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Abstract

Accurately integrating the information available on the Internet can provide valuable

insights useful in decision making. However, the information one needs is usually scattered

among multiple web sites. It can be time-consuming to access, clean, combine, and

make sense of that data manually. The latest generation of WWW tools and services

enables web users to generate web applications that combine content from multiple sources

and provide them as unique services that suit their individual needs. This type of web

applications is referred to as a Mashup.

To create Mashups, integration systems must be able to walk users through five sep-

arate problems: data extraction, source modeling, data cleaning, data integration, and

data display. While there exist attempts to facilitate the process of building information

integration applications, none is sufficiently easy to use to enable a web user to build an

end-to-end information integration application. As a result, a casual user is put off by

the time, effort, and expertise needed to build a Mashup.

In this thesis, I make three contributions that address the problem of building Mashups

so that a casual user can easily build one efficiently without having to know any program-

ming language. The first is a consolidated approach that uses a database to link Mashup

building problems together. Under this approach, the solution from solving a problem
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in one area will be leveraged to solve a problem in the next area. The second is a table

paradigm for building Mashups, where a user incrementally builds a Mashup by filling

table cells with examples instead of specifying programming operations. The third is a

query formulation technique that uses constraints to help users build complicated queries

by specifying examples.

To validate the approach in this thesis, I have done an extensive evaluation involving

more than twenty subjects. The evaluation compared the performace of Karma, the

system implementation of my approach, against current state-of-the-art systems: Dapper

and Pipes. The result shows that Karma is at least three times faster than Dapper/Pipes

on three representative Mashup building tasks. In addition, Karma also allows users to

build Mashups that they fail to build using the other systems.
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Chapter 1

Introduction

1.1 Motivation and Problem Statement

We need information to make good decisions. In the past, access to necessary information

was limited to traditional printed media or a word of mouth. The Internet, however,

has changed the information landscape. Nowadays information can be accessed with a

click of a mouse. Examples of such information include pricing and reviews of goods

and services from multiple vendors, maps, and statistics. Accurately integrating the

information available on the Internet can provide valuable insights useful in decision-

making. However, the information we need is usually scattered among multiple web sites.

It can be time-consuming to access, clean, combine, and try to make sense of that data

manually.

For computer-literate users, who can comfortably use computers but are not trained in

programming, choices are limited to a) finding the information on their own by browsing

multiple web sites, or b) relying on data integration providers to supply web interfaces

to access the integrated information. Figure 1.1 shows one such example.
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Figure 1.1: An example Mashup called Zillow. Zillow combines real estate listing web
sources with tax property sources. For each house on sale, a Zillow user can see both the
sale price and its yearly tax cost.
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Zillow (http://www.zillow.com) is one such example that provides real estate listings

to help users conduct research on properties. It offers information about properties for

sale (e.g., price, taxes, and maps) by integrating information from real estate data sites

and property tax sites. However, the inherent problem in any data integration service is

approximating its users’ needs; what a service offers might not satisfy the needs of each

individual user. In addition, there are comparatively few such information integration

providers. For example, a family with older kids might want to buy a house in the area

with a low crime rating and a good high school ranking. However, it would be impossible

for Zillow to cover every aspect of each individual’s needs. Do-it-yourself integration

systems that can be used by individual users are needed.

A Mashup is a term used to describe a web application that integrates information

from multiple data sources. To create Mashups, integration systems must be able to walk

users through five separate problems:

• Data retrieval: This problem concerns data extraction from a web site. While

the concept of Semantic Web has received significant attention recently, most web

sites still require a wrapper, an agent that uses information extraction techniques,

to convert the data from HTML into structured form.

• Source modeling: After extracting data, we need to find out the mapping between

new data source and existing data sources. The mapping can be done by assigning

a new data column with an existing attribute name when the semantic is the same.
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• Data cleaning: Data from multiple sources must be normalized to have the same

format. For example, the extracted data, 37 Main Street might need to be trans-

formed to 37 main st. to match the naming convention of existing data sources.

• Data integration: Assuming that the data is normalized, we can treat the problem

of combining the data from multiple sources similarly to the way we combine the

data from multiple databases. This process is accomplished by formulating queries

to access and integrate data across sources.

• Data display: Once we combine the data, we need to present it in a way that is

easy to understand. Depending on the type of the data, we might opt to use a table

or a map, such as a Google Map.

For example, if we want to build a Mashup with similar functionality to Zillow, the

workflow for building this Mashup might look like Figure 1.2. First, we need to extract

the data from each web source into a form that can be easily manipulated. Extracting

data from a web source can be difficult as the data structure might be irregular, the data

we need might span multiple pages, and some web sources might require input (i.e., a

form) to retrieve the data. Once we manage to extract the data, we need to align the

data from different sources. First, we need to align the sources at the semantic level. For

example, data columns that contain the address information should be labeled as address.

Next, we might also need to align the data itself. For example, the realtor site might

list a particular street as 37 Washington Boulevard, while the property tax might use an

abbreviation like 37 washington blvd. After alignment, we need to figure out a way to

combine the data from these two sources. A database join on a common attribute address
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can be one of the ways to combine those sources. At the end of the data integration,

what we have is a giant table of data points that can be displayed on a map.

Figure 1.2: A simplified workflow required to build a Mashup similar to Zillow.

While there exist attempts to facilitate the process of building information integration

applications, none is sufficiently easy to use to enable a web user to build an end-to-end

information integration application. As a result, a casual user is put off by the time,

effort, and expertise needed to build a Mashup.

Most existing Mashup tools use what I define as a widget paradigm. Figure 1.3 shows

Yahoo’s Pipes, a Mashup tool that incorporates the widget paradigm. In the widget

paradigm, a user is presented with an array of widgets to choose from, where each one

represents a specific programming operation. To build a Mashup, the user needs to drag

widgets onto a canvas, customize each widget, and connect them to form a workflow that
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generates the output data. This output data can then be exported and displayed as an

XML, a RSS Feed, or a map.

Figure 1.3: An example of the widget approach to building Mashups. The user needs to
locate, customize, and connect widgets to create a Mashup.

There are three inherent problems with this widget paradigm. First, more program-

ming operations mean more widgets. Locating a specific widget can be time consuming.

For example, Yahoo’s Pipes has 43 widgets, while Microsoft’s Popfly has around 300

widgets. Second, while there is no code to write when using widgets, the fundamental

approach behind this paradigm is to abstract a particular programming operation into a

widget. As a result, customizing some widgets may require the knowledge of program-

ming. Third, most Mashup tools only address some Mashup building problems while

ignoring the others. For example, Dapper mainly addresses data retrieval, while Yahoo’s

Pipes completely ignores data retrieval, but focuses on data cleaning and data integration;

walking their users through all five Mashup building problems seem to be too difficult and
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time consuming. One of the reasons might be the lack of a paradigm that can encapsulate

all these problems into one simple interaction framework. As a result, building Mashups

is complicated and the range of Mashups that can be built by naive users is limited.

The research problem that I aim to address in my thesis is to reduce the complexity

of building Mashups so that any web user without any programming knowledge can build

Mashups.

1.2 Proposed Approach

To support a web user who does not know programming, there are three important

features to keep in mind:

• Make it easy: The Mashup building process should not require the user to write

code or understand any programming concepts.

• Make it short: The time required to build Mashups should be relatively short.

• Make it intuitive: The interaction platform should be intuitive to the user.

The approach in this thesis is called the Karma framework. This framework aims to

realize the above three goals using the following three key ideas:

• Focus on the data, not the operation: For a user with no programming knowledge,

interacting with data is more natural. For example, the user might not know which

operations/widgets to use to clean Jones, Norah, but the user can specify the end

result that he/she wants to see in the data form (i.e., Norah Jones); the operation
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is then induced indirectly based on what the user supplies during the interaction

by using data and some predefined transformation.

