OptP lanGraph← OptimizePlan(PlanGraph)
Results← ExecutePlan(OptP lanGraph)
return (Results)

procedure GeneratePlan(DM,Q)
DatalogPrg ← InverseRules(DM, Q)
DatalogPrgWRRs← IdentifyRelevantRules(DatalogPrg, DM, Q)
PlanGraphWoBindings← ConvertToPlanGraph(DatalogPrgWRRs)
PlanGraph← HandleBindingRestrictions(PlanGraphWBindings)
return (PlanGraph)

procedure OptimizePlan(PlanGraph)
PlanGraphWoCSE ← IdentifyCommonSubExs(PlanGraph)
QualRes← EvaluateQualityQuery(PlanGraphWoCSE)
OptP lanGraph← PruneByQuality(QualRes, P lanGraphWoCSE)
return (OptP lanGraph)

procedure ExecutePlan(OptPlanGraph)
TheseusP lan← ConvertToTheseusPlan(OptP lanGraph)
Results← ExecuteTheseusPlan(TheseusP lan)
return (Results)

Figure 4.1: QGM’s Algorithm to Answer Queries

independent operations in parallel resulting in much lower execution time compared to a

datalog evaluation engine.

Section 4.1 discusses an example user query and available sources that I use to clarify

different algorithms in this chapter. Section 4.2 describes the process of generating a

plan graph to answer the user query. Section 4.3 describes the process of optimizing the

83

generated plan graph. Section 4.4 describes the plan execution. Section 4.5 describes the

experimental evaluation of the techniques discussed in this chapter.

4.1 Motivating Example

In order to clearly explain the plan generation and execution process, I describe a scenario

where QGM has access to the following data sources:

• VS1: provides road vector data for the area ‘[[33.5,-117],[34,-118]]’

• VS2: provides road vector data for the area ‘[[33,-116.5],[33.5,-118]]’

• VS3: provides road vector data for the area ‘[[33,-117.5],[34,-118]]’

• VS4: provides road vector data for the area ‘[[33,-117],[34,-118]]’

• VS5: provides road vector data for the area ‘[[43,-77],[44,-78]]’

• VS6: provides park vector data for the area ‘[[33,-117],[34,-118]]’

• IS1: provides multi-spectral satellite image for the area ‘[[33,-116],[34,-118]]’

• IS2: provides B/W satellite image for the area ‘[[33,-116],[34,-118]]’

• IS3: provides topographic maps for the area ‘[[33,-116],[34,-118]]’

• IS4: provides multi-spectral satellite image for the area ‘[[43,-76],[44,-78]]’

Figure 4.2 shows graphical representation of the coverage of all data sources.

I assume that all sources use the ‘EPSG:4326’ coordinate system. All vector data

sources provide data in the shapefile format. I assume that all data sources provide 100%

84

VS1: [33.5,-117],[34,-118]

VS3: [33,-117],[34,-117.5]

VS4 & VS6: [33,-117],[34,-118]

VS2: [33,-116.5],[33.5,-118]

IS1, IS2, & IS3: [33.5,-117],[34,-118]

VS5: [43,-77],[44,-78]

IS4: [43,-76],[44,-78]

Figure 4.2: Coverage of Available Data Sources

Source Date Accuracy (meters) vectorswithinaccuracybounds (%) Resolution(m/p)
VS1 1/1/2001 3.6 67 26
VS2 1/1/2001 3.6 82 26
VS3 1/1/2006 3.6 68 35
VS4 2/1/2006 3.6 89 12
VS5 2/1/2006 7.2 56 50
VS6 2/1/2006 10.6 97 100

Table 4.1: Quality Information for Vector Sources

complete data for the area they cover and have 100% attribute completeness. The values

for the other attributes of quality are shown in Table 4.1. For the resolution attribute, the

lower value suggests better quality as the lower values imply that the data was collected

at better granularity.

I assume that all image sources provide data in JPEG format. Table 4.2 shows the

quality of data provided by the image sources. Similar to the vector data sources, I

assume that all image sources are complete in this example.

85

Source Date Resolution (m/p) Multi-spectral
IS1 1/1/2005 0.3 true
IS2 1/1/2001 10 false
IS3 4/1/2003 8 false
IS4 5/12/2001 16 true

Table 4.2: Quality Information for Image Sources

Figure 4.3 shows the source descriptions of the vector data sources VS1 through VS6.

The rules describe the sources as views over the Roads and Parks domain relations. The

complete list of all domain relations in the geospatial domain model that I use are in

Appendix B. Figure 4.4 shows the descriptions of the four available Raster data sources.

In addition to the descriptions of the content of the sources, we also provide QGM

with the description of the quality of the data provided by the available sources. The

rules that describe the quality of data for the vector data sources are shown in Figure 4.5.

The rules for the source quality relations VS1Quality through VS5Quality are defined as

views over the RoadQuality relation as those sources provide road network data. The rule

for the VS6ParkQuality is defined as a view over the ParkQuality relation as the source

VS6 provides data about parks.

Similar to the vector data sources, we also provide QGM the descriptions of quality

of data provided by the image sources using the rules shown in Figure 4.6. All the

source quality relations corresponding to the image sources are defined as a views over

the corresponding quality relations defined at the domain level.

Finally, we also provide QGM with the rules that describe the domain concept hier-

archy. Figure 4.7 shows the relevant rules for the domain concept hierarchy. The relevant

86

S1:VS1(bbox:b,vectorobj):-
Roads(type, format, cs, bbox, source, vectorobj)^
bbox coveredby ‘[[33.5,-117],[34,-118]]’^
vectorobj coveredby bbox^
cs = ‘EPSG:4326’^ format = ‘Shape’^
source = ‘VS1’^ type = ‘Road’

S2:VS2(bbox:b,vectorobj):-
Roads(type, format, cs, bbox, source, vectorobj)^
bbox coveredby ‘[[33,-116.5],[33.5,-118]]’^
vectorobj coveredby bbox^
cs = ‘EPSG:4326’^ format = ‘Shape’^
source = ‘VS2’^ type = ‘Road’

S3:VS3(bbox:b,vectorobj):-
Roads(type, format, cs, bbox, source, vectorobj)^
bbox coveredby ‘[[33,-117.5],[34,-118]]’^
vectorobj coveredby bbox^
cs = ‘EPSG:4326’^ format = ‘Shape’^
source = ‘VS3’^ type = ‘Road’

S4:VS4(bbox:b,vectorobj):-
Roads(type, format, cs, bbox, source, vectorobj)^
bbox coveredby ‘[[33,-117],[34,-118]]’^
vectorobj coveredby bbox^
cs = ‘EPSG:4326’^ format = ‘Shape’^
source = ‘VS4’^ type = ‘Road’

S5:VS5(bbox:b,vectorobj):-
Roads(type, format, cs, bbox, source, vectorobj)^
bbox coveredby ‘[[43,-77],[44,-78]]’^
vectorobj coveredby bbox^
cs = ‘EPSG:4326’^ format = ‘Shape’^
source = ‘VS5’^ type = ‘Road’

S6:VS6(bbox:b,vectorobj):-
Parks(type, format, cs, bbox, source, vectorobj)^
bbox coveredby ‘[[33,-117],[34,-118]]’^
vectorobj coveredby bbox^
cs = ‘EPSG:4326’^ format = ‘Shape’^
source = ‘VS6’^ type = ‘Park’

Figure 4.3: Example Source Descriptions for Vector Data Sources

87

S7:IS1(bbox:b, size:b, resolution:b, imageobj):-
MultiSpectralImage(type, format, size, resolution, cs,

bbox, source, imageobj)^
bbox coveredby ’[[33,-116],[34,-118]]’^
format = ‘JPG’^
source = ‘IS1’^
type = ‘MultiSpectralImage’

S8:IS2(bbox:b, size:b, resolution:b, imageobj):-
BWImage(type, format, size, resolution, cs, bbox,

source, imageobj)^
bbox coveredby ’[[33,-116],[34,-118]]’^
format = ‘JPG’^
source = ‘IS2’^
type = ‘BWImage’

S9:IS3(bbox:b, size:b, resolution:b, imageobj):-
TopographicMaps(type, format, size, resolution, cs, bbox,

source, imageobj)^
bbox coveredby ’[[33,-116],[34,-118]]’^
format = ‘JPG’^
source = ‘IS3’^
type = ‘TopographicMaps’

S10:IS4(bbox:b, size:b, resolution:b, imageobj):-
MultiSpectralImage(type, format, size, resolution, cs,

bbox, source, imageobj)^
bbox coveredby ’[[43,-76],[44,-78]]’^
format = ‘JPG’^
source = ‘IS4’^
type = ‘MultiSpectralImage’

Figure 4.4: Source Descriptions for Raster Data Sources

rules define the SatelliteImage domain concept as a superclass of the BWImage and Mul-

tiSpectralImage concepts. It also defines the SatelliteImageQuality domain concept as a

superclass of the BWImageQuality and MultiSpectralImageQuality concepts.

It may seem that writing all the rules and source descriptions is a lot of work. However,

the rules to describe the domain concepts hierarchy are only created once and once QGM

88

VS1RoadQuality(resolution, date, horiz-accuracy, vert-accuracy,
within-acc-bounds, attr-completeness, completeness):-

RoadQuality(source, type, resolution, date, horiz-accuracy,
vert-accuracy, within-acc-bounds, attr-completeness, completeness)^
source = ‘VS1’^
type = ‘Road’

VS2RoadQuality(resolution, date, horiz-accuracy, vert-accuracy,
within-acc-bounds, attr-completeness, completeness):-

RoadQuality(source, type, resolution, date, horiz-accuracy,
vert-accuracy, within-acc-bounds, attr-completeness, completeness)^
source = ‘VS2’^
type = ‘Road’

VS3RoadQuality(resolution, date, horiz-accuracy, vert-accuracy,
within-acc-bounds, attr-completeness, completeness):-

RoadQuality(source, type, resolution, date, horiz-accuracy,
vert-accuracy, within-acc-bounds, attr-completeness, completeness)^
source = ‘VS3’^
type = ‘Road’

VS4RoadQuality(resolution, date, horiz-accuracy, vert-accuracy,
within-acc-bounds, attr-completeness, completeness):-

RoadQuality(source, type, resolution, date, horiz-accuracy,
vert-accuracy, within-acc-bounds, attr-completeness, completeness)^
source = ‘VS4’^
type = ‘Road’

VS5RoadQuality(resolution, date, horiz-accuracy, vert-accuracy,
within-acc-bounds, attr-completeness, completeness):-

RoadQuality(source, type, resolution, date, horiz-accuracy,
vert-accuracy, within-acc-bounds, attr-completeness, completeness)^
source = ‘VS5’^
type = ‘Road’

VS6ParkQuality(resolution, date, horiz-accuracy, vert-accuracy,
within-acc-bounds, attr-completeness, completeness):-

ParkQuality(source, type, resolution, date, horiz-accuracy,
vert-accuracy, within-acc-bounds, attr-completeness, completeness)^
source = ‘VS6’^
type = ‘Park’

Figure 4.5: Vector Source Quality Relation Definitions

89

IS1MultiSpectralImageQuality(date, resolution,
multispectral, completeness):-

MultiSpectralImageQuality(source, type, date, resolution,
multispectral, completeness)^

type = ‘MultiSpectralImage’^
source = ‘IS1’

IS2BWImageQuality(date, resolution,
multispectral, completeness):-

BWImageQuality(source, type, date, resolution,
multispectral, completeness)^

type = ‘BWImage’^
source = ‘IS2’

IS3TopoMapsQuality(date, resolution,
multispectral, completeness):-

TopoMapsQuality(source, type, date, resolution,
multispectral, completeness)^

type = ‘TopographicMaps’^
source = ‘IS3’

IS4MultiSpectralImageQuality(date, resolution,
multispectral, completeness):-

MultiSpectralImageQuality(source, type, date, resolution,
multispectral, completeness)^

type = ‘MultiSpectralImage’^
source = ‘IS4’

Figure 4.6: Raster Source Quality Relation Definitions

has source descriptions for some seed sources, it generates the descriptions of other sources

automatically. Therefore, users do not have to provide a lot of information to QGM.

Given these sources, QGM is tasked to retrieve the satellite imagery and the road

vector data such that both the difference between the dates both datasets are collected and

the difference between the resolutions at which both datasets are collected are minimized.

Figure 4.8 shows the datalog representation of the query. The datalog representation is

divided into three parts: (1) a rule describing the quality criteria, (2) a rule describing

the content criteria, and (3) a rule combining the quality and content criteria. The rule

90

SatelliteImage(‘SatelliteImage’ format, size,
resolution, cs, bbox, source, imageobj):-

BWImage(type, format, size, resolution, cs,
bbox, source, imageobj)

SatelliteImage(‘SatelliteImage’, format, size,
resolution, cs, bbox, source, imageobj):-

MultiSpectralImage(type, format, size, resolution, cs,
bbox, source, imageobj)

SatelliteImageQuality(source, ‘SatelliteImage’, date, resolution,
multispectral, completeness):-

MultiSpectralImageQuality(date, resolution, multispectral,
completeness)

SatelliteImageQuality(source, ‘SatelliteImage’, date, resolution,
multispectral, completeness):-

BWImageQuality(source, type, date, resolution, multispectral,
completeness)

Figure 4.7: Relevant Rules to Describe Domain Concepts Hierarchy

with head Q1Quality describes the quality criteria. The rule with the Q1Data in the

head shows the content criteria. The rule with Q1 relation shows the join of the quality

criteria and the content criteria.

The quality criteria rule contains domain relations describing the quality of data in

the body. In addition, it also contains several operations to compute statistics necessary

to compute the quality criteria. In the running example, it has a subtract operation to

compute the difference in the dates on which the the vector data and satellite images were

collected for each possible combination of road vector data and satellite image. It also has

another subtract operation to compute the difference between the resolutions at which

the image and road vector data were collected. In addition, it has a SkylineMin operation

to compute combinations of datasets that are not dominated by other combinations in

either resolution difference or date difference.

91

Q1(vectorobj,imageobj,resdiff,datediff):-
Q1Quality(vsource, vtype, isource, itype, resdiff, datediff)^
Q1Data(vectorobj, imageobj, vsource, vtype, isource, itype)

Q1Quality(vsource, vtype, isource, itype, resdiff, datediff):-
SatelliteImageQuality(isource, itype, idate, iresolution,

multispectral, icompleteness)^
RoadQuality(vsource, vtype, vresolution, vdate,

horiz-accuracy, vert-accuracy, withinaccuracybounds,
attr-completeness, vcompleteness)^

subtract(iresolution,vresolution, resdiff)^
subtract(idate,vdate, datediff)^
pack(resdiff,datediff, aggregateresultrel)^
SkylineMin(aggregateresultrel,skylineresultrel)^
unpack(skylineresultrel, skylineresdiff, skylinedatediff)^
skylinedatediff = datediff ^
skylineresdiff = resdiff

Q1Data(vectorobj, imageobj, vsource, vtype, isource, itype):-
Roads(vname, vformat, cs, bbox, vsource, vectorobj)^
SatelliteImage(iname, iformat, size, resolution, cs,

bbox, isource, imageobj)^
bbox = ‘[[33,-116],[34,-118]]’^
size = ‘[600,600]’

Figure 4.8: Datalog Representation for Motivating Query

The content criteria rule contains a Roads relation and a SatelliteImage relation and

the necessary coverage constraints to describe the content requirements of the query. The

rule with Q1 relation in the head joins the data retrieved from the content and the quality

criteria based on the source and the type attributes for each type of data object. The

join between the quality and the data relations is only based on the source and the type

attributes as all data objects provided by a given source for a particular type of data have

same values associated with all quality attributes.

92

Based on the descriptions of the sources, it is clear that none of the vector data

sources provide road vector data covering entire area. Also, all sources provide data

collected on different dates or at different resolutions. Only the first four vector data

sources are relevant to the user query as the source VS5 does not provide vector data

for the bounding box described in the query and the source VS6 does not provide road

vector data. Also, only the image sources IS1 and IS2 are relevant to the user query

out of the four image sources as the source IS3 does not provide satellite images and the

source IS4 does not provide satellite images for the area of the query.

Table 4.3 shows the difference between the dates and resolutions of possible vector and

image source combinations from the relevant vector data and image sources. Based on the

resolution and date differences, we can see that QGM should include the combinations

of road vector data from the sources VS1 and VS2 and the satellite image from the

source IS2 in the answers as these combinations have the minimum date difference (0).

Based on the resolution differences in the possible combinations, we can conclude that

QGM should also include the combination of the vector data from the source VS4 and

the satellite image from the source IS2 as that combination has the lowest resolution

difference. Finally, QGM should also include the combination of the vector data from the

source VS4 and the satellite image from the source IS1 as it has lower date difference

compared to the combination of VS4 and IS2 and it has lower resolution difference

compared to all other possible combinations. Therefore, the final answer from QGM

should include the following four combinations: (1) vector data from VS1 and satellite

image from IS2, (2) vector data from VS2 and satellite image from IS2, (3) vector data

93

Vector Source Image Source Res Diff Date Diff (Days)
VS1 IS1 36.7 1460
VS1 IS2 16 0
VS2 IS1 25.7 1460
VS2 IS2 16 0
VS3 IS1 34.3 365
VS3 IS2 25 1825
VS4 IS1 11.3 396
VS4 IS2 2 1856

Table 4.3: Possible Answers to User Query and Their Quality

from VS4 and satellite image from IS1, and (4) vector data from VS4 and satellite image

from IS2.

4.2 Plan Graph Generation

In this section I describe QGM’s process of generating a plan graph to answer the user

query. The plan graph generation process is divided into three steps. First, QGM utilizes

a technique called the Inverse Rules [20] to obtain the definitions of the domain relations

as views over the source relations. As a part of the Inverse Rules process QGM also

identifies the relevant rules and generates a datalog program containing relevant inverted

rules, relevant domain rules, and the user query. The generated datalog program is

not yet executable as it may contain requests to sources without satisfying the binding

restrictions. The second step is to convert the datalog program into a plan graph. Finally,

in third step QGM modifies the generated graph to ensure that all binding restrictions

are satisfied.

94

4.2.1 Previous Work: Inverse Rules

The Inverse Rules algorithm was utilized by the InfoMaster information integration sys-

tem [20, 31] to reformulate the user queries. The intuition behind the Inverse Rules

algorithm is to obtain the definitions of the domain relations as views over the source

relations by inverting the source descriptions. As QGM is expected to integrate a very

large number of sources, it is important that the inversion step does not take a long

time for each definition. Moreover, the rules generated as a result of the inversion are

exactly the same for all queries. Therefore, QGM can reuse the rules generated using the

algorithm.

The Inverse Rules algorithm inverts the source descriptions as follows. For every

source description, S(X) : −P1(X1), , Pn(Xn), where S is a source, P1 through Pn are

domain relations, X and Xi refer to set of attributes in the corresponding source or

domain relation, the Inverse Rules algorithm generates n inverse rules, for i = 1, .., n,

Pi(Xi) : −S(X), where if Xi ∈ X, Xi is the same as Xi else Xi is replaced by a function

symbol [20].

For example, consider the source descriptions for the example vector data sources

shown in Figure 4.3. QGM utilizes the Inverse Rules algorithm to invert the rules and

generates the inverted view definitions shown in Figure 4.9.

The rules IR1 through IR6 are the result of inverting the descriptions S1 through S6.

Note that QGM keeps all the constraints. All the equality constraints on the attributes

of the domain relation are translated to the constants in the head of the rule, while the

coveredby constraint on the bbox attribute remains in the body of the inverted rule. As a

95

IR1:Roads(‘Road’, ‘Shape’, ‘EPSG:4326’, bbox, ‘VS1’, vectorobj):-
VS1(bbox, vectorobj)^
bbox coveredby ‘[[33.5,-117],[34,-118]]’^
vectorobj coveredby bbox

IR2:Roads(‘Road’, ‘Shape’, ‘EPSG:4326’, bbox, ’VS2’, vectorobj):-
VS2(bbox, vectorobj)^
bbox coveredby ‘[[33,-116.5],[33.5,-118]]’^
vectorobj coveredby bbox

IR3:Roads(‘Road’, ‘Shape’, ‘EPSG:4326’, bbox, ‘VS3’, vectorobj):-
VS3(bbox, vectorobj)^
bbox coveredby ‘[[33,-117.5],[34,-118]]’^
vectorobj coveredby bbox

IR4:Roads(‘Road’, ‘Shape’, ‘EPSG:4326’, bbox, ‘VS4’, vectorobj):-
VS4(bbox, vectorobj)^
bbox coveredby ‘[[33,-117],[34,-118]]’^
vectorobj coveredby bbox

IR5:Roads(‘Road’, ‘Shape’, ‘EPSG:4326’, bbox, ‘VS5’, vectorobj):-
VS5(bbox, vectorobj)^
bbox coveredby ‘[[43,-77],[44,-78]]’^
vectorobj coveredby bbox

IR6:Parks(‘Parks’, ‘Shape’, ‘EPSG:4326’, bbox, ‘VS6’, vectorobj):-
VS6(bbox, vectorobj)^
bbox coveredby ‘[[33,-117],[34,-118]]’^
vectorobj coveredby bbox

Figure 4.9: Inverted Source Descriptions for Vector Data Sources

result of the inversion, QGM has rules defining the Roads and the Parks domain relations

as views over the source relations.

In addition to the vector data sources, QGM also inverts all source descriptions for

the Raster data sources. Figure 4.10 shows examples of inverting all source descriptions

shown in Figure 4.4. Similar to the source descriptions for the vector data sources, QGM

keeps the constraints in the source descriptions in the inverted rules. As a result of

the inversion, QGM has rules defining the MultiSpectralImage,the BWImage, and the

TopographicMaps domain relations as views over the source relations.

96

IR7:MultiSpectralImage(‘MultiSpectralImage’, ‘JPG’, size, resolution,
‘EPSG:4326’, bbox, ‘IS1’, imageobj):-

IS1(bbox, size, resolution, imageobj)^
bbox coveredby ’[[33,-116],[34,-118]]’

IR8:BWImage(‘BWImage’, ‘JPG’, size, resolution,
‘EPSG:4326’, bbox, ‘IS2’, imageobj):-

IS2(bbox, size, resolution, imageobj)^
bbox coveredby ’[[33,-116],[34,-118]]’

IR9:TopographicMaps(‘TopographicMaps’, ‘JPG’, size, resolution,
‘EPSG:4326’, bbox, ‘IS3’, imageobj):-

IS3(bbox, size, resolution, imageobj)^
bbox coveredby ’[[33,-116],[34,-118]]’

IR10:Multi-spectral(‘MultiSpectralImage’, ‘JPG’, size, resolution,
‘EPSG:4326’, bbox, ‘IS4’, imageobj):-

IS4(bbox, size, resolution, imageobj)^
bbox coveredby ’[[43,-76],[44,-78]]’

Figure 4.10: Inverted Source Descriptions for Raster Data Sources

The quality query passed to QGM is in terms of the domain quality relations. The

domain quality relations are virtual. Therefore, the domain quality relations cannot be

queried. QGM finds the definitions of the domain quality relations as views over the

source quality relations by inverting the descriptions of the source quality relations.

For example, consider the description of the source quality relations shown in Figure

4.5. QGM inverts the descriptions to generate the rules shown in Figure 4.11.

Similar to the vector data quality relation descriptions, QGM also inverts the descrip-

tions of the raster data quality relations shown in Figure 4.6. The inverted definitions for

the raster sources are shown in Figure 4.12.

The inverted rules, the domain hierarchy rules, and the user query together form a

datalog program to answer the user query. The next step is to analyze the generated

97

RoadQuality(‘VS1’, ‘Road’, resolution, date, horiz-accuracy,
vert-accuracy,withinaccuracybounds,attr-completeness,completeness):-
VS1RoadQuality(resolution, date, horiz-accuracy, vert-accuracy,
withinaccuracybounds, attr-completeness, completeness)

RoadQuality(‘VS2’, ‘Road’, resolution, date, horiz-accuracy,
vert-accuracy,withinaccuracybounds,attr-completeness, completeness):-
VS2RoadQuality(resolution, date, horiz-accuracy, vert-accuracy,
withinaccuracybounds, attr-completeness, completeness)

RoadQuality(‘VS3’, ‘Road’, resolution, date, horiz-accuracy,
vert-accuracy,withinaccuracybounds,attr-completeness, completeness):-
VS3RoadQuality(resolution, date, horiz-accuracy, vert-accuracy,
withinaccuracybounds, attr-completeness, completeness)

RoadQuality(‘VS4’, ‘Road’, resolution, date, horiz-accuracy,
vert-accuracy,withinaccuracybounds,attr-completeness, completeness):-
VS4RoadQuality(resolution, date, horiz-accuracy, vert-accuracy,
withinaccuracybounds, attr-completeness, completeness)

RoadQuality(‘VS5’, ‘Road’, resolution, date, horiz-accuracy,
vert-accuracy,withinaccuracybounds,attr-completeness, completeness):-
VS5RoadQuality(resolution, date, horiz-accuracy, vert-accuracy,
withinaccuracybounds, attr-completeness, completeness)

ParkQuality(‘VS6’, ‘Park’, resolution, date, horiz-accuracy,
vert-accuracy,withinaccuracybounds,attr-completeness, completeness):-
VS6ParkQuality(resolution, date, horiz-accuracy, vert-accuracy,
withinaccuracybounds, attr-completeness, completeness)

Figure 4.11: Inverted Descriptions for Vector Source Quality Relations

datalog program to identify relevant rules to answer the query. The Inverse Rules algo-

rithm relies on the datalog evaluation engine to either completely evaluate the datalog

program and produce only relevant answers or perform smart evaluation by pruning the

rules first. Kambhampati et al. [41] also describe a process to prune the datalog program

generated by the Inverse Rules algorithm. QGM’s process of identifying relevant rules is

98

MultiSpectralImageQuality(‘IS1’, ‘MultiSpectralImage’, date,
originalresolution, multispectral, completeness):-

IS1MultiSpectralImageQuality(date, originalresolution,
multispectral, completeness)

BWImageQuality(‘IS2’, ‘BWImage’, date,
originalresolution, multispectral, completeness):-

IS2BWImageQuality(date, originalresolution,
multispectral, completeness)

TopoMapsImageQuality(‘IS3’, ‘TopographicMaps’, date,
originalresolution, multispectral, completeness):-

IS3TopoMapsQuality(date, originalresolution,
multispectral, completeness)

MultiSpectralImageQuality(‘IS4’, ‘MultiSpectralImage’, date,
originalresolution, multispectral, completeness):-

IS4MultiSpectralImageQuality(date, originalresolution,
multispectral, completeness)

Figure 4.12: Inverted Descriptions for Raster Source Quality Relations

similar to the process described by Kambhampati et al [41]. The key extension in QGM

is to utilize the conflicting spatial constraints to prune the generated datalog program.

QGM identifies the relevant rules using the procedure shown in Figure 4.13. QGM

begins by expanding the query rule and adding the query rule to the list of relevant rules.

For each domain relation in the query rule, QGM finds all rules with the relation in the

head of the rule. QGM checks the constraints in the rule with the constraints in the query

to find any conflicts. QGM checks the conflicting constraints based on both the order

constraints and spatial constraints. QGM adds all selected rules with no conflicts to list

of rules that need to be expanded. QGM repeats this process with all selected rules to

expand until the list of rules to be expanded is empty. The list of relevant rules contains

all datalog rules that are relevant to the user query. Once QGM identifies the relevant

99

Algorithm 4.2.1: IdentifyRelevantRules(R, Q)

procedure IdentifyRelevantRules(R,Q)
RulestoExpand← Q
RelevantRules← φ
while RulesToExpand 6= φ

CurrentRule← RulesToExpand.Pop()
RelevantRules.Insert(CurrentRule)
ListofRels← CurrentRule.GetRelsinBody()
for each Rel ∈ ListofRels

if typeOf(Rel) == DOMAIN
then
RulesWithRelinHead← FindRules(R,Rel)
for each Rule ∈ RulesWithRelinHead{
if NoConflicts(Rule, Q)
then RulestoExpand.insert(Rule)

procedure NoConflicts(Rule,Q)
RuleConstraints← Rule.getConstraints()
QueryConstraints← Q.getConstraints()
for each RConstraint ∈ RuleConstraints

for each QConstraint ∈ QueryConstraints{
if Conflicts(RConstraint,QConstraint)
then return (False)

return (True)

Figure 4.13: QGM’s Algorithm to Generate Relevant Rules

rules, it creates a datalog program with those rules and utilizes that as a new program

to answer the user query.

In our running example, after expanding the query rule, QGM identifies the rules

containing sources VS1, VS2, VS3, VS4, IS1, and IS2 and corresponding quality rules

as the relevant rules. The rules with the source VS5 and IS4 contain conflicting spatial

constraints on the bbox attribute, while the rules with the source VS6 and IS3 are not

100

relevant as the relations, Parks and TopographicMaps are not required to answer the

user query. Therefore, QGM removes the rules containing source relations IS3, IS4, VS5,

and VS6 from the generated datalog program. Moreover, it also identifies the domain

hierarchy rules that define the SatelliteImage and SatelliteImageQuality domain relations

as views over the BWImage, MultiSpectralImage, BWImageQuality, and MultiSpectralIm-

ageQuality relations as relevant rules. Therefore, the new datalog program generated to

answer our example query contains the inverted descriptions of sources VS1 through VS4

and the inverted rules of the corresponding quality relations, the inverted descriptions of

sources IS1 and IS2 and the inverted rules of the corresponding quality relations, the

relevant domain hierarchy rules, and the rules describing the user query.

4.2.2 Converting Datalog Program to Plan Graph

In this section I show QGM’s process of converting the generated datalog program to

a plan graph. QGM utilizes the plan graph representation to ensure binding pattern

satisfaction and optimization. The plan graph generation is different compared to the

Inverse Rules algorithm which utilizes a datalog evaluation engine to execute the gener-

ated datalog program and does not need to convert the datalog program to a plan graph

representation.

QGM’s algorithm to convert the datalog program to a plan graph representation is

shown in Figure 4.14. The generation of the graph representation begins by expanding

the query rule. For each source relation in the query rule (if any), QGM inserts a retrieve

operation in the graph. For each domain relation in the query rule QGM inserts a project

operation in the graph and adds the domain relation to list of relations to be expanded.

101

Algorithm 4.2.2: GeneratePlanGraphRepresentation(RelevantRules,Q)

procedure GeneratePlanGraphRepresentation(RelevantRules,Q)
PredicatestoExpand.insert(Q.GetPredicatesinBody())
ProjectNode← Project(Q.head)
Graph← ProjectNode
Parents.insert(ProjectNode)
while PredicatesToExpand 6= φ

CurrentPredicate← PredicatesToExpand.Pop()
CurrentParent← Parents.Pop()
if typeOf(CurrentPredicate) == SOURCEREL
then

Graph.add(Retrieve(CurrentPredicate), CurrentParent)
if typeOf(CurrentPredicate) == DOMAINREL
then

RulesWithRel← Findrules(RelevantRules, CurrentPredicate)
if RulesWithRel.count() > 1

then

{
UnionNode← GenerateUnion(RulesWithRel)
Graph.add(UnionNode,CurrentParent)

else Graph.add(ExpandRule(RulesWithRel(0))
if typeOf(CurrentPredicate) == Constraint
then{
SelectNode← SelectNode(CurrentPredicate)
Graph.add(SelectNode, CurrentParent)

Figure 4.14: QGM’s Algorithm to Generate Plan Graph

If two relations have one or more attributes with the same name, QGM inserts a join

operation between the operations corresponding to the two relations. For each constraint,

QGM inserts a select operation in the graph. QGM continues expanding the query rule

until it exhausts all predicates in the query rule(s). The expansion of the predicates in

the query is similar to how a datalog evaluation engine executes the datalog program

using a top-down evaluation strategy.