• Leverage existing databases: Instead of trying to solve every problem from scratch,

which requires feedback and expertise from the user, we can use existing databases

to help simplify the problem. For example, if a data point extracted from a web

is misspelled (e.g., wahington instead of washington), it would be time consuming

for the user to manually locate the misspelled data point. We can simplify this

problem by comparing new data points with existing data points and alert the user

when we find any irregularities with a list of suggestions for replacements.

• Consolidate rather than divide-and-conquer: Divide-and-conquer is often regarded

as the golden rule to solve many computer science problems. However, many

Mashup building issues are interrelated. On the back end, it is possible to ex-

ploit the structure such that solving a problem in one area can help simplify the

process of solving a problem in another area. On the front end, all the interac-

tions can occur on a spreadsheet platform where the user solves all the problems

by manipulating data in a single table instead of trying to create a workflow by

connecting widgets.
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1.3 Thesis Statement

Web users can build Mashups effectively using an integrated framework that

lets them solve the problems of data extraction, source modeling, data clean-

ing, and data integration by speciflying examples instead of programming

operations.

1.4 Contributions of the Research

The main contribution of the thesis is the framework to build Mashups easily. The Karma

framework includes:

• A programming-by-demonstration approach that uses a single table for building

a Mashup; a user would incrementally builds Mashups by filling table cells with

examples, instead of customizing a workflow of connecting widgets.

• A integrated approach that links data extraction, source modeling, data cleaning,

and data integration together. Under this approach, the solution from solving a

problem in one area will be leveraged to solve a problem in the next area.

• A query formulation technique that allows users to specify examples to build com-

plicated queries.

1.5 Outline of the Thesis

The rest of this thesis is organized as follows. Chapter 2 discusses the three key ideas

of the Karma framework and its architecture in detail. Chapter 3 through 6 shows how
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these key ideas can be applied to each Mashup building problem (i.e., data retrieval,

source modeling, data integration, and data display) respectively under a unified table

paradigm. Chapter 7 reviews the related work in each problem area. Chapter 8 lays out

two types of evaluation plans and discusses their results. Finally, chapter 9 summarizes

my contributions and lists possible directions for future work.
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Chapter 2

Building Mashups without Programming

In chapter 1, I presented the five problems of building integrated applications, intro-

duced the term Mashup, and proposed a framework to help users with no programming

experience build Mashups easily. This chapter provides a) a more in-depth overview of

Mashups, b) an intuition of how the Karma framework solves Mashup building problems,

and c) a case study example that will be discussed extensively in the remainder of the

thesis.

2.1 Overview of Mashups

2.1.1 The Origin of Mashups

A term Mashup has its roots in the music industry. It is defined as a process of combining

vocals and rhythm from two separate songs into a new song. This term has propagated

through multiple fields including, music, video, and web applications [1]. While there is

no standard definition of a web Mashup, most software developers would agree on a loose
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definition of it as a web application that combines data from multiple sources to create a

new application.

2.1.2 Examples of Useful Mashups

A Mashup might allow its consumers to see the same set of data from a different per-

spective or combine data from multiple sources to help them solve a particular task

without having to manually collect data from multiple web sites. I have included a set

of Mashups that I found useful or interesting as examples. More Mashup listings can be

found at ProgrammableWeb (http://www.programmableweb.com) and google mapsMa-

nia (http://google mapssmania.blogspot.com/)

2.1.2.1 Wii Seeker

URL: http://wii.findnearby.net/

Data sources: eBay, Amazon, Circuit City, Best Buy, and google maps.

Functionality: Wii is a popular gaming console in a very high demand. Shown in

Figure 2.1, this Mashup combines a) eBay auction listings b) electronics store listings

(i.e., Best Buy, Walmart, and Circuit City) and shows the result on a Google map.

Usefulness: Going to every retailer web site, locating nearby stores, and calling each

store to find if it has the console for sale is very time consuming.

2.1.2.2 Ski Bonk

URL: http://www.skibonk.com/ski/index.jsp
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Figure 2.1: Wii Seeker lists stores and auctions in a nearby area that might have Wii for
sale

Figure 2.2: SkiBonk combines snow reports with nearby ski resorts.
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Data sources: SnoCountry (http://www.snocountry.com/), OnTheSnow

(http://www.onthesnow.com/), Weather Underground

(http://www.weatherunderground.com/), and the National Weather Service

(http://weather.gov/).

Functionality: Shown in Figure 2.2, Ski Bonk combines snow data with resort data

and shows the result on a Google Map. A green icon means a particular ski resort has

enough snow to be open.

Usefulness: Imagine trying to call every ski resort to find out if it is open, or how

many inches of snow it received last night.

2.1.2.3 Berkeley Crimelog

Figure 2.3: This Mashup shows the crime information in Berkeley area in the past 30
days.

URL: http://berkeleyca.crimelog.org/all/limit/30days
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Data sources: Berkeley police department (http://209.232.44.42/cvc/) and google

maps

Functionality: Shown in Figure 2.3, each point on this Mashup represents a crime

that happened in the past 30 days. It also provides detailed information about each

crime data point (i.e., crime type, date, and time).

Usefulness: Each area is plagued with different types of crimes. A person who lives

there or who is planning to live there can better prepare him/herself. For example, if

car burglary is prevalent in the area, it might make sense to find an apartment with a

garage.

2.1.2.4 Housing Map

Figure 2.4: This Mashup shows available apartments for rent.

URL: http://www.housingmaps.com/
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Data sources: http://www.craigslist.org and google maps

Functionality: Shown in Figure 2.4, this Mashup extracts data from Craiglist

apartment posts and puts each rental listing on a Google map.

Usefulness: Craiglist listing does not have a good search infrastructure. As a result, a

user looking for an apartment in a particular area would have to look through all the

postings. This Mashup allows the user to search for specific listings using criteria such

as rental price.

2.1.2.5 Tuneglue

Figure 2.5: This Mashup shows the relationship between artists in terms of their music
style.

URL: http://audiomap.tuneglue.net/

Data sources: http://www.amazon.com and http://last.fm
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Functionality: Shown in Figure 2.5, Tuneglue compiles artist data from last.fm

(http://last.fm) and amazon (http://www.amazon.com). By specifying a starting artist,

Tuneglue shows related artists based on genre and their musical styles in an explorable

graph.

Usefulness: Tuneglue allows its users to expand their musical taste by showing

related artists that they might want to check out.

2.1.2.6 Hotspotr

Figure 2.6: This Mashup shows places and areas where wifi is available.

URL: http://hotspotr.com/wifi

Data sources: This Mashup has an interface that allows web surfers to add a new

hotspot on the fly into its database. In this case, we treat this database as a single

(although dynamic) data source.
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Functionality: Shown in Figure 2.6, Hotspotr provides a map of the locations where

wifi signal is available.

Usefulness: Wifi hotspots belong to different providers. As a result, browsing for

information on a single provider web site will not provide all the wifi spots that are

available.

2.1.2.7 BibleMap

Figure 2.7: This Mashup shows places mentioned in the Bible.

URL: http://www.biblemap.org/

Data sources: http://www.biblemapper.com/ and google maps

Functionality: Shown in Figure 2.7, BibleMap shows places mentioned in the Bible on

a Google map.
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Usefulness: This Mashup could be very useful as a learning tool to help students

understand more about the Bible.

2.1.2.8 UNESCO World Heritage Site

Figure 2.8: This Mashup shows places that have been awarded as UNESCO Heritage
sites.

URL: http://labs.beffa.org/worldheritage/

Data sources http://whc.unesco.org/en/list and google maps

Functionality: Shown in Figure 2.8, this Mashup gathers a list of UNESCO Heritage

sites and shows them on a map.

Usefulness: This kind of Mashup might be useful when planning a trip to foreign

countries.

2.1.2.9 Traffic Map

URL: http://traffic.poly9.com/
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Figure 2.9: This Mashup shows current accidents and repairs on roads and highways .