102

Next, QGM extracts the first relation from the list of relations to expand. QGM

identifies all rules that contain the selected relation in the head. QGM expands all the

identified rules using the same process it used to expand the query rule. When QGM

expands the rules, it unifies the attribute names with the attribute names in the domain

relation present in the query. If QGM identifies more than one rule containing a domain

relation in the head it inserts a union operation in the plan graph. Each child of a union

operation represents one datalog rule with the domain relation as its head. QGM repeats

this process until the list of relations to expand is empty.

In our running example, first QGM expands the rule for the query. The first predicate

it encounters is the Q1Quality predicate. As the Q1Quality relation appears in the head

of one rule, QGM inserts a project operation representing the predicate and adds the

predicate to the list of predicates to expand. Next, it encounters the Q1Data predicate.

QGM follows the same process of inserting a node with a project operation in the graph

and adding the Q1Data predicate to the list of predicates to expand. In addition, QGM

also adds a node representing a join operation between the Q1Data and the Q1Quality

predicates as both predicates contain four attributes with same names (vsource, vtype,

isource, itype). QGM connects both project nodes with the join node. The resulting

graph is shown in Figure 4.15. The triangle shapes in the graph denote the subtrees that

QGM will populate next.

Next, QGM expands the rules containing relations Q1Quality and Q1Data in the head,

resulting in addition of more nodes in the graph and predicates to the list of predicates

to expand. First it expands the rules for the Q1Quality predicate. There is only one rule

103

π(vectorobj, imageobj, resdiff, datediff)
Q1

Join
vsource = vsource and vtype = vtype and
isource = isource and itype = itype

Q1Data Q1Quality

vsource, vtype, isource, itype,
resdiff, datediff

vsource, vtype, isource,
itype, vectorobj, imageobj

Figure 4.15: Initial Plan Graph

with the Q1Quality predicate in the head. This rule is part of the user query shown in

Figure 4.8. I also show the rule below for reference.

Q1Quality(vsource, vtype, isource, itype, resdiff, datediff):-

SatelliteImageQuality(isource, itype, idate, iresolution,

multispectral, icompleteness)^

RoadQuality(vsource, vtype, vresolution, vdate,

horiz-accuracy, vert-accuracy, withinaccuracybounds,

attr-completeness, vcompleteness)^

subtract(iresolution,vresolution, resdiff)^

subtract(idate,vdate, datediff)^

pack(resdiff,datediff, aggregateresultrel)^

SkylineMin(aggregateresultrel,skylineresultrel)^

unpack(skylineresultrel, skylineresdiff, skylinedatediff)^

skylinedatediff = datediff ^

104

skylineresdiff = resdiff

The rule with the Q1Quality relation in the head contains nine predicates. The first

two predicates (SatelliteImageQuality and RoadQuality) are domain relations, so those

are added to the list of relations to expand and the corresponding nodes with the project

operations are added to the graph. The next five predicates (two subtract predicates, pack,

SkylineMin, unpack) are relations that refer to different operations. Therefore, QGM adds

a node containing retrieve operation corresponding to each call to the operations. QGM

also adds necessary join conditions based on the common attributes between different

relations. The last two predicates are constraints. QGM adds nodes containing select

operations corresponding to each constraint.

Next, QGM expands the SatelliteImageQuality domain relation. There are two rules

that contain the relation SatelliteImageQuality in the head (relevant rules for the domain

hierarchy). Therefore, QGM inserts a node containing a union operation. The union

operation has two children nodes corresponding to the two rules. Expansion of each rule

results in addition of one source predicate to each child node. The graph of the Q1Quality

branch is shown in Figure 4.16. Note that the plan graph for the Q1Quality contains a

cross product between the union of the satellite images and union of the roads. The cross

product is necessary to ensure that we compute quality of all possible combinations of

satellite image and road vector data. However, the result of the cross product is bounded

by the number of relevant sources for each type of data.

QGM also expands the subtree for the Q1Data predicate. The subtree for the Q1Data

predicate is shown in Figure 4.17. Note that the subtree for the Q1Data contains requests

105

π(vsource, vtype, isource, itype, resdiff, datediff)

X

Union (SatelliteImageQuality) Union(RoadQuality)

IS1Quality IS2Quality VS1Quality VS2Quality VS3Quality VS4Quality

Subtract

Subtract

Join

Q1Quality

imageres, vectorres, resdiff

imagedate, vectordate, datediff Join
imageres = imageres and
vectorres = vectorres

imagedate = imagedate and
vectordate = vectordate Pack

Join resdiff = resdiff and datediff = datediff

SkylineMin

UnpackJoin

Join

σ

σ

aggregateresultrel = aggregateresultrel

skylineminresultrel = skylineminresultrel

skylinedatediff = datediff

skylineresdiff = resdiff

Figure 4.16: Plan Graph for Q1Quality

to relevant vector and raster data sources. However, all vector data sources have binding

restrictions on the bounding box attribute. The binding restrictions are not satisfied in

this plan graph as the value of the bounding box attribute is not specified. Similarly,

the raster sources require the values of both the bounding box and the size of the image

attributes.

106

Union (SatelliteImage) Union(Road)

IS1 IS2 VS1 VS2 VS3 VS4

Join

σ

σ

Π(vectorobj, imageobj, vsource, vtype, isource, itype)

Q1Data

bbox = bbox

bbox = `[[33,-116],[34,-118]]’

size = `[600,600]’

118]]’
00]’

Const:
bbox:

`[[33,-116],[34,-118]]’
size: `[600,600]’

Const:
bbox:

`[[33,-116],[34,-118]]’

Const:
bbox:

`[[33,-116],[34,-118]]’

Const:
bbox:

`[[33,-116],[34,

Figure 4.17: Graph Representation for Q1Data

4.2.3 Handling Binding Restrictions

In this section I describe QGM’s approach to handling the binding restrictions. Geospatial

sources often have required input values, such as a bounding box. In order to obtain data

from the sources with binding restrictions, QGM must provide the values for the required

input attributes.

The Inverse Rules algorithm [20] addresses the binding restrictions by generating one

or more rules called dom rules for each attribute with binding restrictions. Intuitively,

the idea behind the dom rules is to find all possible ways to generate input values for

required inputs. Chen Li [48] describes an improvement over this idea by associating

specific types to all attributes and generating dom rules for each type of required input

attribute. However, both of these approaches do not scale in presence of a large number

of sources. Therefore, QGM addresses the binding restrictions using a different approach.

107

In the geospatial domain, the values for the attributes with binding restrictions must

come either from the sources relevant to the user query or order constraints in the query.

QGM utilizes this fact to address the binding restrictions. For each retrieve operation in

the graph, QGM checks to see if there are any binding restrictions on the source from

which the retrieve operation obtains the data. If there are no binding restrictions, QGM

continues to the next retrieve operation.

When QGM finds a retrieve operation from a source with binding restrictions, QGM

first tries to find a select operation(s) containing the attribute(s) with the binding re-

striction by traversing the graph toward the root from the retrieval operation. If there

exists a select operation with equality constraint with a constant value on the restricted

attribute, QGM add a constant node in the graph containing the value(s) of the attributes

with binding restriction and adds a dependency between the retrieval operation and the

constant node.

For the running example, QGM is able to satisfy the binding restrictions of the image

sources (IS1 and IS2) and the vector data sources (VS1, VS2, VS3, and VS4) using

the values provided by different select operations. For example, the source IS1 has

binding restrictions on attributes bbox and size. There exist select operations equating

both attributes with constant values. Therefore, QGM adds a constant node containing

values for both attributes and creates a dependency between the retrieval operation for

the source IS1 and the constant node. QGM adds similar constant nodes for all other

sources as well.

If QGM does not find a selection on the restricted attribute and the parent of the

retrieve operation is a join operation, QGM checks if the other node in the join provides

108

the restricted attribute. If it does and it is listed as a free attribute, QGM inserts a

dependency between two nodes ensuring that the retrieval operation with the binding

restrictions would be executed after the other operation and the binding restrictions

are satisfied. If QGM cannot satisfy the binding restrictions using the above-mentioned

rules, it checks if the attribute with the binding restriction is present in any other retrieve

operation. If the attribute is not present, QGM returns the query as unsatisfiable. If the

attribute is available, QGM attempts to reorder the join operations in the graph to see

if any ordering satisfies the binding restrictions.

For different operations in the graph (subtract, pack, SkylineMin, and unpack), QGM

adds a dependency between the nodes and their siblings to ensure that the binding re-

strictions are satisfied. The first part of the graph containing the root node (shown in

Figure 4.15) does not change as it contains no retrieve operations. Figure 4.18 shows

the modified graph for the Q1Quality subtree. The dependencies introduced due to the

binding restrictions are shown using more prominent arrows.

Figures 4.19 shows the plan graph representation of the Q1Data predicate. The bind-

ing restrictions result in the addition of nodes representing constant values for different

image and vector data sources.

4.3 Plan Optimization

In this section I discuss two plan optimization techniques implemented in QGM. The first

technique is to identify and reuse common sub expressions. Common subexpression anal-

ysis [24] is a popular technique in database query optimization literature. The intuition

109

π(vsource, vtype, isource, itype, resdiff, datediff)

X

Union (SatelliteImageQuality) Union(RoadQuality)

IS1Quality IS2Quality VS1Quality VS2Quality VS3Quality VS4Quality

Subtract

Subtract

Join

Q1Quality

imageres, vectorres, resdiff

imagedate, vectordate, datediff Join
imageres = imageres and
vectorres = vectorres

imagedate = imagedate and
vectordate = vectordate Pack

Join resdiff = resdiff and datediff = datediff

SkylineMin

UnpackJoin

Join

σ

σ

aggregateresultrel = aggregateresultrel

skylineminresultrel = skylineminresultrel

skylinedatediff = datediff

skylineresdiff = resdiff

Figure 4.18: Subtree for Q1Quality after Binding Restriction Satisfaction

Union (SatelliteImage) Union(Road)

IS1 IS2 VS1 VS2 VS3 VS4

Join

σ

σ

π(vectorobj, imageobj, vsource, vtype, isource, itype)

Q1Data

bbox = bbox

bbox = `[[33,-116],[34,-118]]’

size = `[600,600]’

Const:
bbox:

`[[33,-116],[34,-118]]’
size: `[600,600]’

Const:
bbox:

`[[33,-116],[34,-118]]’
size: `[600,600]’

Const:
bbox:

`[[33,-116],[34,-118]]’

Const:
bbox:

`[[33,-116],[34,-118]]’

Const:
bbox:

`[[33,-116],[34,-118]]’

Const:
bbox:

`[[33,-116],[34,-118]]’

Figure 4.19: Subtree for Q1Data after Binding Restriction Satisfaction

110

behind the common subexpression analysis technique is to identify the common parts in

one or more queries and reuse the results to reduce the response time. QGM implements a

common subexpression analysis method to identify the common subtrees in the generated

plan graph. The second optimization technique is to execute the quality criteria and and

utilize the results to prune the plan graph. As evaluating the quality criteria does not

involve retrieving geospatial data from sources, for most queries evaluating the quality

criteria is much quicker than executing the entire plan graph. Moreover, for most queries,

QGM can prune the plan graph by removing requests to sources that do not satisfy the

quality criteria. Therefore, QGM evaluates the quality criteria and utilizes the results to

prune the generated plan graph.

4.3.1 Identifying and Reusing Common Sub-expressions

In this section I describe QGM’s process of identifying and eliminating common subex-

pressions. QGM’s algorithm to identify common subexpressions is shown in Figure 4.20.

As the most expensive operations in the plan graph are the retrieve operations, QGM

identifies duplicate subtrees by analyzing all retrieve operations. First, it checks to see

if any two retrieve operations contain request to the same source using the same input

values. If QGM finds such retrieve operations, it traverses the graph toward the root from

both retrieve operations (Call to the TreverseNodes procedure). At each step it checks to

see if both subtrees are still the same. When the subtrees differ QGM stops and inserts

a rename operation linking the parent of one of the common subtrees to another subtree.

In our running example, QGM does not find any common subexpressions. However,

in general it may find some common subexpressions and simplify the plan graph.

111

Algorithm 4.3.1: IdentifyCommonSubexpressions(PlanGraph)

procedure IdentifyCommonSubexpressions(PlanGraph)
RetrieveNodes← GetRetrieveNodes(PlanGraph)
i← 0
while i < RetrieveNodes.size()

Node← RetrieveNodes.get(i)
j ← i + 1
while j < RetrieveNodes.size()

CompareNode← RetrieveNodes.get(j)
if CompareNode == Node
then{
TraverseNodes(Node, CompareNode, P lanGraph)

return (PlanGraph)

procedure TraverseNodes(Node1, Node2, PlanGraph)
Parent1← Node1.parent
Parent2← Node2.parent
if Parent1 == Parent2 and Address(Parent1)! = Address(Parent2)
then

{
TraverseNodes(Parent1, Parent2, P lanGraph)

else

{
NewNode← RenameNode(Node1, Node2)
Replace(Node2, NewNode)

Figure 4.20: QGM’s Algorithm to Identify Common Subexpressions

4.3.2 Quality-driven Plan Optimization

In this section I discuss QGM’s process of evaluating the quality criteria and pruning the

graph based on the result. The quality-driven plan optimization process is divided into

two steps. First, QGM executes the subtree corresponding to the quality criteria and

obtains the results. Second, QGM utilizes the result to remove the requests to sources

that do not satisfy the quality criteria from the plan graph.

112

4.3.2.1 Evaluating the Quality Criteria

In this section I discuss the evaluation of the quality criteria. Evaluation of the subtree

corresponding to the quality criteria is performed in two steps. The first step is to retrieve

information from the quality relations for each source and the second step is to execute

the necessary operations to compute statistics and select qualifying tuples. I explain each

step in turn.

The first step in evaluating the quality criteria is retrieving information about the

quality of data provided by the sources from the source quality relations. The relevant

source quality relations are typically represented as retrieve operations at the leaf level

in the quality criteria subtree. In our example, the retrieval from the source quality

relations refers to the following six retrieve nodes shown in Figure 4.18: (1) IS1Quality,(2)

IS2Quality, (3) VS1Quality, (4) VS2Quality, (5) VS3Quality, and (6) VS4Quality.

The next step in evaluating the quality criteria is to execute operations to compute

necessary statistics for the quality criteria. In our running example this step consists

of finding all combinations of vector and raster data by performing a cross product be-

tween the quality tuples for the road vector data and the quality tuples for the image

sources, computing differences in date and resolution for each combination, and using the

SkylineMin operation to compute the non-dominated combinations of raster and vector

data.

In our running example there are 4 ∗ 2 = 8 possible combinations of raster and vector

data. Table 4.3 shows difference in the dates and resolutions for all possible combinations

of vector and image data sources. The SkylineMin operation results in the selection of

113

Res. Diff. (meters) Date Diff. (Days) Vector Source Vector Type Raster Source Raster Type
16 0 VS1 Road IS2 SatelliteImage
16 0 VS2 Road IS2 SatelliteImage

11.3 396 VS4 Road IS1 SatelliteImage
2 1856 VS4 Road IS2 SatelliteImage

Table 4.4: Rows Computed for Q1Quality Predicate

Q1Quality

Union (SatelliteImage) Union(Road)

IS1 IS2 VS1 VS2 VS3 VS4

Join

σ

σ

π(vectorobj, imageobj)

Q1Data

bbox = bbox

bbox = `[[33,-116],[34,-118]]’

size = `[600,600]’

Const:
bbox:

`[[33,-116],[34,-118]]’
size: `[600,600]’

Const:
bbox:

`[[33,-116],[34,-118]]’
size: `[600,600]’

Const:
bbox:

`[[33,-116],[34,-118]]’

Const:
bbox:

`[[33,-116],[34,-118]]’

Const:
bbox:

`[[33,-116],[34,-118]]’

Const:
bbox:

`[[33,-116],[34,-118]]’

π(vectorobj, imageobj, resdiff, datediff)
Q1

Join vsource = vsource and vtype = vtype
and isource = isource and itype = itype

Q1Quality(2,1856,VS4,Road,IS2,SatelliteImage)
Q1Quality(11.3,396,VS4,Road,IS1,SatelliteImage)
Q1Quality(16,0,VS2,Road,IS2,SatelliteImage)
Q1Quality(16,0,VS1,Road,IS2,SatelliteImage)

Figure 4.21: Graph After Replacing Q1Quality Subtree

the following combinations of raster and vector data: (1) VS1 and IS2, (2) VS2 and IS2,

(3) VS4 and IS1, (4) VS4 and IS2. For each qualifying combination QGM obtains the

values of the resolution difference, date difference, a vector data source, a vector data

type, a raster data source, and a raster data type. Table 4.4 shows the tuples computed

for the Q1Quality predicate.