Data sources: http://www.yahoo.com and google maps

Functionality: Shown in Figure 2.9, a traffic map Mashup like this is widely available

in many US regions. It shows where and when accidents and road repairs occur.

Usefulness: This kind of Mashups is very useful to help avoid traffic congestion when

planning a trip.

2.1.2.10 Doggdot

URL: http://doggdot.us/

Data sources: http://www.digg.com, http://www.slashdot.org, and http://del.icio.us

Functionality: Shown in Figure 2.10, Doggdot combines postings from Digg, Slashdot,

and Del.icio.us.
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Figure 2.10: This Mashup combines postings from famous technology and social network-
ing sites.

Usefulness: Aggregating postings from multiple web sites puts all information in one

place, so a user does not have to visit every web site for the information.

2.1.3 Categorizing Mashups

One way to categorize Mashups is by functionality. Figure 2.11 displays Mashup distri-

bution based on functionality.

In this thesis, we categorize Mashups by their workflow structures ranging from the

easiest to the hardest to implement. To generate this categorization, we look at the top

50 popular Mashups on the ProgrammableWeb web site and divide them into 5 types of

Mashups. While 50 Mashups is a small number, the distribution in terms of functionality

is similar to that of Figure 2.11. As a result, we believe this is a good approximation
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Figure 2.11: The segmentation of Mashups by their functionality from ProgrammableWeb

of the overall Mashup population. The Mashup categorization based on the structure is

shown below:

1. One simple source: This Mashup type is constructed by extracting data from a

single source and placing them on a map. There is minimal data cleaning and no

source modeling or data integration. BibleMap, UNESCO World Hertage Site and

Berkeley crimelog are examples of this Mashup type.

2. Combining data points from two or more separate sources: While this

Mashup type incorporates two or more sources, the data does not need to be mod-

eled, cleaned, or integrated. A map is used as a bucket to show the result from each

different data source. Housing Map, Wii seeker, Hotspotr, and Doggdot belong to

this Mashup type.

3. One source with form: To extract the traffic data, the source might require

a user to supply the zip code information before the data can be retrieved. As
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a result, we need a mechanism to deal with http form and web page navigation.

Traffic Map belongs to this Mashup type.

4. Combining two or more sources using a database join: The data from one

source needs to be joined with data from another source. Skibonk belongs to this

Mashup type.

5. Using specialized operations or displays: While the underlying data for every

Mashup is just a table, this Mashup type uses a specialized display. Tuneglue

belongs to this Mashup type.

Since the fifth Mashup type requires specialized operations and knowledge, it would

not be possible for casual users to implement this Mashup type. As a result, our goal

is to be able to easily build the first four types of Mashups, which account for about 47

percent of the most popular Mashups.

2.2 The Programming by Demonstration Framework

Regardless of the categorization method, each Mashup is simply tables of data hiding

behind a display. As a result, allowing a user to easily generate these tables of combined

data is an important part of building Mashups. This section will give a brief overview

of Karma, my software implementation, and elaborate on the three key ideas mentioned

earlier in chapter 1.
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2.2.1 The Karma System

Figure 2.12 shows Karma, a system that incorporates the programming-by-demonstration

framework. The user interface is divided into three areas. First, the left section contains

an embedded web browser that allows users to browse the web. Second, the top right

section contains the spreadsheet that shows the current data being manipulated. Third,

the lower right section contains many modes that users can use to handle each Mashup

building problem.

Figure 2.12: The snapshot of Karma.

The spreadsheet section is the center of the interaction. For example, if a user wants to

extract the restaurant name from the web page shown in the browser, she would highlight

a restaurant name, then drag and drop it onto the spreadsheet. The user would solve

each Mashup building problem by manipulating the cells in the table. Finally, when the

user is satisfied with the data in the table, she can save the data or choose to display the

data on the map, when applicable. From chapter 3 to chapter 6, I will show in detail how

each user interaction shapes the data generation on the table.
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2.2.2 Programming by Demonstration and Its Focus on Data

One of the key ideas from chapter 1 is the focus on data, not operations. The root of

this approach is from the concept called programming-by-demonstration (PBD) [17, 35].

PBD automatically deduces operations to perform repetitive tasks by monitoring how a

user interacts with a system. Some examples of a PBD systems include programming by

shell script [34], learning procedures for technical support [36], and generating web pages

for a mobile platform by browsing [47].

How operations are learned in PBD largely depends on techniques and problem do-

mains. In my thesis, I analyze the structure of the Mashup building problem and generate

specific heuristics for each problem area. Figure 2.13 shows an example. To extract a list

of data from a web page, a user demonstrates to Karma by dragging a data element from

that list and dropping it onto a table.

Figure 2.13: Instead of writing rules to extract the data from a web page, PBD allows
users to do it by demonstration through interactions, such as dragging and dropping.

Since that data element belongs to a list based on the page structure, PBD deduces

that the user wants to extract the whole list and proceeds to extract the rest of the list.
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While this approach has a disadvantage that the defined heuristics might be wrong, a)

it is very simple for a user who does not want to spend a lot of times writing operators

or training a system, and b) it works well on some domains where the structure of the

problem is quite limited. In the Mashup building domain, there are enough structures

that can be exploited for this approach to work well. For example, this approach has

been widely used in various Mashup building tools (i.e., Dapper and Simile[30]). For those

interested in finding out more about how to cope with the problem of over-generalization,

under-generalization, or how to recover from errors deduction in PBD, [13] provides a

theoretical framework to address those problems.

2.2.3 Leveraging Databases

The idea of leveraging databases to help solve a problem is not unique as it has been

used extensively in the data extraction[43], schema matching[18], record linkage[42], data

cleaning[43], and data integration[5]. In my thesis, these databases are built with initial

set of tables to cover some domains, such as restaurants and cars. The size of these

databases grow larger to cover more data and domains as users build more Mashups and

save them into the databases. Note that the users do not need to customize the databases

such as creating foreign keys because this information is deduced automatically when new

tables are added to the databases.

Figure 2.14 shows an example of how to use a database to help solve the source

modeling problem. Assuming that there exist the three tables in a database: LA Health

Rating, Artist Info, and Zagat. After the user extracts the restaurant data from the

previous section, we want to help her assign the appropriate attributes for this new data.
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Figure 2.14: By leveraging existing databases, misspelling can be detected automatically.

By looking at how the new data elements overlap with existing data elements, a list of

possible candidates is created so the user can choose from these choices. In this example,

the new data elements overlap with existing data columns associated with restaurant

name and artist name and the user is presented with those two choices to pick from.

2.2.4 Problem Consolidation

There are separate research areas focusing on data extraction, source modeling, data

cleaning, and data integration. While each problem is complex on its own, solving a

problem in one area can generate information that can be used to help solving a problem in

another area. If the effort is focused to solve one problem at a time, that useful information

might be discarded, requiring starting from scratch again when solving another problem.
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Figure 2.15: As soon as the column name of the newly extracted data is defined during
the source modeling mode, we can use this information to help start the cleaning data
mode. In this example, a misspell is detected for the entry Sushi Roka.

For example, earlier we used the database to help guide the user to select the attribute

for the new data column. Once the attribute information for the new data column is

known, the data cleaning process can start right away. Since we know that the new

column is of type restaurant name, we can isolate the data of type restaurant name from

many tables in the database and apply a string comparison algorithm to detect possible

misspelling in the newly acquired data.

2.2.5 The Karma Architecture

The architecture of Karma is shown in Figure 2.16. Its properties are listed below:

• There are two points of entry. A user can start building a Mashup by extracting

data from a web page or composing a table from scratch by integrating only data

existing in databases.
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Figure 2.16: The architecture of Karma.

• Source modeling, data cleaning, and data integration make uses of databases to

help generate suggestions to a user.

• The user can skip some steps depending on her needs. For example, building a

Mashup from one data source might not require data cleaning and data integration.

• The user does not have to finish extracting all the data from the data retrieval right

away. For example, three columns of data might be extracted and processed in

other problem areas. Then, the user can go back to the same web page and extract

more data.

• When the user saves the Mashup, the data is integrated into the databases so it

can be a) recalled later, or b) used to help future Mashup building processes.
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2.3 Case Study

While it would be nice to have one coherent case study with one example, it would not

be possible to showcase the different features and problems that Karma can solve. As

a result, I will use multiple examples from chapter 3 to chapter 6. However, at the end

of chapter 6, we will have enough examples to construct a Mashup with the structure

similar to that in Figure 2.17

Figure 2.17: The Mashup structure is a superset of all four Mashup types.

Since our aim is to address the four Mashup types described earlier, this Mashup

structure can be modified to fit any of those cases; each of the four Mashup types is a

subset of this example:

• To build a Mashup that uses only one simple data source, we can focus on the left

branch without doing data cleaning or data integration.
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• To build a Mashup that combines data points from two or more separate sources

without joining, we can ignore the data integration part and proceed to put all the

points on the map.

• To build a Mashup from one source with a form, we can focus on one branch and

use a source with a form input without doing any data cleaning or data integration.

• To build a Mashup that combines two or more sources using a database join, we

need to do all the steps outlined in Figure 2.17.

Starting in the next chapter, we will show how Karma solves each Mashup building

problem using different case study examples.
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Chapter 3

Data Retrieval

This chapter is divided into three sections. The first section breaks the data retrieval

problem down into two subproblems: data extraction and page navigation. The second

section first shows how a user would interact with Karma, and describes the technical

details behind those interactions. The third section elaborates on how my approach to

the data retrieval problem fits the overall Karma framework.

3.1 Problem Definition

A large body of research work usually considers data retrieval as a problem of extracting

data from a web page. However, in the real world, data retrieval is composed of two

subproblems: data extraction and page navigation.

The problem of data extraction focuses on figuring out how to extract data out of

HTML from a specific page or set of similar pages. For example, Figure 3.1 shows a

snippet of one of the sources from the case study and its corresponding HTML code.

Page navigation deals with cases where the data we want to extract requires us to go

through multiple pages to get to it. For example, each song name in Figure 3.1 has a
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link to its detail page. One of the detail pages is shown in Figure 3.2. The detail page

contains the duration of a specific song that the user might want to extract.

Figure 3.1: A snippet of the case study source and its corresponding HTML tag. The in-
formation that a user wants to extract might be the list of albums and their corresponding
song names.

Page navigation is rarely addressed in research because it is considered more or less an

engineering issue from the information retrieval point of view. However, from the Mashup

building perspective, if we want to make building Mashups easy, we need an approach to

do page navigation easily and effectively. To solve the issue of page navigation, we need

to figure out how to extract, associate, and combine the data from the first page with its

detail pages.
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Figure 3.2: A detail page and its corresponding HTML source.

3.2 Approach

In this section, we first define a data retrieval task. Then a snapshot of interactions

between a user and Karma is shown. Finally, we highlight technical details that enable

those interactions.

3.2.1 Case Study Walkthrough

Let us assume that a user wants to retrieve and combine music data from two particular

artists. The structure of web pages is shown in Figure 3.3. For each artist, the album

and song listing are on the first page and the information about each specific song (i.e.,

duration) is in a different detail page. Figure 3.1 shows an example front page for the

artist Mirah, while Figure 3.2 shows an example detail page for the song Nobody Has to

Stay.
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Figure 3.3: Overview of the structure of web pages in a case study task.

The goal is to retrieve the data about album, song name, and duration into the table

shown in Figure 3.4. The step-by-step interaction between the user and Karma is shown

from Figure 3.5 to Figure 3.17.

3.2.2 Document Object Model (DOM)

Data retrieval techniques in this chapter mostly rely on a data structure called the Docu-

ment Object Model (DOM). W3C defines the DOM as “a platform- and language-neutral

interface that will allow programs and scripts to dynamically access and update the con-

tent, structure and style of documents. The document can be further processed and the

results of that processing can be incorporated back into the presented page.” Currently,

existing web browsers convert each HTML page into a DOM before rendering it as a web

page. As a result, DOM is easily accessible through existing programming libraries.
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Figure 3.4: The goal for the data retrieval task is to have a table that contains album
name, song name, and duration for each song from both artists.

The DOM is also used in data retrieval tools such as simile[30] and dapper. In this

subsection, I will cover the basic DOM approach to extracting list data from a web page.

Figure 3.18 shows a simplified DOM representation of the HTML snippet shown in Figure

3.1. Every HTML page can be represented using a DOM tree structure.

When a user highlight-drag-drops particular text from a web page to a table, we can

identify the location of a particular node in that web page’s DOM tree. In our example,

when the user extracts C’mon Miracle, the location of the data is: \html\table[1]\tr[1]\td\-

a\b

This location is represented using an XPath expression. XPath is a language used to

process tree-like XML documents. In our example, the XPath above means that to get

to the data: first take the html tag, pick the first table tag, pick the first tr tag, and

continue down td, a, and b tag to find the data.
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Figure 3.5: Step 1: The user types the URL in the embedded browser to go to a particular
page.
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Figure 3.6: Step 2: To extract an album name, the user highlights the data on the page
(C’mon Miracle), drags the data, then drops it into the cell (0,0) of the table.
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Figure 3.7: Step 3: Karma recognizes that C’mon Miracle is a member of a list and
proceeds to extract the rest of the list and fill in the table under the same column.
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Figure 3.8: Step 4: The user then proceeds to extract the first song from the first album
and drop it into the cell (0,1) of the table next to the first album name.
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Figure 3.9: Step 5: Karma proceeds to extract and fill the first song from every album.
Note that the attribute name in the second column is set to song name, while the one in
the first column is set to select one. The explanation of these behaviors, including light
color fonts for some data elements, will be explained in later chapters.
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Figure 3.10: Step 6: The user selects the cell (0,1) and chooses the option to specify that
this column is a list.
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Figure 3.11: Step 7: Karma proceeds to extract every song name for every album and
fills in the table.
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Figure 3.12: Step 8: The user now clicks on the link for the song Nobody Has to Stay to
navigate to the song’s detail page.

To extract every album name, we can relax the XPath by using the following ex-

pression: \html\table*\tr*\td\a\b. Instead of specifying the specific branch number, this

XPath means: find all available permuted paths and return their values, if they exist.

For example, \html\table[2]\tr[1]\td\a\b, one of the permuted XPaths, will return You

Think It’s Like This But Really It’s Like This, while \html\table[2-]\tr[2]\td\a\b will not

return anything because there is no a node followed by a b node under that branch.

From sections 3.2.3 to 3.2.6, I will show how I exploit the DOM structure to perform

data extraction and page navigation.
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Figure 3.13: Step 9: The user extracts the duration of the song and drops it in the first
row to signify that the newly extracted duration from the detail page is associated with
the existing two data elements from the first page.
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Figure 3.14: Step 10: Karma proceeds to extract the duration for every song from each
detail page and fills the table.

3.2.3 Using Markers to Enhance Extraction

The default DOM extraction works well when the list structure is flat. However, when

there is a list within a list, more processing is needed in order to correctly extract the

data. Our example is the case where there is a list within a list; song listings inside

album listings. When the user selects Nobody has to stay and drops it onto the table,

its corresponding XPath is \html\table[1]\tr[2]\td\font\a[1]. When we relax this XPath

(\html\table*\tr*\td\font\a* ), we end up extracting every song from every album. The

problem is that we need contexts to associate each song to each specific album.