QGM Generates one fact per row for the Q1Quality relation and replaces the subtree

representing the Q1Quality relation with the node representing the facts. The new graph

is shown in Figure 4.21.

114

4.3.2.2 Pruning Based on Quality Criteria Results

In this section I discuss QGM’s process of removing unqualified source requests from

the plan graph based on the results of the quality query. The intuition behind this

optimization is to remove all source requests that do not satisfy the quality criteria by

examining all join operations in which the quality criteria participates.

The algorithm to identify source requests that do not satisfy the quality criteria is

similar to the algorithm to identify relevant rules (shown in Figure 4.13) in that in both

processes QGM checks the constraints in the plan. However, as every node in a graph

may participate in multiple branches, QGM must make sure any node it removes will not

satisfy constraints in all branches it is connected to.

QGM’s algorithm to prune nodes based on quality restriction is shown in Figure 4.22.

As the results of the quality query are the only new constant values, QGM only needs

to examine constraints that connect to the subtree corresponding to the quality query.

Therefore, QGM identifies the branches to prune by examining all join conditions in which

the attributes obtained from the quality query participate. In our running example, QGM

only examines the join between the Q1Data relation and the Q1Quality relation.

For each join, QGM identifies the attribute from the quality query that participates

in the join condition. QGM already knows the possible values for the attribute from the

results of the quality criteria. So, QGM identifies the other child of the join operation

and finds all possible values for the attribute involved in the join condition. The list of

possible values for any attribute may contain one or more of the following: (1) a value

coming from some source or (2) a constant value. If the list of values for the attribute

115

Algorithm 4.3.2: PruneBasedOnQuality(G, QualityNode)

Parent← QualityNode.parent
PrunedG← G
while Parent 6= NULL

if typeOf(Parent) == JOIN
then

for each Joinattr ∈ Parent.Joinattrs

V aluesFromLeft← FindV alues(Joinattr, Parent.leftChild)
V aluesFromRight← FindV alues(Joinattr, Parent.rightChild)
for each V alue ∈ V aluesFromLeft

if V alue /∈ V aluesFromRight
then{
MarkBranchForDeletion(V alue, Joinattr, Parent.rightChild)

Parent← Parent.parent
for each node ∈ PrunedG

if node.MarkedForDeletion
then

Remove(node)
return (PrunedG)

Figure 4.22: QGM’s Algorithm Prune Nodes Based on Quality Results

participating in the join contains one or more constant values, QGM compares each value

to the values coming from the quality query. If the values do not match QGM marks the

branch that produces the value for deletion. For all values that match, QGM marks the

corresponding branches as useful. After analyzing all join operations, QGM removes all

branches marked for deletion.

In our running example, QGM finds that the join conditions for all identified join

operations involve function symbols representing the raster and vector data objects. As

the result of the quality criteria does not include any combination with the vector data

from source VS3 (see Table 4.4), QGM finds that the branches referring to the source

116

Q1Quality

Union (SatelliteImage) Union(Road)

IS1 IS2 VS1 VS2 VS4

Join

σ

σ

π(vectorobj, imageobj)

Q1Data

bbox = bbox

bbox = `[[33,-116],[34,-118]]’

size = `[600,600]’

Const:
bbox:

`[[33,-116],[34,-118]]’
size: `[600,600]’

Const:
bbox:

`[[33,-116],[34,-118]]’
size: `[600,600]’

Const:
bbox:

`[[33,-116],[34,-118]]’

Const:
bbox:

`[[33,-116],[34,-118]]’

Const:
bbox:

`[[33,-116],[34,-118]]’

π(vectorobj, imageobj, resdiff, datediff)
Q1

Join vsource = vsource and vtype = vtype
and isource = isource and itype = itype

Q1Quality(2,1856,VS4,Road,IS2,SatelliteImage)
Q1Quality(11.3,396,VS4,Road,IS1,SatelliteImage)
Q1Quality(16,0,VS2,Road,IS2,SatelliteImage)
Q1Quality(16,0,VS1,Road,IS2,SatelliteImage)

Figure 4.23: Graph After Pruning Based On Quality Results

VS3 results in vector data objects that do not satisfy the quality criteria. Therefore,

QGM removes the branches related to the data source VS3. The plan graph after the

removal of the branches is shown in Figure 4.23.

4.4 Plan Execution

In this section I describe QGM’s process of executing the optimized plan graph using

the Theseus execution engine [5]. Section 4.4.1 provides brief overview of Theseus’ plan

language. Section 4.4.2 describes the translation of the plan graph into a Theseus plan.

4.4.1 Brief Overview of Theseus Plan Language

Theseus execution engine is based on a streaming dataflow architecture [5, 16, 38, 40, 53].

The tuples of different relations in a Theseus plan are streamed between the operations

117

and Theseus executes the independent operations in the plan in parallel. Theseus has

variety of operators ranging from data access operators to allow easy access to different

types of data sources, such as, databases and web pages, to data management operators,

such as select, project, and join. Theseus is also unique in its support for recursion and

subplans among the streaming dataflow systems [5, 16, 38, 40, 53].

Most operators in Theseus accept one or more relations as inputs and produce one or

more relations as outputs. Below is a list of different Theseus operators that are used in

the plans generated by QGM.

Select: The select operator in Theseus performs a relational selection on a given

relation of the data. The select operator accepts a relation and a select condition as

input and generates a new relation with tuples that satisfy the select condition as output.

An example of the select operation in Theseus plan language is shown below:

Select(inrelation, ‘x = 5’ : outrelation)

The term inrelation refers to the input relation, while ‘x = 5’ is the select condition. If

the input relation does not have an attribute named ‘x’, Theseus throws an exception.

All rows in the output relation (outrelation) have value ‘5’ for the attribute ‘x’. The

select condition in Theseus supports the following operators: =, >, <, notlike, like.

Project:The project operator in Theseus projects a set of attributes from a given

relation. The project operator accepts a relation and a list of attributes to project as

input and generates a new relation with the projected attributes. An example of the

project operation is shown below:

Project(inrelation, ‘x,y’ : outrelation)

118

The term inrelation refers to the input relation, while ‘x,y’ is the list of attributes to

project. All rows in the output relation (outrelation) have two attributes ‘x’ and ‘y’.

Union: The union operator in Theseus performs a relational union of two relations.

The union operation accepts two relations with the same schema and returns a new

relation that contains union of the tuples from both input relations. An example of the

union operation is shown below:

Union(inrelation1, inrelation2 : outrelation)

The terms inrelation1 and inrelation2 denote the input relations, while the term outre-

lation denotes the output relation.

Join: The join operator in Theseus performs a relation join between two relations.

The join operator accepts two relations and a join condition as input and returns one

output relation that contains the tuples that satisfy the given join condition. An example

of the join operation is shown below:

Join(inrelation1, inrelation2, ‘l.x=r.x’ : outrelation)

The terms inrelation1 and inrelation2 denote the input relations, while the term ‘l.x=r.x’

represents the join condition. The prefix ‘l.’ denotes the first input relation (inrelation1),

while the prefix ‘r.’ denotes the second input relation. If the attributes mentioned in the

join condition do not exist in the input relations, Theseus throws an exception.

Dbquery: The Dbquery operator in Theseus allows querying information from an

external database. The DbQuery operation accepts a query, a string containing connec-

tion information for the database, a user name, and a password as input and returns a

119

relation containing the result of the query. An example of the Dbquery operation is shown

below:

Dbquery(‘select x, y from table1’,

‘jdbc:oracle:thin:@mydb!scott!tiger’ : outrelation)

Apply: The Apply operation in Theseus executes an external function for each tuple

of the input relation. QGM utilizes the Apply operation to retrieve information from

different types of geospatial sources using a call to an external function written in Java.1

Below is an example of a call to an Apply operation:

apply(inrelation, "MyFunctions.GetData(bbox,‘shape1.shp’)",

"shapeobj" : outrelation)

The example call makes a request to an external function called ‘MyFunctions.GetData’.

The external function in the example accepts two arguments. One of the argument is

the bbox attribute from the inrelation, while the other argument is a constant value

‘shape1.shp’. The function returns one argument called shapeobj. If the inrelation con-

tains multiple tuples the Apply operation calls the external function multiple times. The

output relation contains all attributes from the input relation and the result of the apply

operation.

Aggregate: The Aggregate operation in Theseus executes an external function once

passing values for all tuples of the input relation. QGM utilizes the Aggregate operation

to implement several aggregation operations including Sum and Average. Below is an

example of a call to an Aggregate operation:

1http://java.sun.com

120

aggregate(inrelation, "MyFunctions.Average(resolution)", "old_rel",

"avgresolution" : outrelation)

The example call makes a request to an external function called ‘MyFunctions.Average’.

The external function in the example accepts one argument. In the example the argument

is the resolution attribute of the input relation. The function averages all values of the

attribute and returns the average value. The output relation contains two attributes.

One attribute titled avgresolution contains the average value and the second attribute

called old rel contains the input relation.

Pack: The Pack operator in Theseus embeds a relation within another relation. QGM

utilizes the Pack operator to implement the pack operation. Below is an example of the

pack operator:

pack (inrelation, "packed_rel" : outrelation)

The output relation contains one attribute named packed rel with one value that contains

the input relation.

Unpack: The Unpack operation unpacks a previously packed relation. QGM utilizes

this operation to implement the unpack operation. Below is an example of the unpack

operator:

unpack (inrelation, "packed_rel" : outrelation)

In the example, the output relation contains the relation that was packed in the

packed rel attribute.

121

4.4.2 Translating Plan Graph to Theseus Plan

In this section, I describe the translation of a graph into a Theseus Plan. I begin the

discussion by first describing translation of different types of nodes in the plan graph to

one or more Theseus operations. Second, I describe the details of the transformation of

entire graph by discussing translation of the plan graph shown in Figure 4.23.

4.4.2.1 Translating Nodes to Theseus Operations

The plan graph generated by QGM contains six types of nodes: (1) retrieval, (2) project,

(3) select, (4) join, (5) union, and (6) constant. QGM translates each type of node into

a Theseus operation.

Retrieval: Each retrieval node corresponds to a request to obtain data from a source

or a call to an operation, such as pack or unpack. QGM translates each retrieval node to

a call to a Theseus subplan corresponding to the request to the data source. For example

consider the call to the source VS1Quality in Figure 4.18. QGM translates the node to

the following Theseus operation.

VS1Quality(:vs1qualityout)

The name of the subplan is same as the name of the source. The term vs1qualityout

refers to the output relation of the plan. Note that the subplan for the VS1Quality does

not accept any relations as the source does not have any binding restrictions. If a source

has a binding restriction, then the subplan corresponding to the source accepts a relation

as input containing values of the attributes with binding restrictions. An example of this

is the node representing a call to the source VS1 in Figure 4.23. Note that the source

122

VS1 requires a value for the bbox attribute. QGM translates the retrieve node to the

following Theseus plan.

VS1(vs1in:vs1out)

The relation vs1in has a single attribute named bbox. The relation vs1out is the

output of the subplan.

project: QGM translates each node corresponding a project operation into the

project Theseus operation. As an example consider the project node at the root of

the plan graph shown in Figure 4.23 that projects the following attributes: (1)imageobj,

(2) vectorobj, (3) resdiff, and (4) datediff. QGM translates this node to the following

Theseus operation.

project(Q1in, "imageobj, vectorobj, resdiff, datediff" : Q1)

The relation Q1in is the input to the project operation and must have values for

the four attributes in the project condition. The output of the project operation is the

relation Q1.

Select: Each select node in the plan graph represents a relational select operation.

QGM translates every select node to a select operation. As an example consider the node

representing a select operation on the size attribute in Figure 4.23. QGM translates the

select node to the following Theseus operation.

select(selectin, "size = ‘[600],[600]’" : selectout)

Join: A join node in the plan graph represents a relational join between two relations.

QGM translates every join node to a join operation. For example, consider the join

123

operation between the union of the satellite images and the union of the road vector

datasets in Figure 4.23. QGM translates the node representing the join operation to the

following Theseus operation.

join(satelliteimages, roads, "l.bbox = r.bbox" : joinout)

Union:A union node in the plan graph represents union of two or more relations.

QGM translates the nodes representing a union to one or more union operations in

Theseus. For example consider the node representing union of the satellite image data in

Figure 4.23. QGM translate the union node to the following Theseus operation.

union(satelliteimagedata1, satelliteimagedata2 : unionout)

If a node representing the union operation represents union of more than two relations,

QGM translates it to a set of union operations in Theseus. For example, consider the

node representing the union of road vector data from three sources. QGM translates the

union to the following set of Theseus operations.

union(VS1out, VS2out : unionout1)

union(unionout1, VS3out: unionout)

Note that the translated Theseus operations first perform union between two relations

and then union the result with the third relation.

Constant: The last type of nodes in the graph are constant nodes that are used

to provide required inputs to the retrieval operations. QGM translates those nodes into

input relations to the Theseus plan. For example, consider the constant node in Figure

4.23 that provides the value for the bounding box attribute to the retrieve operation for

124

source VS1. QGM translates the node to a relation containing one attribute (bbox) and

one tuple with value ‘[[33,-116],[34,-118]]’.

4.4.2.2 Translating Relationships Between Nodes in Plan Graph

In addition to translating each node into one or more Theseus operation(s), QGM also

needs to make sure that the relationships between the nodes in the plan graph are rep-

resented correctly in the generated Theseus plan. QGM ensures those relationships by

specifying the input and output relations of different Theseus operations in the gener-

ated plan. For example, if one node labeled nodeA in the plan graph has incoming edge

from another node called nodeB, QGM ensures that in the Theseus translation the input

relation to the translation of nodeA is the same as the output relation of the Theseus

translation of nodeB. In order to better understand this process, I walk through first few

steps of translating the plan graph shown in Figure 4.23 to a Theseus plan.

The root node of the plan graph is a node with a project operation. QGM translates

the root node into a project operation. The output of the root node is also the output of

the Theseus plan. The input relation to the project operation is the output of the child

node connecting to the root node. Below is the generated plan having traversed the root

node.

PLAN qgmplan{

INPUT:

OUTPUT: stream qout

BODY

{

125

project(rel0, "vectorobj,imageobj, resdiff,

datediff ": qout)

}

}

Note that QGM added the output of the root node (qout relation) in the list of

outputs. The child of the root node is a node with a join operation. QGM translates this

node into a join operation in Theseus. Below is the Theseus plan having traversed first

two nodes. The input relations in the join node are the output relations of the children

nodes of the join node.

PLAN qgmplan{

INPUT:

OUTPUT: stream qout

BODY

{

/*join between the Equals, Q1Quality, and Q1Data*/

join(rel1,rel2,"l.imageobjdata = r.imageobjdata and

l.vectorobjdata = r.vectorobjdata" : rel0)

project(rel0, "imageobjdata,vectorobjdata, resdiff,

datediff" : outrel)

}

}

126

The next node that QGM visits is the join node, which is translated into a join

operation in the Theseus graph resulting in the Theseus plan shown below.

PLAN qgmplan{

INPUT:

OUTPUT: stream qualityout

BODY

{

join(rel6, rel7, "l.bbox = r.bbox" : rel5)

/*join between the Equals, Q1Quality, and Q1Data*/

join(rel1,rel2,"l.imageobjdata = r.imageobjdata and

l.vectorobjdata = r.vectorobjdata" : rel0)

project(rel0, "imageobjdata,vectorobjdata, resdiff,

datediff" : outrel)

}

}

QGM continues this process until it exhausts all nodes. The final plan is shown in

Appendix B. QGM translates all retrieval operations to a call to subplans for individual

operations. Appendix C shows subplans for different types of geospatial sources.