Figure 3.19 illustrates the situation. When the user puts Nobody has to stay on the

same row as C’mon miracle, we know that the two data elements are associated. However,
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Figure 3.15: Step 11: The user now types in a new URL or browses to another artist’s
page. Note that the HTML structure of this new URL is similar to the original artist
page.
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Figure 3.16: Step 12: The user extracts the album name of the new artist and drops it
into a new row under the same column that contains album information from the first
artist. This gives Karma a context that the new data is the same type as the data in
column one, but from a different source.
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Figure 3.17: Step 13: Karma proceeds to repeat all steps that the user did previously on
the first source, including extracting each song name and its duration from each album.
At this point, we have the table which contains the data from the two artists mentioned
earlier in Figure 3.4.
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Figure 3.18: A simplified DOM representation of the album listing.

Figure 3.19: Using the default DOM approach to extract a list within a list will not work
because there is no context to associate the data.
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if we were to extract all the data, we would not know how to associate the rest of the

songs with the extracted album.

Figure 3.20: The workflow shows how to use context in the process of extracting a list
within a list.

Figure 3.20 shows how to generate a rule between the following two XPaths:

XPath for C’mon miracle: \html\table[1]\ + tr[1]\td\a\b

XPath for Nobody has to Stay : \html\table[1]\ + tr[2]\td\font\a[1]

Notice that to generate the second XPath from the first XPath, we need a) the XPath

portion that is common among the two XPath: \html\table[1] , and b) the XPath portion

from the second XPath that differs from the first XPath: tr[2]\td\font\a[1].

The following rules are then applied to other XPaths in the album column to generate

its corresponding song extraction.

1. Extract the common path \html\table*\ from the input XPath. Note that the

XPath relaxation is needed to be able to find the common pattern from other

XPaths.
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2. Append the new common path with tr[2]\td\font\a[1] to locate a specific data

element.

The general algorithm extracting new data rows after the first row has been extracted

by using markers is shown below:

Precondition:

1. All the data extracted must come from the same page.

2. The user already extracted the data into the first column.

Let:

1. C0 denotes the first column, where the data has been dragged and dropped into.

2. Cj denotes any arbitary column except the first column, where the user might drag

and drop data into.

3. Rij denotes a cell (i,j) in the table where i corresponds to the row and j corresponds

to the column.

4. Txy denotes a translation rule between Cx and Cy where given an XPath of Rxj ,

Txy returns an XPath of Ryj .

Assuming the user drag and drops a new data element into a new empty column at

cell Rij , Karma uses the following algorithm to help fill every cell in Cj :

1. Create Txy by using the following two XPaths as inputs (Ri0, Rij).

2. Apply Txy to each cell R0..n,0 in C0 to generate its corresponding XPath for each

cell R0..n,j in Cj .

52



3. For each XPath generated with respect to a cell in Rx,j (where x can ranges from

0 to n), Karma executes that XPath to retrieve the data from the source page and

fills the data in the cell.

To compute Txy given Ri0 and Rij , the following algorithm is used:

1. Compute the longest common substring between the XPath of Ri0 and the XPath

of Rij . Let us designate this terms as Cs.

2. The XPath of Rij can be defined as Cs + Ls, where Ls is the substring that does

not belong to the longest common substring.

3. Since Cs is also an XPath, we relax Cs and replace the [number] portion of that

XPath with *. For example, \tr[2]\td[1] will become \tr*\td*. Let the relax string

be defined as Fs

Once Txy is computed, when given an arbitary XPath of Rx,i, we can compute an

XPath for Ry,i by:

1. First, try to locate a substring in the XPath of Rx,i. Let’s call this string Ms. When

Ms is relaxed, it should be equal to Fs.

2. Once Ms is found, the XPath for Ry,i is basically Ms + Ls.

3.2.4 Horizontal Expansion

As shown in the case study walkthrough section, sometimes the data that we need spans

multiple pages from the same web sites. In general, the first page might contain a listing

of data with links to a specific detail page for each data element. When the user browses
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to the detail page of a particular song and extracts the song’s duration, we want to be

able to automatically extract the duration of other songs and fill them in the table.

When the user drag and drops the song’s duration into the first row, she indirectly

specifies the context that the data 2:46 is related to two data elements: C’mon Miracle

and Nobody Has to Stay. However, since the user never specifies which one, we need to

determine which element we should use as a marker.

Figure 3.21: The relationship between the first page and one of its detail page. Figuring
out the correct marker is the key to automatically extracting data from detail pages.

Figure 3.21 shows the relationship between the first page and the detail page. When

the user clicks a link to go to the detail page, it is possible to identify the XPath of the

node that contains the URL information that the user just clicked. In our example, this
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XPath is: \html\\a[@href=URL of the detail page]. This XPath will return a node in the

first page that contains an a node with its href attribute equals to the URL of the detail

page that the user picks. In our case, this node is: \html\table[1]\ + tr[2]\td\font\a[1].

Once we have this node, we need to figure out the closest node between this node and

existing nodes from the same row that comes from the first page. In this case, we can see

that XPath for Nobody Has to Stay is the same as the XPath for the node that contains

the correct href attribute. As a result, the Nobody has to stay node is chosen, along with

the rest of the nodes in the same column, as a marker for the horizontal expansion. The

translation rule that we want to create is: given the horizontal marker as an input, return

its corresponding node that contains the href information as an output. This requires

two steps: a) generate an XPath for the node that contains the href information, which

is similar to the translation rule shown earlier; and b) extract the URL of the detail page

from that node. This can be done using Xquery.

Figure 3.22: Abstract representation of the horizontal expansion case.
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After we have the horizontal translation rule, we can apply this rule to each element

under the horizontal marker column to gather all the detail pages for other rows. Then,

we can apply the XPath that extracts the duration (\html\table\tr[2]\td[5]\font\) shown

in Figure 3.21 to each detail page to extract the time data for each song on the table.

Figure 3.22 shows the horizontal expansion case in a more abstract way.

Let:

1. [a− z]1..i represents the data element extracted from web pages.

2. Pi represents a web page at depth i. For example, P1 is the top page, P2 is the child

page under P1, and so on.

3. URLP i represents the URL of the page Pi.

4. Ci represents the column of the table that contains the data element i1..j .

5. Xai represents the XPath of the data element ai.

Given that the user extracts the data element i1 from the page Pi, we can fill the

column Ci using the following algorithm:

1. Locate the data elements on row 1 that belong to the page Pi−1. In this case, it is

the set {g1, h1}.

2. Generate an Xquery that locates the node in Pi−1 that contains the href attribute

that is equal to URLP i . Let us assume that node y is returned.

3. Designate a marker by comparing the distance between Xy and the XPath of each

element of the set {g1, h1}. The distance can be computed by counting the length
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of the common path between Xy and another node. Let’s assume that the Xh1 is

the closest and is designated as the horizontal expansion marker.

4. Generate the horizontal translation rule between Xh1 and Xy so that given Xh1 as

an input, we can generate Xy as an output.

5. Apply the horizontal translation rule to every element in Ch (i.e., Xh2 ...Xhj
)to

locate the detail page for each row.

6. For each detail page generated, apply Xi1 to the detail page’s DOM tree to extract

the data and fill it in the table.

Using this approach, it is possible for the user to keep navigating into multiple detailed

page levels, extracting data, and integrating data between these pages at the same time.

3.2.5 Vertical Expansion

After extracting album listings, song listings, and their corresponding duration for the first

artist, Karma can reuse generated markers, translation rules, and horizontal translation

rules to extract pages with the same structure. Specifically, these marker positions and

rules constitute a wrapper that is capable of extracting data from a similar page. In our

case study example, after the user finishes extracting information about the artist Mirah,

she also wants to extract the same kind of information from another artist. By drag

and dropping one of the album names into a new row under the first column, the user

indirectly specifies the context that the new data element is the same kind as other data

elements in the same column. However, since the new data element is from a different

URL compared to other data elements in the same column, Karma deduces that this is
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a vertical expansion operation where the rules and steps generated for the original pages

should be also be applied to this new URL.

Figure 3.23: Abstract representation of the vertical expansion case.

Figure 3.23 shows the vertical expansion case in a more abstract way. In this scenario,

the first three rows correspond to the data extraction that originally starts from P1, while

the new element a4 is extracted from the different start page Px.