Once QGM has generated the Theseus plan it executes the plan and returns the results

to the user. In our running example, QGM executes the plan and provides user with the

127

four combinations of image and vector data objects that satisfy the quality criteria. The

four combinations are: (1) image from IS2 and vector data from VS1, (2) image from IS2

and vector data from VS2, (3) image from IS1 and vector data from VS4, and (4) image

from IS2 and vector data from VS4. Those four combinations are the best quality results

given the user query and quality criteria.

4.5 Experimental Evaluation

In this section, I describe the experimental results to support the techniques that I de-

scribed in this chapter. In particular, I evaluate the quality of data provided by QGM in

response to the user queries and measure the response time for answering the user queries.

I compare performance of QGM to the performance of traditional data integration system

with the extensions to support accessing geospatial data. The traditional data integration

system that I used did not have the capability to represent the quality of data provided

by the sources and did not take quality into account when answering user queries. My

experiments tested two hypothesis: (1) as the number of available sources increases, the

quality of data provided by QGM is significantly better compared to the traditional data

integration system and (2) as QGM makes less source requests compared to the tradi-

tional data integration system, the response time of QGM is often lower compared to the

traditional data integration system.

I begin this section by first describing the experimental setup. Then, I describe the

sets of experiments that I performed and discuss the results.

128

4.5.1 Experimental Setup

I conducted all experiments on a machine running Windows 2003 server operating system

with dual Xeon CPUs operating at 2.1GHz and 3GB memory. However, as each Xeon

processor appears as two processors to the operating system and as my code did not take

advantage of multiple CPUs, it only ran on 50% of one CPU. The machine was connected

to Internet using a Gigabit Ethernet card. The average download speed from a random

web page was over 1 mb/sec.

For each set of experiments, I compare QGM with the Prometheus [65] data integra-

tion system with extensions to support access to geospatial data. The Prometheus data

integration system used in the experiments utilized the Inverse Rules algorithm to gen-

erate the datalog program to answer the user query, identified and eliminated common

subexpressions, mapped the generated datalog program to a Theseus plan, and executed

the generated Theseus plan to produce the results of the user query. The domain model

for QGM and Prometheus contained the same sources. However, Prometheus’ domain

model did not have any quality relations. I utilize the Prometheus system for two reasons:

(1) it is a good representative implementation of data integrations system and (2) I had

access to the source code.

All my experiments involved real-world sources. The shapefile sources were down-

loaded and hosted on the same machine to avoid a large number of retrievals from the

web during the experiments. The Web Map Server and ArcIMS Server sources were ac-

cessed at query time. The domain model for the experiments included 1268 data sources.

129

All sets of experiments included 10 queries and I report the average response time and

the quality of data returned in response to the queries.

4.5.2 Experimental Results

The first set of experiments measure the response time for different queries. The re-

sponse time depends on two aspects of the query: (1) number of geospatial data layers

retrieved in the query and (2) number of sources that provide relevant data for the user

query. Therefore, in this set of experiments I measured the response time of QGM and

Prometheus for the queries that varied in both above-mentioned aspects.

Response time vs. number of geospatial data layers retrieved: In these

experiments, I generated 10 bounding boxes covering about 0.05 degree * 0.05 degree

area. I randomly generated bounding boxes until, I found 10 bounding boxes for which

the available sources provided between 2-5 different types of geospatial data layers. I

repeated the process to find 10 bounding boxes with 5-10 different available data layers

and 10-20 data layers. I randomly selected 2 data layers from the available data layers

for each bounding box from the first set of bounding boxes. For the second and third sets

of bounding boxes I selected 5, and 10 data layers, respectively. For each bounding box

in all three sets I asked QGM and Prometheus to find the selected data layers.

I also varied the quality query for QGM. In the first set of experiments the quality

query only required QGM to find all geospatial data layers that had either vectors within

accuracy bounds or horizontal accuracy better than some pre-determined value. For the

vectors within accuracy bounds I used the constant value 50%, while for the horizontal

accuracy I chose the constant value 7.0 meters.

130

Table 4.5 shows the response time of Prometheus and QGM for the first set of queries.

I also report the number of results returned by Prometheus and QGM. All timings in

the table are in seconds. Note that the number of results returned by each system is all

possible combinations of the objects retrieved by the system, i.e. if a system was asked

to find a satellite image and a road vector data covering some region and it found 2

satellite images from different sources and 3 road vector data layers, the total number of

combinations will be 6. The plan generation time for both systems includes the time to

run the Inverse Rules algorithm and generate the graph representation of the plan. The

optimization time for Prometheus was the time taken in removing duplicate branches in

the graph. For QGM the optimization time includes the time taken in removing duplicate

branches, running the quality query, and pruning the generated graph based on the quality

results.

While the optimization time for QGM is larger than the optimization time for Prometheus,

QGM’s execution time is lower compared to Prometheus. As the number of results in-

crease (indicating a larger integration plan), the improvement due to QGM’s quality-

driven answering becomes more pronounced. However, in queries involving small number

of layers, the quality query did not filter out many sources as most sources met the quality

criteria. Therefore, while QGM’s extra work on ensuring quality of the results did result

in less source requests during the execution time, it was not enough to overcome the extra

time spent during optimization. Therefore, when retrieving two geospatial data layers

QGM was outperformed by Prometheus. Note that this only happens as the quality con-

straints do not filter out many requests when retrieving two layers. If the quality criteria

filtered out more requests QGM would perform much better. Even with quality criteria

131

of Layers Prometheus QGM
Time in Seconds Time in Seconds

Gen. Opt. Exec. Total # results Gen. Opt. Exec. Total # results
2 32 167 284 483 9 32 201 281 497 8
5 34 236 461 731 21 34 237 428 667 16
10 37 298 1190 1525 39 37 312 971 1164 28

Table 4.5: Comparison of Response Time on Simple Quality Query

of Layers Prometheus QGM
Time in Seconds Time in Seconds

Gen. Opt. Exec. Total # results Gen. Opt. Exec. Total # results
2 32 167 284 483 9 32 199 131 362 2.7
5 34 236 461 731 21 34 231 244 509 6.3
10 37 298 1190 1525 39 37 316 314 667 12.9

Table 4.6: Comparison of Response Time on Quality Query with Aggregate

that does not filter out many requests, QGM outperforms Prometheus when retrieving

five or ten data layers.

Next, I changed the quality query for QGM so that the quality query contained an

aggregation operation. I randomly selected either Min or Max as the aggregate operation.

Note that the quality of different geospatial objects retrieved in the queries were still

independent of each other, i.e. I did not ask QGM to minimize the difference between

quality of geospatial data layers, just asked it to minimize or maximize the value of the

selected attribute for each object.

Table 4.6 shows the response time and the number of results returned by QGM for

this set of queries. As Prometheus cannot process different quality queries, I show the

response time from the first set of queries for comparison. Note that there is a sharp

decrease in the response time for all queries executed by QGM. This is because the

quality query with aggregate operation prunes most source requests. Due to the reduced

number of requests, the execution time of the queries decreases significantly.

132

of Layers Prometheus QGM
Time in Seconds Time in Seconds

Gen. Opt. Exec. Total # results Gen. Opt. Exec. Total # results
2 35 178 394 607 12 35 219 349 603 8.2

Table 4.7: Comparison of Response Time on Quality Query with SkylineMin

In the third set of queries, I changed both the data queries and the quality queries. I

asked QGM and Prometheus to retrieve two data layers. I changed the quality query so

that QGM had to use the SkylineMin operation to minimize the difference between the

randomly selected quality attribute (vectors within accuracy bounds or completeness) of

the first and the second geospatial data layer. For example, if a query asked to retrieve the

road vector data and railroad vector data, QGM had to minimize the difference between

the values of the completeness attribute or the vectors within accuracy bounds attribute

for the road and the railroad vector data layers.

Table 4.7 shows the results of the queries. Compared to the quality criteria with

aggregate operations and order constraints, the quality criteria with Skyline operations

take longer to execute. In addition, SkylineMin operation resulted in more possible

combinations compared to the Min or the Max operations. Due to this QGM’s response

time was about the same as Prometheus’ response time. However, the number of results

returned by QGM were lower than the results returned by Prometheus. Therefore, if a

user had to analyze the results and select the best combinations, the extra work done by

QGM in pruning results with low-quality would save a lot of user’s time.

Response time vs. number of relevant sources: In these experiments, I gen-

erated 10 bounding boxes covering about 0.05 degree * 0.05 degree area. I randomly

generated bounding boxes until, I found bounding boxes for which there were between

133

Query # of Sources Prometheus QGM
Time in Seconds Time in Seconds

Gen. Opt. Exec. Total # results Gen. Opt. Exec. Total # results
Constraint 0-5 32 98 126 256 3.7 32 109 113 254 3.2
Constraint 5-10 33 119 279 431 7.9 33 116 196 345 5.8
Constraint 10-20 32 131 872 1035 16.1 32 138 524 694 11.2
Constraint 20-30 34 168 1985 2187 24.3 34 159 871 1064 17.6
Aggregate 0-5 32 98 126 256 3.7 32 113 102 247 1.3
Aggregate 5-10 33 119 279 431 7.9 33 116 115 264 2.1
Aggregate 10-20 32 131 872 1035 16.1 32 137 167 336 3.7
Aggregate 20-30 34 168 1985 2187 24.3 34 162 190 386 4.1
Skyline 0-5 32 98 126 256 3.7 32 140 134 306 2.9
Skyline 5-10 33 119 279 431 7.9 33 192 184 409 4.6
Skyline 10-20 32 131 872 1035 16.1 32 297 372 701 7.2
Skyline 20-30 34 168 1985 2187 24.3 34 421 579 1034 9.8

Table 4.8: Comparison of Response Time as Number of Relevant Sources Increase

0-5, 5-10, 10-20, and 20-30 data sources that provided the same type of geospatial data.

For example, I selected a bounding box for which the there were between 0-5 sources of

road vector data.

I used three different types of quality queries. The first set of quality queries contained

a constraint on one quality attribute without any aggregate operations similar to the first

set of queries for the previous set of experiments. The second set of quality queries

contained an aggregate constraint on one of the quality attributes. The third set of

quality queries contained a SkyLineMin operation to minimize two quality attributes.

Table 4.8 shows the results of the queries. It is clear that as the number of relevant

sources to the user query grows, QGM significantly outperforms Prometheus for all types

of queries. This is mainly due to the fact that QGM is able to prune a lot of requests,

resulting in much smaller execution time. Even though QGM spends more time optimiz-

ing the generated plans, the lower execution time of the optimized plans makes up the

time spent in optimization.

Quality of results:

134

Type QGM Average Std. Deviation
% Comp. % Acc. % Comp. % Acc. % Comp. % Acc.

Constraint 59.81 87.61 47.71 83.12 17.36 9.31
Aggregate 68.19 89.97 47.71 83.12 17.36 9.31
Skyline 64.03 87.90 47.71 83.12 17.36 9.31

Table 4.9: Quality of Data

In order to show that QGM significantly improves the quality of answers for the user

queries, I randomly generated 20 bounding boxes where there was at least one type of

geospatial data available. I asked QGM to retrieve one type of geospatial data available

in each bounding box using three different types of quality restrictions. The first quality

restriction was on either completeness or features within accuracy bounds attribute. It

contained a constraint that the selected attribute must be greater than 50. The second

quality query asked QGM to find data with the highest value for completeness or features

within accuracy bounds. Finally, the third quality query asked QGM a skyline query

with the completeness and features within accuracy bounds. I compare the accuracy and

completeness of results of QGM with average accuracy and completeness of all objects

returned by Prometheus and the standard deviation among the data objects returned by

Prometheus.

QGM always returned sources with the best quality given the quality criteria. As

shown in Table 4.9, on an average compared to average of all objects returned by

Prometheus, QGM provided 12% more complete results for constraint queries, 21%

more complete results for aggregate queries, and 16% more complete datasets for sky-

line queries. The data returned by QGM on average had 5% more features within the

accuracy bounds compared to the average of all relevant sources. For all queries QGM’s

135

completeness was one standard deviation better than the average, while for the accuracy

QGM’s response was almost a half standard deviation better than the average values.

Overall, the experimental evaluation shows that QGM scales much better compared

to Prometheus in terms of the response time of the user queries despite spending more

time in processing the quality criteria and optimizing the plans by utilizing the quality

criteria specified by the user. Moreover, the quality of results returned by QGM is much

better compared to the quality of results returned by Prometheus.

136

Chapter 5

Related Work

In this section, I describe the closely related research to my work. I divide the related

research into several categories. The first category of research are papers that focus on

geospatial data integration using either data integration or semantic web techniques. The

second category of related research is the GIS standards and other web-based mapping

applications. The third category of work is on data integration systems and more specif-

ically data integration systems that focus on data quality. The fourth area is the source

modeling research that is related to QGM’s automatic source description generation pro-

cess. The fifth area of related research is the research on quality of geospatial data in the

GIS community that relates to the representation of quality in QGM. The sixth related

research area is the work on query optimization in the database community that relates

to some of the optimizations utilized in QGM.

5.1 Geospatial Data Integration

The first area of related research is on integrating geospatial data using data integration

or semantic web-based techniques. Hermes [1], MIX [35], VirGIS [10, 11, 12, 13, 22], and

137

Geongrid [36, 50, 70, 71] are examples of data integration systems that have been used

to integrate geospatial data, while the Ontology-driven Geospatial Information System

(ODGIS) [26, 27, 28], Geospatial Semantics and Analytics (GSA)[14], and SWING [44,

49, 59] are examples of frameworks that utilize semantic web-based techniques to integrate

geospatial data.

The Hermes mediator system [1] integrates multimedia data and spatial data is one

type of data it integrates. Therefore, the focus of the work is only on showing that

Hermes can integrate spatial data with other datasets. The MIX [35] and VirGIS [10,

11, 12, 13, 22] are XML-based mediator systems that support integration of geospatial

data and some grouping and aggregation operations. In MIX, a domain expert can

provide list of XML tags related to the spatial data and operations and specify the rules

for processing each type of tags. The integration plans in MIX are determined based

on Global-As-View rules provided by a domain expert. VirGIS is a mediation system

based on OpenGIS standards namely Web Feature Server (WFS) and Geographic Markup

Language (GML). The querying and wrapper mechanism in VirGIS are similar to MIX,

but it utilizes GML instead of user-specified tags. VirGIS utilizes one to one mapping

between source relations and domain relations and can integrate different types of vector

and imagery data. QGM’s research focus is on quality-driven, large-scale geospatial data

integration. Therefore, in addition to the ability to integrate geospatial sources similar

to Hermes, MIX, and VirGIS, QGM also automatically generates representation of the

content and the quality of geospatial data sources and exploits the quality information

to provide high quality geospatial data in response to user queries.

138

The Geongrid [36, 50, 70, 71]1 describes the grid-enabled mediation services (GEMS)

architecture for integrating geospatial data. As a part of the GEMS architecture the

authors describe five services for integrating geospatial sources: (1) a registration service,

(2) an ontology-based query rewriting service, (3) a spatial results assembly service, (4)

a data quality-based rewriting and evaluation service, and (5) map composition service.

The registration service is used to automatically collect the metadata for the Oracle

spatial sources and ArcIMS services. While in spirit this is similar to QGM’s automatic

source description generation module, the key difference is that GEMS architecture relies

on the sources to utilize standardized names of layers that match with the concepts in

the ontology, while QGM utilizes a matching algorithm based on string similarity. GEMS

also allows a domain expert to manually add the matching concept in the ontology and

quality information for each data layer provided by sources.

The ontology-based query rewriting service in GEMS reformulates the user query

specified using the terms in the ontology to a query on the available sources. The spatial

results assembly service is responsible to visualizing the results of user queries using

a map display. The data quality-based rewriting and evaluation service rewrites the

user queries that specify quality criteria. A user can ask GEMS to retrieve all features

that are Definitely or Possibly within the area of interest or within some distance of

another feature. The data quality-based rewriting and evaluation service utilizes the

accuracy bounds of various data sources to identify qualifying features. The map assembly

service in GEMS takes different fragments of raster images provided by different source,

1http://www.geongrid.org

139

the metadata about the coordinates and the resolution of the images, and generates a

combined map.