Preconditions:

1. The table is not empty.

2. a4 is the only element in its row.

3. URL of a4 is different from URL of other elements under the same column

If all the preconditions satisfy, then following algorithm, using the same terminology

defined earlier, for vertical expansion is shown below:

1. Relax Xa4 to extract the list that Xa4 is from.
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2. Apply the translation rule generated between a1 and b1 to each of the new elements

under Ca. These elements include Xa4 and other data elements generated by the

relaxation step.

3. Locate the column that is used as the horizontal expansion marker and apply the

horizontal expansion algorithm discussed earlier to the new set of data.

4. Continue to apply the horizontal expansion algorithm through multiple detailed

pages (P2...i) until done.

At the end of this algorithm, Karma will repeat all the extract steps done in the first

three rows on the page where Xa4 is from similar to invoking a predefined wrapper on a

new input page.

3.2.6 Form Extraction

Many web sites contain HTML forms where a user needs to type in a query in order to get

a result. Figure 3.24 shows a shopping web site that has a form input. Karma captures

this form automatically as the user interacts with it and allows the user to invoke the

form from within the table area. Figure 3.24 to Figure 3.30 shows an interaction scenario.

Initially, the user enters the search term english in the search box as shown in Figure

3.24 and presses go. The form then redirects the embedded browser to a new page. Figure

3.25 shows the partial snapshot of the result page. At the same time, Karma captures

the form parameters and fills them into the table as shown in Figure 3.26.

From this point on, the user continues to extract the data normally by highlight-

drag-drop a data item that belongs to a list and Karma will fill in the rest of the list
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Figure 3.24: An example website (www.stashtea.com) that has an input form.

Figure 3.25: The result page when a user enters english as a search term.
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Figure 3.26: Karma captures every form parameter and automatically fills them in the
table.

automatically as shown in Figure 3.27. After the user is done with the result page

generated from the query term english, the user can invoke the form from within the

table by entering a value for each form parameter in a new empty row. Note that for

other form parameters besides the query parameter, the user can enter previous values.

Figure 3.28 shows the user enters the new set of parameters to search for earl gray.

When the user enters a new set of parameters, Karma will invoke the form and show

the new result page (Figure 3.29) to the user. The user can then proceed to extract the

data from the new result page onto the table as shown in Figure 3.30. If the user had

extracted more than one column of data or had done any horizontal expansion from the

first query result, those processes would be repeated automatically after the user drops

the first data item from the second query (i.e., 30 ct Double....) onto the table.

61



Figure 3.27: The user can proceed to extract the data the same way as shown in the
previous example.

Figure 3.28: The user can also invoke the form from within the table by typing in new
parameters in an empty row. In this case, the user specify the value for the parameter
term to be earl gray
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Figure 3.29: The embedded browser refreshes to reflect the new result page.

Figure 3.30: The user then extracts the data by dragging only one data from the list.
If the user has previously extracted more than the listing, the horizontal and vertical
expansion process will start up and automatically repeat all the steps done.
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Karma captures the form when the user submits the query by looking at the result

URL. For example, the result URL from the search term english is:

http://stashtea.com/cgi-bin/search/search.pl?Realm=shopstashtea.com&Terms=eng-

lish&Match=1&go.x=0&go.y=0

This URL can be broken down into two portions: the query portion and the param-

eter portion. The query portion starts from the beginning of the URL to the symbol ?:

http://stashtea.com/cgi-bin/search/search.pl? ; the rest belongs to the parameter portion.

The parameter portion has the following syntax: param1=value1&param2=value2.....&pa-

ramN=valueN. When the user fills in the new set of values, Karma then constructs the

new URL based on those values and retrieves the new result page.

3.3 Discussion

The data retrieval approach shown in this chapter fits the Karma framework by primarily

focusing on the data, not the operations. Instead of writing complex extraction and

navigation rules, the user retrieves data by moving data from web pages in the embedded

browser to the table. The user is able to extract data, including an HTML form, from

multiple levels of web pages and to combine them by indirectly giving positional contexts.

The data retrieval process is based on enhancing the DOM and exploiting positional

context in the table.

Each table has two obvious but often neglected constraints, which define the positional

context technique. The first constraint is the horizontal constraint. When a user puts

a new data element in a new column on a particular row, the user indirectly associates
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the new element with other elements in the same row. It means the new element has a

different semantic because it is in a different column, but all elements in that row belong

to the same tuple. The second constraint is the vertical constraint. When the user puts a

new data element in a particular column, the user indirectly associates the new element

with other elements in the same column. It means the new element has the same semantic

as other elements in that column.

The horizontal constraint helps Karma identify markers in order to connect and com-

bine data from multiple page levels, while the vertical constraint signals Karma that the

user wants to invoke the rules and steps learned previously on a new, but similar source.

The idea of positional context will be revisited in chapter 6.

As soon as the user puts the data into the table, the new data elements are pipelined

into the source modeling problem phrase. For example, the attribute name of the second

column in Figure 3.9 is automatically set to song name. Also, data elements with lighter

color shown in Figure 3.11 are the result from the data cleaning phrase. More details will

be elaborated in the next two chapters.
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Chapter 4

Source Modeling

This chapter is divided into three sections. The first section defines what source modeling

is and why it is important. The second section first shows how a user would interact with

Karma to solve the source modeling problem and then describes the technical details

behind those interactions. The third section elaborates on how my approach to the

source modeling problem fits the overall Karma framework.

4.1 Problem Definition

Source modeling is the process of mapping a new source to existing sources in terms

of attributes. Knowing how each new source maps to existing sources allows Karma to

identify potential sources to be used in data cleaning (as shown in Figure 2.15) and data

integration.

Figure 4.1 shows two HTML pages from two different data sources. Each page provides

a detailed snow report of the Edelweiss resort. Assuming that OnTheSnow is the source

that already exists in the database, the source modeling task is to map attributes from

66



Figure 4.1: An example showing the difficulty of solving the source modeling problem.

SnowCountry to attributes from OnTheSnow. Note that it is not always possible to

map all the attributes from a new data source to existing sources.

In addition, trying to identify the mapping can prove to be difficult. For example,

the attribute Time Of Report from SnowCountry maps to the attribute Updated from

OnTheSnow. However, trying to identify this mapping will require:

• Some way to identify that the value under an attribute is a date/time

• Data cleaning to translate those values into the same format

• A way to deal with dynamic data; the snow data reported is taken from different

times.

Another example is how Open Terrain from SnowCountry is mapped to two different

attributes (Runs Open and Lifts Open) from OnTheSnow. In this case, one attribute

from one source can be mapped to multiple attributes from another source. Checking
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for possible mapping candidates will require the creation of multiple permutations of

potential candidate sets. This problem is often referred to as n:m mapping, in contrast

to the 1:1 mapping case where an attribute from one source can be mapped to only a

single attribute from another source.

In this thesis, the coverage will be for the 1:1 case with non-dynamic data, since the

contribution of the thesis is not a new source modeling technique, but the framework

that ties Mashup building steps together. Research work focusing on solving the source

modeling problem with sophisticated techniques can be found at [51, 18].

4.2 Approach

In this section, we first define an example task. Then, a snapshot of interactions be-

tween a user and Karma is shown. Finally, we discuss technical details that enable those

interactions.

4.2.1 Case Study Walkthrough

In this chapter, we will use a new example from a web source that contains the information

about a political campaign, but the structure of the problem is similar to the music

example from the previous chapter. Figure 4.2 shows the web source about the political

donation for the 2008 presidential primary campaign in the third quarter. The task for

this case study is to retrieve the data and assign an attribute name for each column in

the table. Since we already discussed data retrieval, we will assume that the user has

already retrieved the data and the state of the table looks like Figure 4.3.
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Figure 4.2: Task: retrieving the political donation data for the 2008 presidential primary
campaign and assigning an attribute to each data column.