GEMS is similar to QGM in that both are mediator-based architectures. I can improve

QGM’s query answering by incorporating the research ideas in map assembly service and

studying the impact of such assembly on the quality of the resulting image. QGM’s

representation of quality is more general as it can represent different quality attributes

and allows users to specify quality restrictions using datalog rules that are more expressive

than utilizing the terms definitely or possibly. In addition, QGM can automatically match

the layers provided by the sources with the concepts in the ontology and automatically

estimate the quality of data provided by the sources.

Fonseca et al. [26, 27, 28] describe a framework called ontology-driven geographic

information system (ODGIS). The focus of the work is on developing a user interfaces for

browsing various classes in the ontology, reasoning based on ontology classes, and utilizing

terms from Wordnet to resolve linkage issues between sources. This work assumes that

the framework has access to a semantic mediator that generates answers to the user

queries by retrieving and integrating geospatial information from the relevant sources.

The framework described in this thesis would be an ideal choice to work as a semantic

mediator to support the ODGIS framework.

Arpinar et al. [14] describe the process of manually developing a geospatial ontology,

automatically and semi-automatically extracting information about entities from sources,

and representing entities as instances in such ontology. In addition, they also represent the

relationships between the entities as relationships between the instances of the entities.

They describe spatial reasoners that can be used to reason about the spatial and temporal

140

relationships between the instances in the ontology, such as proximity of two instances.

The research is implemented in a framework titled Geospatial Semantics and Analytics

(GSA). While QGM and GSA are similar in the sense that both provide a uniform

interface to geospatial data, the approach taken by both systems is different. QGM

relies on automated techniques to generate representation of sources and utilizes a novel

quality-driven query answering algorithm to ensure quality of data, while GSA relies on

human expertize to carefully collect high quality data. Moreover, the GSA approach is

similar to a data warehousing approach in that it relies on populating instances an an

ontology by extracting information from sources. Creating a massive data warehouse for

all geospatial data available may require a lot of resources. Instead QGM focuses on a

mediator-based approach that does not require creating a warehouse with all available

data.

Lutz et al. [44, 49, 59] describe their vision of SWING, a semantic framework for

geospatial services. The SWING framework shows the feasibility of utilizing an ontology-

based reasoner to overcome the semantic heterogeneity in names of layers and attributes

in different geospatial services. Their approach is to utilize string similarity to match

layers in the user query with the layers in the ontology. The layers in the ontology can be

linked to the source using string similarity (automatic) or manually written mappings.

The string matching approach used in QGM’s automated source generator module can

benefit from their extensive work on identifying synonyms in geospatial domain. QGM’s

automatic description generation and quality estimation modules remove the need to

manually write mappings to link sources with the layers in the ontology. The integration

in SWING will rely on a geospatial data integration component, which the authors plan to

141

develop in future. QGM would be an ideal framework to use as the integration component

as it can not only integrate geospatial data, but also ensure the quality of data returned

to the user.

5.2 GIS Standards and Commercial Mapping Applications

The second area of related work is the various standards for geospatial data and existing

mapping systems. The Web Map Server (WMS) and Web Feature Server (WFS) are

standards for hosting raster and vector data proposed by OpenGIS. These standards

allow programs to dynamically determine which layers are provided by a server and how

to access the layers. These standards address the syntactical issues involved in accessing

data from various sources. QGM can automatically generate source descriptions for the

sources that support these standards. However, the standards do not require the servers

to utilize meaningful names for their layers. QGM addresses this problem by using string

matching techniques to automatically link name and description of the layers with the

mediated schema.

The Federal Geographic Data Committee (FGDC) has provided several documents

to define the quality metadata for different types of geospatial data. The FGDC efforts

are to ensure that correct metadata is associated with different types of geospatial data

available on the Internet. QGM utilizes the FGDC standards for the quality metadata

and provides the metadata for the data it produces in response to user queries.

There exist two types of mapping systems. First, the web-based mapping tools,

such as Google Maps and MSN Virtual Earth and second desktop GIS applications,

142

such as ESRI’s ArcView. While the web-based mapping systems address the problem

of visualizing geospatial data, they do not address the issues relating to querying the

data and the accuracy of the integrated data. Nevertheless, QGM can use these tools to

visualize the result of different queries.

ESRI2 software’s ArcInfo and ERDAS Imagine3 are very commonly used GIS systems.

The commercial GIS systems are great for visualizing different data layers and often allow

developers to encode various operations, such as, conflation as plug-ins. However, they

provide limited dynamic integration capabilities. The focus of our work is on dynamically

selecting relevant sources, retrieving data from those sources, and integrating the retrieved

data using relevant operations. The results of the queries to QGM can be visualized using

any GIS system that supports OpenGIS standards.

5.3 Data Integration Systems

The third category of related research is work on data integration systems, such as, the

Information Manifold [47], InfoMaster [31], InfoSleuth [6], and Ariadne [45]. While some

of these systems are used to integrate images or semi-structured data related to geospa-

tial entities, none of these systems supported different geospatial data types, formats, or

operations. One can extend any of the above-mentioned systems to develop a framework

to integrate geospatial data. However, the required extensions would be similar to various

features of QGM. The key advantages of QGM are support for automatic source descrip-

tion generation, automatic estimation of quality of data provided by sources, support for

2http://www.esri.com
3http://gis.leica-geosystems.com/

143

geospatial operations, such as coordinate and format conversion operations, and support

for combination of GAV and LAV rules.

The data integration community also contains research on quality-driven data inte-

gration [7, 8, 21, 51, 54, 55, 52, 61]. Berti-Equille [7], Bleiholder et al. [8] , Eckman et al.

[21], and Mihaila et al. [51] describe approaches to ensure maximally complete answers

for queries on life science data sources by analyzing all possible plans to compute data.

The goal of their work is to ensure highest quality data by providing maximally complete

data by evaluating all possible plans to integrate data. QGM’s representation of quality is

more expressive as it can represent multiple attributes of quality including completeness.

Moreover, QGM also allows a user-specified quality criteria.

Naumann et al.[54, 55] describe a quality-driven integration system that integrates

biological data. The authors describe a mediator system that utilizes Local-As-View

rules and associates quality with each source similar to QGM. Naumann et al.’s mediator

system divides the quality attributes into three categories: (1) source specific criteria,

(2) content specific criteria, and (3) attribute specific criteria. Given a user query, their

system first utilizes the Data Envelopement Analysis (DEA) Method to select the sources

that provide high quality data based on the source specific quality criteria. The DEA

method is similar to the Skyline queries in that given points in two or more dimensions, it

selects all points on the frontier (i.e. all points not dominated in at least one dimension).

Next, Naumann et al.’s framework utilizes the query correspondence assertions (QCA)

to generate all possible plans that answer the user query using only the sources selected

in the first step. A QCA is similar to a Local-As-View source description in that it

defines the relationship between the sources and mediated schema. Finally, it computes

144

a quality score for each plan by aggregating the quality of all sources and operations used

in the plan and ranks the plans based on the user supplied weights for different quality

attributes.

QGM differs from the framework described in Naumann et al. in several ways. First,

QGM also contains modules to automatically generate source descriptions for geospatial

sources and estimate the quality of their data. Second, QGM’s quality criteria specifica-

tion is more expressive as it allows users to use different operations, such as min, max, or

skyline, and constraints. Some of the quality criteria, such as minimizing both the differ-

ence between the resolutions at which two datasets were collected and the dates on which

two datasets were collected cannot be specified using Naumann et al.’s framework. More-

over, even simpler quality criteria such as finding all vector datasets with completeness

above 50% are hard to specify using different weights for the quality attributes specified

in Naumann et al.’s framework. Third, QGM’s approach to query answering explores the

plan space by first generating a plan containing all possibly relevant sources based on the

content and then removing sources based on the quality criteria. As geospatial datasets

often have limited coverage, Naumann et al.’s approach of pruning first based on only

the source specific quality attributes may result in pruning all sources that provide data

for the area. Therefore, QGM’s query answering algorithm first selects only the relevant

sources based on the content and then explores the search space based on the quality

requirements. As the number of sources that provide data for the layers and areas in the

query tend to be small in general, the search space is relatively small. Fourth, in addition

to ranking the plans, QGM executes the generated plans efficiently using a streaming,

dataflow-style execution engine to reduce the response time of user queries.

145

Scannapieco et. al [52, 61] describe a Global-As-view information integration system

called DaQuinCIS that exploits the quality information about the data provided by the

sources, availability of sources, and their response times to provide high quality answers

to the user query in a peer-to-peer environment. The DaQuinCIS architecture represents

the content and the quality of each source using Global-As-View rules. The data quality

broker module in DaQuinCIS computes the plan to answer the user query by unfolding

the user query and the Global-As-View rules, executes the generated plans, and evaluates

the quality of data produced by each plan. The data quality broker only returns the high

quality data to the users. In addition to quality-driven query answering, QGM also

supports automatic source description generation and automatic quality estimation. As

QGM utilizes the Local-As-View rules, addition of new sources is much easier compared

to DaQuinCIS. Moreover, in the geospatial domain executing all generated plans is not

feasible as it may take a long time to execute all generated plans and execution may

result in a huge amount of data.

5.4 Source Modeling

The problem of source modeling aims at understanding what a new source does in terms

of existing sources [15, 58]. The source modeling techniques are also directly relevant to

the automatic source description generation module of QGM. However, QGM’s problem

is simpler as it only generates the descriptions for sources that adhere to well-known

formats or standards. Therefore, QGM already has some information about the content

and coverage of the sources. One problem with the existing Web Map Servers is that they

146

often overstate their coverage. The reason behind this is that the OpenGIS standard only

allows sources to specify a bounding box for each layer. So, if a source provides data for

all major cities in United States, it ends up specifying entire United States as its coverage.

However, the true coverage of the source is union of all metro areas. As a result answers

to user queries that require images in rural areas often come back with empty images.

While QGM’s coverage estimation eliminates most empty images, it also results in some

incorrect coverage information. We can improve QGM’s coverage estimation techniques

by utilizing the techniques described by Mark Carman [15] to learn more accurate coverage

restrictions for geospatial sources. The key idea in Mark Carman’s work is to learn more

accurate class boundaries by sampling data at the class boundaries. We can use this

idea in QGM to sample more data at the class boundaries and improve the coverage

information.

5.5 Visualizing and Improving Quality in the Geospatial

Domain

GIS researchers have worked on different approaches and ontologies to model and visu-

alize accuracy in geospatial data [32, 33, 68, 69]. QGM allows users to model various

concepts and characteristics, such as completeness or alignment, described in [68, 69] as

quality attributes and pose queries to retrieve geospatial data that satisfies the accuracy

requirements based on the given characteristics. As the focus of my research is not on

visualizing geospatial datasets, my work does not address the issue of visualizing quality

147

of geospatial data returned by QGM. However, as QGM returns the quality information,

we can visualize the quality of results using the approaches described in [32, 33].

In addition, there has also been work on improving the quality of raster or vector

data by aligning the data with more accurate datasets. For example, the quality of road

network data can be improved by aligning the data with a ortho-rectified satellite image.

The process of aligning one geographic dataset with another dataset is call conflation [60].

The process of conflation changes the quality of geographic data as it may change the

actual location of geographic features within the dataset. Commercial GIS systems, such

as ESRI’s ArcInfo, ERDAS Imagine, allow users to manually conflate two datasets by

providing a set of control points between two datasets. Ching-Chien Chen [17] describes

a method to automatically generate control points by extracting features from geospatial

datasets thereby automating the conflation process. Conflation operations and their

effects on the quality of geospatial data can be represented in QGM. The addition of

conflation operation would allow QGM to provide more accurate answers to the user

queries.

5.6 Database Query Optimization

The sixth category of research is on reducing the response time of integration plans by

optimizing the plans [3, 19, 39, 41, 43, 66]. Kifer and Lozinskii [43] describe an approach

to ‘push’ selections and projections close to sources in deductive databases. This work is

relevant to our database-style optimizations. It may also be possible to add other similar

database-style optimizations to QGM. However, focus of my research is to show that it is

148

feasible to accurately and efficiently integrate a large number of geospatial sources using a

quality-driven data integration system. Therefore, I focus more on improving the quality

of data produced by the mediator framework.

Kambhampati et al. [41] describe strategies to optimize the recursive and non-

recursive datalog programs generated by the Inverse Rules algorithm. The research focus

of their work is to remove redundant data accesses and to order access to different sources

to reduce the query execution time in the presence of overlapping data sources. In our

framework, we have implemented several optimizations similar to those described by

Kambhampati et al.

Ashish et al. [3] described the idea of using sensing operations to optimize data

integration plans. We have also worked on tuple-level filtering algorithm [63, 64, 65]

technique that generalizes the idea of introducing sensing operations to reduce the number

of source requests. In future, we can add this type of functionality in QGM to further

improve the response time of user queries.

There are many techniques in the literature to optimize datalog programs [66], such

as magic sets [4]. One can easily imagine an extension to our system that optimizes the

generated datalog program using these techniques.

In the database community, there has been much research on parametric query opti-

mization [19, 39]. The key focus of those algorithms is to determine order of the execution

of different operations in the query plan. The focus of our paper is on representing the

content and quality of geospatial sources and providing the best-quality results for the

user queries by exploiting the quality information. In future, we may be able to utilize

149

some of the database query optimization techniques to reduce the optimization time in

QGM.

150

Chapter 6

Discussion and Future Work

In this chapter I first summarize the contributions of this thesis. Next, I discuss several

application areas that would benefit from utilizing my research. Finally, I list possible

improvements for the techniques discussed in this thesis.

6.1 Contributions

The key contribution of this thesis is a Quality-driven Geospatial Mediator (QGM) frame-

work to accurately and efficiently integrate geospatial sources and operations. I believe

QGM can fulfill the need for a large-scale geospatial data integration framework and sup-

port a variety of application areas. Apart from the applications, I believe my research

provides a representation methodology to declaratively specify and utilize the quality of

data provided by sources in a data integration framework. The work presented in thesis

can also be utilized to automatically obtain information about the content and the qual-

ity of a large number of geospatial data sources available on the web. The discovered

information can be utilized to create a virtual or materialized warehouse of geospatial

data to support disaster rescue or urban planning applications. As QGM’s quality-driven

151

query answering algorithm ensures that all data returned to the user meets the quality

criteria, domain experts can add new sources to the warehouse without worrying about

impacting the quality of results returned to the user.

6.2 Application Areas

I believe that my research can provide significant improvement for geospatial data inte-

gration applications in several areas, such as urban planning and disaster response. In

particular, QGM can be used to provide high quality geospatial data for urban planning

or disaster response applications. The administrators of the applications could provide

QGM with the locations of various relevant repositories of geospatial sources and some

seed data. QGM can then automatically determine the content and the quality of data

that the sources in the repository provide and utilize that information to answer queries

that require retrieving different types of geospatial data from the sources.

6.2.1 Urban Planning Applications

An example of an urban planning application is the Green Visions Plan1. The goal

of this project is to allow access to information about parks, rivers, roads, and parcel

information in the Los Angeles area to create practical planning tools to promote habitat

conservation, watershed health, and recreational open space.

A part of the Green Visions project is to provide access to information about road

networks, rivers, parks, and parcels on the web and allow administrators to quickly see

different statistics, such as the number of parks within 1 mile of a given parcel. QGM can

1http://greenvisionsplan.net/

152

Seed Sources: Quality
& Content

QGM

Answers Queries

Automatically
Discovered Sources

Requests

Domain
Expert

End User

Front End

Figure 6.1: Example Architecture for Urban Response Systems

easily be used as a back-end for such a system. As the accuracy of the statistics depends

on the quality of input data, QGM’s quality-driven query answering would ensure that

the best-quality geospatial data is used to compute the statistics shown to the user.