While the source modeling problem tries to map a new source to existing sources,

from the Karma user’s point of view, she does not have to know anything about existing

sources. All she needs to do is recognize that there are four possible interaction scenarios

(our case study covers the first three cases):

1. Karma determines the attribute mapping and sets the attribute name for a column

automatically.

2. Karma cannot determine an attribute name and the user would have to select a

possible attribute match from a list of existing attributes from the database.
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Figure 4.3: The state of the table after finishing the data retrieval phrase.
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3. Karma cannot determine the attribute name for a column and there is no matching

attribute existed in the database. As a result, the user has to define an attribute

manually.

4. Karma found multiple possible matches. For example, the data Stephen could be

map to the attribute firstname or the attribute lastname. In this case, the user

would need to select one from the list based on her own judgement.

As soon as the data is populated in a column, Karma check the databases to see if it

can assign any attribute for that column. For example, Karma sets the second column

attribute to state in Figure 4.3. For the column that Karma is not confident or cannot

find any match, the attribute name will be set to select one to prompt the user to select

an attribute.

The user can start assigning an attribute for each column by clicking the Attributes

tab under the table as shown in Figure 4.4. The Attributes tab section is divided into

three areas. The left area provides a drop down menu that lets the user select which

column to work on. The leftmost column is designated as Column 0. The middle area

lets the user manually type in a new attribute name or picks from available attributes.

The right area contains an update button that the user can click to update the attribute

name of the chosen column in the table.

Figure 4.5 to Figure 4.7 show how the user assigns the attribute for the first column

(case1). When the user clicks on a text field input above the suggestion box, Karma shows

every attribute that it knows of from the database. The user can filter this suggestion

list by entering a partial text (i.e., c) into the text field input as shown in Figure 4.6.
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By narrowing down available choices, Karma hopes that the user will be able to pick

the correct attribute from the list. In this example, let us assume that the user picks

candidate as the attribute for the first column by selecting it from the suggestion list and

pressing the update button in Figure 4.7.

Figure 4.8 shows the attribute suggestion list for the second column. Note that

the attribute has already been set. The lighter font represents the fact that there is

a data overlapping (case 2) between new data elements and existing data elements in the

database; In this example, Karma found that 16 new data elements exist in some tables

in the database under the attribute name state. While the attribute name has already

been set, it is also possible for the user to override Karma’s decision by selecting a new

attribute name.

Figure 4.9 and 4.10 show the third case where Karma cannot find any match, and

existing attributes cannot be mapped to new data elements. In this case, the user has to

manually define the attribute herself.

4.2.2 Computing a Candidate Set

Whenever new data elements are populated in the table, Karma analyzes those new

entries by comparing them with data elements that exist in databases to generate a

possible candidate set for each column’s attribute. To compute a candidate set used for

suggestion, the following constraint is used. Let:

1. V : a set of values from the new column

2. S : a set of all available data sources in the database
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Figure 4.4: The user can assign attribute by selecting the Attributes tab.
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Figure 4.5: The user can pick an attribute from existing attributes in the database when
there is no data overlap.
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Figure 4.6: The user can filter the list of existing attributes by typing in a partial attribute
name.
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Figure 4.7: The user can set an attribute by selecting an attribute from the suggestion
list and clicking Update.
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Figure 4.8: The attribute suggestion for the second column. The list of suggested at-
tributes will be shown at the top of the suggestion list along with the rest of the attributes
from the database.
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Figure 4.9: Manually assigning the new attribute total raised.
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Figure 4.10: Manually assigning the new attribute total spent.
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3. att(s): a procedure that returns the set of attributes from the source s where s ∈ S

4. val(a,s): a procedure that returns the set of values associated with the attribute a

in the source s

The candidate set R is: {a|∀a, s : a ∈ att(s) ∧ (val(a, s) ⊂ V )}. Figure 4.11 shows

this constraint abstractly. For each value {x,y,z} in V, Karma tries to see if there is any

overlapping data in the database or not. If there is any overlapping, Karma collects the

overlapping attributes and put them in the candidate set. For example, x exists in S1

and S3 under the attribute a1, while y and z exist under the attribute a6 from S2.

Figure 4.11: The abstract representation of how a candidate set is computed in Karma.
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As a result, the suggestion list for this newly extracted data column will look like the

following:

a1 (2 hits), a6 (2 hits), a2, a3, a4, a5, a7, a8

The overlapping attributes will be put at the top of the suggestion list, along with the

number of occurrences of new data elements in the database. When there are multiple

overlappings (case 4), Karma will not set the attribute for the new column automatically.

If there is only one overlapping (case 1), then Karma will set the attribute for the new

column automatically.

If Karma cannot find any matches, then the suggestion list will contain every attribute

in the database arranged alphabetically:

a1, a2, a3, a4, a5, a6, a7, a8

Note that computing the candidate set requires us to lookup each new data token

and find out if there is the same value in the database or not. To make the lookup more

efficient in the database, we create a lookup table L. In this lookup table, we index all

the values to construct a map v → {(a,s)} that maps the value (v) to the source (s) and

the attribute (a) in that source where the value appear. Every time a new data table is

saved into Karma’s databases, its values are indexed into this lookup table. We also use

this lookup table in the data integration phrase (section 6.3.1).

Since the user is retrieving data from the web site of her own choosing, we assume that

the user will be able to select a correct attribute, if it exists in the database, or defines

one. Note that existing Mashup building tools do not provide any guidance in terms of
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attribute selection; users of those systems have to define every attribute manually. One

possible reason for not facilitating users in attribute selection might be because those

systems never intend to use source modeling to help with the data cleaning problem or

the data integration problem like Karma does.

4.3 Discussion

The source modeling approach shown in this chapter fits the Karma framework by lever-

aging historical data from the database. By locating overlapping data, Karma is able to

suggest possible attribute mappings between the new source and existing sources. Also,

as soon as the user puts the data into the table from the data retrieval phrase, the new

data elements are pipelined into the source modeling problem phrase.

While the benefit of solving the source modeling problem might not be obvious from

the user’s point of view, this process will benefit the user later on during the data cleaning

and data integration phrases. For example, when Karma can identify the column attribute

with certainty, the data in that specific column is sent to the data cleaning phrase to detect

misspellings (as shown in Figure 3.11), which will be discussed in the next chapter.
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Chapter 5

Data Cleaning

This chapter is divided into three sections. The first section defines what data cleaning

is and why it is important. The second section first shows how a user would interact

with Karma to solve the data cleaning problem, and then describes the technical details

behind those interactions. The third section elaborates on how my approach to the data

cleaning problem fits the overall Karma framework.

5.1 Problem Definition

Data cleaning is a process of preparing data so that it will be ready for use in a task. While

this definition seems to be very broad, it reflects the nature and difficulties associated

with data cleaning. The set of data that can be used in one task might be unacceptable

for use in another task. For example, the data of sensor performance that contains some

errors may be acceptable for a backyard rocket project, but not a space shuttle project.

There are many ways to clean the data depending on the objectives. In this thesis,

we segment data cleaning into four types:
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• Detecting discrepancy involves locating the errant data. The error can be gram-

matical or contextual. An example of a grammatical error might be misspelling,

such as Wasington instead of Washington. A contextual error requires understand-

ing of the semantics to identify it. For example, a data element 200 under an

attribute age is an error, because no human can live to two-hundred years.

• Detecting duplication involves finding and eliminating duplicated data points.

This problem is often referred as a record linkage problem or a deduplication prob-

lem. For example, in Southern California restaurant data, California Pizza Kitchen

and C.P.K are considered the same entity.

• Extract, transform, load (ETL) is a phrase used to describe the process of ex-

tracting data, transforming it, and loading it to another module. In many tasks, the

data must be transformed to make it work with existing data or modules. Usually,

the transformation function requires programming or scripting. The transforma-

tion can be static reformatting, such as naming format (e.g., Clinton, Hillary to

Hillary Clinton). On the other hand, it can also includes dynamic transformation

like currency conversion (e.g., US$1 to ThaiBaht 33).