The overall architecture for a website that provides information for such applications

is shown in Figure 6.1. The domain experts identify several seed sources and provide

QGM information about the quality of data from those sources. Given this information

and a list of available geospatial source repositories, QGM can automatically determine

content and quality of data provided by sources. When the users ask queries through the

web, user interface module utilizes the user inputs to formulate queries to QGM. Given

153

the query, QGM utilizes the information about the content and the quality of available

sources to answer the user query. The user interface module shows the results to the user.

6.2.2 Disaster Response

Disaster response applications have a unique requirement in that the location of a disaster

is not pre-determined. This implies that a disaster response application must have access

to geospatial data that covers a large area. However, disaster response applications also

require accurate geospatial data. As collecting different types of geospatial data for

large areas is a very tedious, time-consuming, and expensive process, disaster response

applications often rely on data in public domain or data collected by other agencies.

However, determining which sources should be used for different types of geospatial data

is a non-trivial task.

QGM can act as a back-end for disaster response applications and provide high quality

geospatial data in response to user queries. QGM is well-suited for such applications due

to three reasons: (1) its ability to automatically determine the content of the sources,

(2) its ability to estimate the quality of data provided by different sources, and (3) its

flexible and expressive approach to describe the quality restrictions. Disaster response

applications can use different quality metrics for different queries. For example, in case

of a query to identify all roads over a certain elevation to respond during flooding, the

positional accuracy of the elevation data may be very important to the responders. While

in case of a query to find all buildings effected by a fire the completeness attribute may

be more important to ensure that all possible buildings are accounted for.

154

6.3 Future Work

There are a number of future directions for this work that will allow the techniques I

developed to be applied more broadly. These directions can be categorized as improving

one of the following five areas: (1) source discovery, (2) automatic source description

generation, (3) quality estimation, (4) query answering, and (5) utilizing QGM in other

domains. I discuss some possibilities in this sections.

6.3.1 Source Discovery

QGM does not have a source discovery module. Instead it relies on identifying sources

from the list of source repositories given by a user. It would be fairly easy to design a

crawler that searches for geospatial data and provides the list of discovered sources to

QGM. QGM can then use its automatic source description generator module to automatic

determine the content and quality of the data provided by the discovered sources.

Another approach to source discovery would be to analyze QGM’s list of available

sources, identify where QGM either does not have a good coverage of certain type of

data or does not have access to high quality data and use that information to guide the

discovery process. By utilizing the information about the available sources, we can find

sources that have higher probability of increasing QGM’s coverage of a type of data or

improve the quality of data QGM can provide in some areas.

6.3.2 Automatic Source Description Generation

Another area of possible improvements to QGM is in the automatic source descriptions

generation module. I believe there are three possible ideas for improvement. The first

155

idea is to create a domain concepts hierarchy that covers more types of geospatial and

temporal entities. For example, if we add more weather related domain concepts, QGM

can differentiate between layers named ‘rainfall in past 15 days’ and ‘rainfall in past 30

days’. Depending on the type of queries, having a more detailed domain model may be

very useful.

The second idea is to adopt an existing information retrieval techniques to improve

the accuracy of automatic matching of domain concepts and layer names. The current

automatic matching technique does not use any very commonly occurring words as stop

words or utilize frequency of terms. The performance of the automatic matching technique

can be improved by utilizing an existing information retrieval techniques that take into

account not only the stop words and frequency of terms.

The third approach to improving the automatic source description generation is to

improve the coverage information in the generated rules. QGM can generate more ac-

curate coverage information for different raster sources by utilizing techniques described

by Mark Carman in his thesis [15]. Intuitively after performing initial sampling of raster

data and generating the Voronoi diagram, QGM can sample data at the class boundaries

to further improve the coverage information.

6.3.3 Quality Estimation

QGM’s quality estimation process can be improved in two ways. First, we can add some

image processing capability in QGM to analyze the images returns by the Raster data

sources, so that we can also analyze the quality of image sources. This would really be

useful for images that provide information about real-world geospatial entities, such as

156

transportation maps, as we can check to see how many features appear in the image.

We can also utilize the text-metadata provided by the image sources to identify the date

image was collected and the resolution of the image for aerial photos or satellite images.

Second, we can improve QGM’s sampling process by utilizing the features from the

reference set. In particular, if we have access to several reference sources for a given area

or a high-quality reference set, we can use the density of features in the reference set

to determine the location where we should sample the data. Sampling in a dense area

would result in more accurate values for the completeness attribute as QGM will be able

to analyze a larger number of features.

6.3.4 Query Answering

The final area of future work is on improving the response time of query answering. There

are several ways to improve the query answering. We can reduce the plan generation time

by utilizing a spatial database to represent the coverage of the sources and prune the list

of sources based on the area of interest specified in the query as a pre-processing step

using the database. We can run the rest of the query answering step using the pruned

list of sources.

In the experimental results we saw that when answering queries involving a large

number of sources and complicated quality restriction, QGM may take as long as 10

minutes. We can address this problem by using several instances of QGM running on

separate processors or on separate machines and divide the available sources between

all instances. We could use one instance of QGM that represents all other instances as

sources to integrate the results from different instances as shown in Figure 6.2. The key

157

QGM Instance 1 QGM Instance 2 QGM Instance N

Source 1 Source 2 Source N…. Source 1 Source 2 Source N….

….

Source 1 Source 2 Source N….

QGM Instance N+1

Figure 6.2: Hierarchy of QGM Instances

advantage of this is that it can be done without any change to QGM’s existing code and

can significantly improve the response time of the user queries.

We can also add new operators in QGM to support a wider variety of applications.

In particular, it would be very useful to add operators that perform various statistical

operations implemented by a GIS system as users may want to utilize those operations in

determining the best-quality datasets. As QGM already allows developers to connect to

ESRI’s ArcGIS Engine Developer kit, it would be easy to add the capability to perform

more statistical operations implemented in the developer kit.

6.3.5 Using QGM in Other Domains

The implementation of QGM is not specific to the geospatial domain. The only specific

parts to geospatial data are the spatial selection operations and automatic generation of

plans to access geospatial sources. In order to apply the automatic source generation and

quality estimation techniques to other domains, we will need to use different measures,

but the basic idea of sampling data and using it to estimate quality will apply in all

domains.

158

However, QGM’s quality-driven query answering method will apply in most domains.

In order to utilize QGM in a new domain, first we need to define a set of domain concepts

and their relationships that apply to the new domain. Next, we would need to define the

quality attributes for different domain concepts. Next, we can write Local-As-View rules

to define available sources as views over the selected domain concepts. In addition, we

also provide rules that relate the quality of data provided by the sources to the quality

relations defined at the domain level. Finally, we also provide facts related to the quality

of data provided by different sources to QGM. If necessary we may need to implement

some operations applicable to the new domain. Given all this information, QGM would

be able to provide high quality data in response to user queries.

159

Reference List

[1] S. Adali and R. Emery. A uniform framework for integrating knowledge in heterogeneous
knowledge systems. In Proceedings of the Eleventh IEEE International Conference of Data
Engineering, 1995.

[2] Y. Arens, C. A. Knoblock, and W.-M. Shen. Query reformulation for dynamic information
integration. Journal of Intelligent Information Systems - Special Issue on Intelligent
Information Integration, 6(2/3):99–130, 1996.

[3] N. Ashish, C. A. Knoblock, and A. Levy. Information gathering plans with sensing actions.
In European Conference on Planning, ECP-97, Toulouse, France, 1997.

[4] F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman. Magic sets and other strange ways
to implement logic programs. In Proceedings of Principles of Database Systems (PODS),
pages 1–15, 1986.

[5] G. Barish and C. A. Knoblock. An expressive language and efficient execution system for
software agents. Journal of Artificial Intelligence Research, 23:625–666, 2005.

[6] R. J. Bayardo Jr., W. Bohrer, R. S. Brice, A. Cichocki, J. Flower, A. Helal, V. Kashyap,
T. Ksiezyk, G. Martin, M. Nodine, M. Rashid, M. Rusinkiewicz, R. Shea, C. Unnikrishnan,
A. Unruh, and D. Woelk. Infosleuth: Agent-based semantic integration of information in
open and dynamic environments. In Proceedings of 1997 ACM international conference on
Management of data (SIGMOD), 1997.

[7] L. Berti-Equille. Integration of biological data and quality-driven source negotiation. In
ER, pages 256–269, 2001.

[8] J. Bleiholder, S. Khuller, F. Naumann, L. Raschid, and Y. Wu. Query planning in the
presence of overlapping sources. In Proceedings of Extending Database Technology (EDBT),
pages 811–828, 2006.

[9] S. Borzsonyi, D. Kossmann, and K. Stocker. The skyline operator. In Proceedings of the
17th International Conference on Data Engineering, pages 421–430, Washington, DC, USA,
2001. IEEE Computer Society.

[10] O. Boucelma and F.-M. Colonna. Mediation for online geoservices. In Proceedings of Web
and Wireless Geographical Information Systems, pages 81–93, 2004.

[11] O. Boucelma, F.-M. Colonna, and M. Essid. The VirGIS geographic integration system. In
BDA, pages 357–361, 2004.

160

[12] O. Boucelma, M. Essid, Z. Lacroix, J. Vinel, J.-Y. Garinet, and A. Bétari. VirGIS:
Mediation for geographical information systems. In Proceedings of the International
Conference on Data Engineering (ICDE), pages 855–856, 2004.

[13] O. Boucelma, J.-Y. Garinet, and Z. Lacroix. The VirGIS wfs-based spatial mediation
system. In Proceedings of the Conference on Information and Knowledge Management
(CIKM), pages 370–374, 2003.

[14] I. Budak Arpinar, A. Sheth, C. Ramakrishnan, E. Lynn Usery, M. Azami, and M.-P.
Kwan. Geospatial ontology development and semantic analytics. Transactions in GIS,
10(4):551–575, 2006.

[15] M. Carman. Learning Semantic Definitions of Information Sources on the Internet. PhD
thesis, School of Information and Communication Technologies, University of Trento, 2006.

[16] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein, W. Hong,
S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, and M. Shah. Telegraphcq: Continuous
dataflow processing for an uncertain world. In Proceedings of the Conference on Innovative
Data Systems Research (CIDR), 2003.

[17] C.-C. Chen. Automatically and Accurately Conflating Road Vector Data, Street Maps and
Orthoimagery. PhD thesis, University of Southern California, 2005.

[18] C.-C. Chen, S. Thakkar, C. A. Knoblock, and C. Shahabi. Automatically annotating and
integrating spatial datasets. In Proceedings of International Symposium on Spatial and
Temporal Databases, Santorini Island, Greece, 2003.

[19] R. L. Cole and G. Graefe. Optimization of dynamic query evaluation plans. In Proceedings
of the 1994 ACM SIGMOD international conference on Management of data, pages 150–160,
New York, NY, USA, 1994.

[20] O. M. Duschka. Query Planning and Optimization in Information Integration. PhD thesis,
Stanford University, 1997.

[21] B. A. Eckman, T. Gaasterland, Z. Lacroix, L. Raschid, B. Snyder, and M.-E. Vidal.
Implementing a bioinformatics pipeline (bip) on a mediator platform: Comparing cost
and quality of alternate choices. In Proceedings of the International Conference on Data
Engineering (ICDE) Workshops, page 67, 2006.

[22] M. Essid, O. Boucelma, F.-M. Colonna, and Y. Lassoued. Query processing in a geographic
mediation system. In 12th ACM International Workshop on Geographic Information
Systems(ACM-GIS 2004), pages 101–108, 2004.

[23] O. Etzioni and D. Weld. A softbot-based interface to the internet. Communications of the
ACM, 37(7):72–76, 1994.

[24] S. Finkelstein. Common expression analysis in database applications. In Proceedings of the
1982 ACM SIGMOD international conference on Management of data, pages 235–245, New
York, NY, USA, 1982. ACM Press.

161

[25] D. Florescu, L. Raschid, and P. Valduriez. A methodology for query reformulation in CIS
using semantic knowledge. International Journal of Cooperative Information Systems,
5(4):431–468, 1996.

[26] F. Fonseca, M. Egenhofer, P. Agouris, and G. Camara. Using ontologies for integrated
geographic information systems. Transactions in GIS, 6(3):231–257, 2002.

[27] F. Fonseca, M. Egenhofer, C. Davis, and K. Borges. Ontologies and knowledge sharing in
urban GIS. Computers, Environment and Urban Systems, 24(3):251–272, 2000.

[28] F. Fonseca, M. Egenhofer, C. Davis, and G. Camara. Semantic granularity in ontology-
driven geographic information systems. Annals of Mathematics and Artificial Intelligence,
36(1-2):121–151, 2002.

[29] S. J. Fortune. A sweepline algorithm for voronoi diagrams. Algorithmica, pages 153–174,
1987.

[30] H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman, and J. Widom.
Integrating and accessing heterogeneous information sources in TSIMMIS. In Proceedings
of the AAAI Symposium on Information Gathering, Stanford, CA, 1995.

[31] M. R. Genesereth, A. M. Keller, and O. M. Duschka. Infomaster: An information integration
system. In Proceedings of ACM Conference on Management of Data (SIGMOD), 1997.

[32] M. GoodChild. Theoretical models for uncertain GIS. In W. Shi, M. F. Goodchild, and
P. F. Fisher, editors, Spatial Data Quality, pages 1–4, 2002.

[33] M. GoodChild. Models for uncertainty in area-class maps. In W. Shi, M. F. Goodchild, and
P. F. Fisher, editors, Proceedings of the Second International Symposium on Spatial Data
Quality, pages 1–9, 2003.

[34] M. F. Goodchild. Geographical information science. International Journal of Geographical
Information Systems, 1992.

[35] A. Gupta, R. Marciano, I. Zaslavsky, and C. Baru. Integrating gis and imagery through
xml-based information mediation. In Proceedings of NSF International Workshop on
Integrated Spatial Databases: Digital Images and GIS, 1999.

[36] A. Gupta, A. Memon, J. Tran, R. P. Bharadwaja, and I. Zaslavsky. Information mediation
across heterogeneous government spatial data sources. In Proceedings of the 2002 annual
national conference on Digital government research, pages 1–6, 2002.

[37] R. H. Guting. An introduction to spatial database systems. The VLDB Journal, 3(4):357–
399, 1994.

[38] J. M. Hellerstein, M. J. Franklin, S. Chandrasekaran, A. Deshpande, K. Hildrum, S. Madden,
V. Raman, and M. A. Shah. Adaptive query processing: Technology in evolution. IEEE
Data Engineering Bulletin, 2000.

[39] Y. E. Ioannidis, R. T. Ng, K. Shim, and T. K. Sellis. Parametric query optimization. VLDB
Journal: Very Large Data Bases, 6(2):132–151, 1997.

162

[40] Z. G. Ives, D. Florescu, M. Friedman, A. Levy, and D. S. Weld. An adaptive query execution
system for data integration. In Proceedings of the ACM Conference on Management of
Data (SIGMOD), 1999.

[41] S. Kambhampati, E. Lambrecht, U. Nambiar, Z. Nie, and S. Gnanaprakasam. Optimizing
recursive information gathering plans in EMERAC. Journal of Intelligent Information
Systems, 2003.

[42] A. Kiernan. Homeland security and geographic information systems how gis and mapping
technology can save lives and protect property in post-september 11th america. Public
Health GIS News and Information, 52:20–23, 2003.

[43] M. Kifer and E. L. Lozinskii. On compile-time query optimization in deductive databases
by means of static filtering. ACM Transactions in Database Systems, 15(3):385–426, 1990.

[44] E. Klien, M. Lutz, and W. Kuhn. Ontology-based discovery of geographic information
services - an application in disaster management. Computers, Environment and Urban
Systems, 30(1):102–123, 2006.

[45] C. A. Knoblock, S. Minton, J.-L. Ambite, N. Ashish, I. Muslea, A. Philpot, and S. Tejada.
The ariadne approach to web-based information integration. International Journal on
Intelligent Cooperative Information Systems (IJCIS), 10(1-2):145–169, 2001.

[46] M. Lenzerini. Data integration: A theoretical perspective. In Proceedings of ACM
Symposium on Principles of Database Systems, Madison, Winsconsin, USA, 2002.

[47] A. Y. Levy, A. Rajaraman, and J. J. Ordille. Query-answering algorithms for information
agents. In Proceedings of AAAI-96, 1996.

[48] C. Li. Computing complete answers to queries in the presence of limited access patterns.
The VLDB Journal, 12:211–227, 2003.

[49] M. Lutz and E. Klien. Ontology-based retrieval of geographic information. International
Journal of Geographical Information Science, 20(3):233–260, 2006.

[50] V. Manpuria, I. Zaslavsky, and C. Baru. Web services for accuracy-based spatial query
rewriting in a wrapper-mediator system. In Proceedings of the Fourth International W2GIS
Conference, pages 63–71, 2003.

[51] G. A. Mihaila, F. Naumann, L. Raschid, and M.-E. Vidal. A data model and query language
to explore enhanced links and paths in life science sources. In WebDB, pages 133–138, 2005.

[52] D. Milano, M. Scannapieco, and T. Catarci. Peer-to-peer data quality improvement in the
daquincis system. Journal of Digital Information Management, 3(3), 2005.

[53] J. F. Naughton, D. J. DeWitt, D. Maier, A. Aboulnaga, J. Chen, L. Galanis, J. Kang,
R. Krishnamurthy, Q. Luo, N. Prakash, R. Ramamurthy, J. Shanmugasundaram, F. Tian,
K. Tufte, S. Viglas, Y. Wang, C. Zhang, B. Jackson, A. Gupta, and R. Chen. The niagara
internet query system. IEEE Data Engineering Bulletin, 24(2):27–33, 2001.

163

[54] F. Naumann. From databases to information systems - information quality makes the
difference. In Proceedings of the International Conference on Information Quality (IQ),
Cambridge, MA, 2001.

[55] F. Naumann, U. Leser, and J. C. Freytag. Quality-driven integration of heterogenous
information systems. In Proceedings of 25th International Conference on Very Large Data
Bases, pages 447–458, 1999.

[56] H. Onsrud, B. Poore, R. Rugg, R. Taupier, and L. Wiggins. The future of the spatial
information infrastructure. In R. B. McMaster and L. E. Usery, editors, A Research Agenda
for Geographic Information Science, pages 225–255. Boca Raton: CRC Press, 2004.

[57] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and progressive algorithm for
skyline queries. In Proceedings of the 2003 ACM SIGMOD international conference on
Management of data, pages 467–478, New York, NY, USA, 2003.

[58] M. Perkowitz and O. Etzioni. Category translation: Learning to understand information on
the internet. In International Joint Conference on Artificial Intelligence, IJCAI-95, pages
930–938, Montreal, Canada, 1995.

[59] D. Roman and E. Klien. Swing - a semantic framework for geospatial services. In K. T.
Arno Scharl, editor, The Geospatial Web. In the Advanced Information and Knowledge
Processing Series, pages 227–237. Springer, 2007.

[60] A. Saalfeld. Conflation: Automated Map Compilation. PhD thesis, University of Maryland,
1993.

[61] M. Scannapieco, A. Virgillito, C. Marchetti, M. Mecella, and R. Baldoni. The architecture:
a platform for exchanging and improving data quality in cooperative information systems.
Information Systems, 29(7):551–582, 2004.

[62] C. Sister, J. Wolch, J. Wilson, A. Linder, M. Seymour, J. Byrne, and J. Swift. Green
visions plan for 21st century southern california. 14. park and open space resources in the
green visions plan area. Technical report, University of Southern California GIS Research
Laboratory and Center for Sustainable Cities, Los Angeles, California, 2007.

[63] S. Thakkar, J. L. Ambite, and C. A. Knoblock. A view integration approach to dynamic
composition of web services. In Proceedings of 2003 ICAPS Workshop on Planning for Web
Services, Trento, Italy, 2003.

[64] S. Thakkar, J. L. Ambite, and C. A. Knoblock. A data integration approach to automati-
cally composing and optimizing web services. In Proceedings of 2004 ICAPS Workshop on
Planning and Scheduling for Web and Grid Services, 2004.

[65] S. Thakkar, J. L. Ambite, and C. A. Knoblock. Composing, optimizing, and executing plans
for bioinformatics web services. The VLDB Journal, Special Issue on Data Management,
Analysis, and Mining for the Life Sciences, 14(3):330–353, 2005.

[66] J. Ullman. Principles of Data and Knowledge-Base Systems. Computer Science Press, New
York, 1988.

164

[67] C. J. van Rijsbergen. Information Retrieval. Butterworth Publications, 1979.

[68] M. F. Worboys. Computation with imprecise geospatial data. Computers, Environment
and Urban Systems, 22(2):85–106, 1998.

[69] M. F. Worboys and E. Clementini. Integration of imperfect spatial information. Journal of
Visual Languages and Computing, 12:61–80, 2001.

[70] I. Zaslavsky and C. Baru. Grid-enabled mediation services for geospatial information. In
Proceeding of workshop on Next Generation Geospatial Information, 2003.

[71] I. Zaslavsky and A. Memon. Geon: Assembling maps on demand from heterogeneous grid
sources. In Twenty-fourth Annual ESRI International User Conference, 2004.

165

Appendix A

List of Data Layers

List of vector data layers in the domain hierarchy :

• Vector,

– Boundaries

∗ Administrative
· Area Codes
· Census Blocks
· Census Block Groups
· Census Tracts
· Land Use
· Zipcodes
· Zoning

∗ Political
· Administrative Areas
· Cities
· Coast Lines
· Counties
· Countries
· International Borders
· Precincts
· States

∗ Others
· Barrier Lines
· Markers

– Buildings

∗ Schools
· High Schools
· Middle Schools
· Elementary Schools

166

· Other
∗ Churches
· Churches

∗ Hospitals
· Hospitals

∗ Other
· Libraries
· Post Offices
· Other

– Cartography

∗ Property
· Lots
· Parcels
· Other

– Elevation

∗ Contours
· Elevation Contours
· Depth Contours

∗ Other
· Elevation Void Collection Areas
· Spot Elevations
· Terrain

– Hydrography

∗ Coast
· Coastal Areas and Islands
· Inland Shorelines
· Oceans

∗ Rivers/lakes
· Dams
· Lakes
· Rapids and Waterfalls
· Rivers
· Water Courses and Bodies
· Wells and Springs

∗ Other
· Aqueduct
· Arrow Points
· Cistern Point Features
· Danger

167

· Hydrography Void Collection Area
· Inundation Areas
· Locks
· Sea Structures

– Industry,

∗ Agriculture
· Agriculture Storage Sites
· Farms

∗ Commercial
· Material Treatment Plants
· Mines/Quarries
· Non-Communication Towers

∗ Facilities
· Disposal
· Extraction
· Power
· Processing/treatment Plants
· Rigs and Wells
· Storage
· Tank and Water Towers

∗ Other
· Cistern Points
· Complex Areas
· Obstructions

– Physiography

∗ Physiography
· Asphalt Lakes
· Bluffs/Cliffs/Escarpments
· Cave and Mountain Passes
· Cuts and Embankments/Fills
· Geothermal Features
· Glaciers and Snow/Ice Fields
· Ground Surface Areas
· Ice Shelf/Polar Ice/Pack Ice Areas
· Islands and Ground Surface Areas
· Landform Areas
· Moraines
· Physiography Void Collection Areas
· Salt Pans/Sebkhas/Sand Dunes/Hills

168

– Population

∗ Population
· Built-Up Area
· Fortification Areas Sites
· Huts
· Landmarks
· Military Areas
· Miscellaneous Population
· Mobile Home Areas
· Parks
· Plaza
· Race Tracks
· Ruins
· Settlement
· Sport Field

– Transportation

∗ Air
· Aerial Cableways
· Aircraft Facility Area
· Airport/Airfield
· Air routes
· Runways

∗ Ground
· Bridge/Overpasses
· Driveway Entrances
· Hubs
· Interchanges
· Interstates
· Major Roads
· Minor Roads
· Ramp Lines
· Rest Areas
· Roads
· Traffic Counts
· Tram Lines
· Tunnels
· Vehicle Stopping Area
· Vehicle Storage/Park

∗ Other

169

· Anchorage
· Culvert
· Fords
· Lighthouse Points
· Snow/Ice Shed

∗ Water
· Ferry Crossings
· Harbor Areas
· Pier/Wharf/Quay
· Waterways

– Utilities

∗ Communication
· Communication Buildings
· Communication Towers/Disks

∗ Pipelines
· Pipelines
· Pumping Stations

∗ Powerlines
· Power Transmission Lines
· Power Plant Sites
· Substation

∗ Telephone lines
· Telephone Lines

– Vegetation

∗ Agriculture
· Cropland
· Orchad/Vineyard
· Oasis

∗ Other
· Grassland
· Hedgerow
· Marsh Swamp
· Tundra
· Trees
· Other

– Weather

∗ Rainfall
· Ice
· Total Rainfall

170

∗ Stations
· Nexrad Stations
· Weather Stations

∗ Temperature
· Barometer
· Average Temperature
· Low Temperature
· High Temperature
· Relative Humidity

∗ Warnings
· Conditions
· Watches and Warnings

∗ Wind
· Direction
· Speed

List of raster data layers in the domain hierarchy :

• Raster

– Image

∗ Aerial Photo
· Ortho Photo
· Other

∗ Satellite Image
· Ortho Images
· Multi-spectral Image
· B/W Image

– Map

∗ Transportation
· Road Maps
· Other

∗ Topographic
· Topo Maps

– Elevation

∗ Elevation Grids
· Elevation Maps

– Weather

∗ Weather Maps
· Cloud Cover
· Weather Map

171

Appendix B

Final Theseus Plan for Running Example

PLAN finalplan{
INPUT:stream constrel1, stream constrel2, stream constrel3,

stream consrel4, stream constrel5, stream qualityrel
OUTPUT: stream outrel
BODY
{

/*requests to quality relations*/
IS1Quality(:rel33)
IS2Quality(:rel34)
VS1Quality(:rel35)
VS2Quality(:rel36)
VS4Quality(:rel37)

/*source requests*/
IS1(consrel1:rel8)
IS2(consrel2:rel9)
VS1(constrel3:rel12)
VS2(constrel4:rel13)
VS4(constrel5:rel11)

/*union for image sources*/
union(rel8, rel9: rel6)
/*union for vector data sources*/
union(rel10,rel11:rel7)
union(rel12,rel13:10)

/*joins for image data*/
join(rel8,rel33, "1=1" :rel28)
join(rel9,rel34, "1=1" :rel29)
/*joins for vector data*/
join(rel12,rel35, "1=1" :rel30)
join(rel13,rel36, "1=1" :rel31)
join(rel11,rel37, "1=1" :rel32)

172

/*selects for images*/
select(rel26, "size = ‘[600,600]’":rel19)
select(rel27, "size = ‘[600,600]’":rel21)
select(rel28, "bbox = ‘[[33,-116],[34,118]]’" :rel26)
select(rel29, "bbox = ‘[[33,-116],[34,118]]’" :rel27)
/*selects for vector data*/
select(rel30, "bbox = ‘[[33,-116],[34,118]]’" :rel23)
select(rel31, "bbox = ‘[[33,-116],[34,118]]’" :rel24)
select(rel32, "bbox = ‘[[33,-116],[34,118]]’" :rel25)

/*Equals subtree for vector data*/
project(rel17, "vectorobjquality,imageobjquality" : rel16)
union(rel18,rel19:rel17)
union(rel20,rel21:rel18)
union(rel22,rel23:rel20)
union(rel24,rel25:rel22)

/*Equals subtree for image, which is just a rename from
Equals subtree for vector data*/

rename(rel16, "vectorobjquality imageobjquality,
vectorobjdata imageobjdata" : rel15)

/*join between Equals for vector data and Q1Quality*/
join(rel16,qualityrel, "l.vectorobjquality =

r.vectorobjquality" : rel14)

/*join between Equals for image and join of Equals for
vector and Q1Quality*/

join(rel14,rel15, "l.imageobjquality = r.imageobjquality"
: rel2)

/*the Q1data subtree*/
project(rel3, "imageobjdata,vectorobjdata" : rel1)
select(rel4, "size = ‘[600,600]’"’ :rel3)
select(rel5, "bbox = ‘[[33,-116],[34,118]]’" :rel4)
join(rel6, rel7, "l.bbox = r.bbox" : rel5)

/*join between the Equals, Q1Quality, and Q1Data*/
join(rel1,rel2,"l.imageobjdata = r.imageobjdata and

l.vectorobjdata = r.vectorobjdata" : rel0)

project(rel0, "imageobjdata,vectorobjdata, resdiff,
datediff" : outrel)

}

173

}

174

Appendix C

Generating Subplans to Access Geospatial Sources

QGM has the ability to automatically generate Theseus plans to retrieve data from
databases, shapefiles, Web Map Servers (WMS), ArcIMS Servers, and Web Services. In
this section, I describe the plans generated for popular geospatial source types: shapefiles,
Web Map Servers, and ArcIMS Servers.

Shapefiles: QGM utilizes the apply operator to call an external function that accesses
information from the shapefiles. I first describe the Java function that the apply operator
calls followed by the Theseus plan with an apply operator to call the function.

The Java function that I wrote acts as a wrapper around the shapefile. It accepts
two arguments: (1) complete path to the shapefile and (2) the bounding box of the area
for which we need to retrieve the data. If the bounding box is not provided (or it is
set to empty) the external function queries all data in the shapefile. Given the path
and the bounding box, the function uses the Geotools open source toolkit1 to access the
shapefile and query all features located within the bounding box. The function writes the
qualifying data to another shapefile and returns the complete path to the newly written
shapefile.

The Theseus plan generated to access a shapefile data source contains one call to
apply operation to access the shapefile. Below is an example plan:

PLAN roads1shapeplan{
INPUT:stream inrel
OUTPUT: stream outrel
BODY
{
apply(inrel,"QGM.geo.getShapeData(‘c:\shapedata\roads1.shp’,bbox)",

"outdata" : outrel)
}

}

The first argument to the external function contains the path to the shapefile, while
the second argument contains the bounding box from the user query. The output relation
contains the bounding box and complete path to the shapefile returned by the external
function.

1http://www.geotools.org

175

Web Map Servers: Similar to shapefiles, I wrote another Java function using the
Geotools Open Source toolkit that acts as a wrapper around any Web Map Server. The
function to access Web Map Servers accepts the following arguments: (1) URL to the
Web Map Server, (2) a bounding box, (3) name of the data layer, (4) size of the image
requested, and (5) format for the image. The function returns a URL to the image
returned by the Web Map Server.

The Theseus plan generated to access a Web Map Server source contains one call to
apply operation. Below is an example plan:

PLAN wms1Topolayerplan{
INPUT:stream inrel
OUTPUT: stream outrel
BODY
{
apply(inrel,"QGM.geo.getWMSData(‘http://www.wms.org’,bbox,

‘Topolayer1’, size, format)", "outdata" : outrel)
}

}

The output relation contains the bounding box, size of the image, format of the image,
and a URL to the image returned by the external function.

ArcIMS Servers: I wrote a Java function using the ArcGIS Engine Developer Kit2

provided by ESRI.3. The Java function acts as a wrapper around any ArcIMS Server.
Similar to the function to access Web Map Servers, the function to access ArcIMS Servers
accepts the following arguments: (1) URL to the ArcIMS Server, (2) a bounding box,
(3) name of the data layer, (4) size of the image requested, and (5) format for the image.
The function returns a URL to the image returned by the ArcIMS Server.

The Theseus plan generated to access a ArcIMS Server source contains one call to
apply operation. Below is an example plan:

PLAN ArcIMS1roadlayerplan{
INPUT:stream inrel
OUTPUT: stream outrel
BODY
{
apply(inrel,"QGM.geo.getArcIMSData(‘http://www.arcims.org’,bbox,

‘roadlayer’, size, format)", "outdata" : outrel)
}

}

The output relation contains the bounding box, size of the image, format of the image,
and a URL to the image returned by the external function.

2http://www.esri.com/software/arcgis/arcgisengine/about/devkit.html
3http://www.esri.com

176