• Filtering involves limiting the set of data. For example, a marketer might want

to filter the census data to get the information about a specific demographic range

(i.e., age 20-29) for a marketing campaign.

As shown above, data cleaning can be complicated and requires different approaches

to address different problems that exist in the data. While Mashups covered in this

thesis are aimed at casual use and users can tolerate some degrees of error, data cleaning
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is important for the fourth type of Mashup where data from two different sources are

joined together. Figure 5.1 shows an example why data cleaning is important in building

Mashups. To combine real estate listing with property tax, the address data from the real

estate listing source must be fed into the HTML form input of the property tax source.

If the address is wrong (e.g., misspelling), then the property tax source might not return

any result, or incorrect results.

In this thesis, we selected the coverage for the data cleaning problem based on the

trade off between functionality, complexity and usability. We demonstrate our approach

by automatically detecting grammatical discrepancy and inducing transformation. While

not currently addressed, detecting contextual discrepancy and detecting deduplication can

also be implemented using the same approach without the loss of generality in the future.

5.2 Approach

In this section, we first define an example task. Then, we show a snapshot of interac-

tions between a user and Karma. Finally, we discuss technical details that enable those

interactions.

5.2.1 Case Study Walkthrough

Karma supports two kinds of data cleaning: detecting grammatical discrepancy and trans-

formation. We will build on two examples discussed in previous chapters. Specifically,

the first interaction, shown in Figure 5.2 through Figure 5.8, will show how the user

can specify a transformation to clean the name format from the political contribution

campaign example. The second interaction, shown in Figure 5.9 through Figure 5.13,
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Figure 5.1: To retrieve the correct property tax, the address must be correct.
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will show how Karma detects misspelling and makes suggestions to the user in the music

example.

In our political campaign example from chapter 4, the naming format of the data is

Lastname, Firstname. While this format is not wrong, the user might want to change it

to Firstname Lastname to integrate it with other data. Assuming the user wants to clean

the data, the user begins by selecting the Data cleaning tab under the table (Figure 5.2),

choose the column that she wants to clean (i.e., Column 0 in this case), and clicks Start

cleaning.

Figure 5.3 shows Karma activating the data cleaning mode (by adding three new

columns after the candidate column and graying out irrelevant columns. The three new

columns are suggest, user defined, and final. The suggest column will contain Karma’s

suggestion for data replacement, if Karma thinks there is any misspelling. The role of

the suggest column is not relevant in this example, but it will be discussed in the next

example. The user defined column allows the user to clean the data by giving examples

of what the data should look like, when cleaned. The final column will contain what the

data should look like at the end.

In this example, the user will clean the data by giving an example. The user can click

on any row under the user defined column and type in the cleaned value. Figure 5.4 shows

the user typing in the text Hillary Clinton as the desired value. Once the user finishes

typing in the value and presses enter, Karma will try to determine the transformation

rule by looking at the original data and the specified data. If Karma can identify the

transformation rule, Karma will apply that rule to the rest of the data as shown in Figure

5.5
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Figure 5.2: The user can start the data cleaning process by selecting Data cleaning tab
under the table.
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Figure 5.3: To clean the candidate column, the user chooses Column 0 and clicks Start
cleaning. Karma will create three new columns used for the data cleaning process and
gray out other data columns.
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Figure 5.4: The user clean the data by typing in the end result that the user wants to
see. In this case, the user gives an example of Hillary Clinton as the desired outcome.
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Figure 5.5: Karma analyzes the given example and select the appropriate transformation
rule to applied to the rest of the data in the user defined column.
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Figure 5.6: The user tells Karma to use the user defined column as the final result by
clicking the appropriate box. In this case, any cell under user defined that is not empty
will override the original extracted values.
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Figure 5.7: The user clicks the Update button to update the result on the final column.
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Figure 5.8: When the user clicks Finish, Karma exits the data cleaning mode and the
original data is replaced with the cleaned data.
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If the user wants to use the user defined column as the final result, the user checks

the box User user defined values (override the first two options) as shown in Figure 5.6.

There are three checkboxes. The first checkbox tells Karma to use the original value (no

cleaning). The second checkbox tells Karma to use original values, but replace them with

alternatives for the case where Karma have suggestion. The third checkbox tells Karma

that the data in the user defined column will have the highest priority over the first two

choices.

Once the user clicks the Update button, the final column will be updated to reflect the

chosen checkboxes (Figure 5.7). If the user is not satisfied with the final result, the user

can also modify the result in the final column by selectively typing in new values. If the

user is happy with the result, the user can click the Finish button to exit the data cleaning

mode. Figure 5.8 shows what the table looks like after the data cleaning operation; the

naming format is changed from Lastname, Firstname to Firstname Lastname.

The second example, shown from Figure 5.9 through Figure 5.13, deals with the case

where there are misspellings in the data. In our music example, Karma compares new

data elements with existing data elements in the database. Any new element that matches

perfectly with existing data elements will be shown in green. On the other hand, any

new element that closely matches existing data elements will be shown in red. In Figure

5.9, The Light and Cold Cold Water [Album Version] are shown as red, while other

lighter font elements are shown in green. When the user chooses Column 1 (song name)

and clicks Start cleaning, Karma enters the data cleaning mode. Figure 5.10 shown the

replacement suggestion provided by Karma.
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Figure 5.9: In the music example, the lighter font indicates that either a data element is
found within the database (shown as green in Karma), or a close match has been found
which might indicate misspelling (shown as red in Karma).
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Figure 5.10: When the user activates the data cleaning mode, Karma shows the suggestion
for replacement when there are close matches.
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Figure 5.11: If the user wants to replace original values with suggested values, then the
user checks the Use suggested Values box. If all boxes are checked, then suggested values
will override extracted values and user defined values will override the other two previous
values.
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Figure 5.12: After the user clicks the Update button, the final column reflects the chosen
options. In this case, any non-empty suggest values replace the original values.
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Figure 5.13: When the user clicks Finish, Karma exits the data cleaning mode and the
original data is replaced with the cleaned data.
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Note that these suggested values do not always mean misspellings occur; it just means

that there are closely matched values in the database and these values are presented to the

user for consideration. Assuming that the user wants to use the suggested values, the user

chooses the second checkboxes “Use suggested values (override extracted value)” (Figure

5.11) to override original values with suggested values. Once the user clicks the Update

button, the result is update in the final column (Figure 5.12). If the user is satisfied with

the result, the user can click the Finish button to exit the data cleaning mode. Figure

5.13 shows the updated data with suggested values replacing original values.

5.2.2 Transformation by Examples

In our political campaign donation example, the user specifies how to clean the data

by typing in the desired result. Figure 5.14 shows a schematic diagram of how Karma

processes a user defined input. The original data element Clinton, Hillary is sent to

a set of predefined transformations to generate the output. If the output generated

by a transformation equals to the user defined input (i.e., Hillary Clinton), then that

transformation rule is selected. The selected transformation rule is then used to apply to

the rest of the data in the original column (e.g., Obama, Barack).

By allowing the user to specify the end result, the user does not need to know how to

specify the transformation rule, which can be challenging. For example, the regex widget

in Figure 1.3 specifies the regular expression (i.e., replace (\w*\s)(\w*) with $2 $1) that

transform “Lastname Firstname” to “Firstname Lastname”. While this approach does

not require a user to understand programming, it does have three limitations:
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Figure 5.14: A diagram showing how Karma processes a user defined cleaning input.
When the user specifies an example, the original data and the user defined data are sent
to a set of predefined transformation rules to determine which rule can be used.

Table 5.1: Predefined transformation supported by Karma
Name Function
Symbol Substitution Allow a single symbol replacement

i.e., 12-30-2008 → 12/30/2008
Name Reverse Lastname, Firstname

i.e., Obama, Barack → Barack Obama
Name Reverse2 Firstname, Lastname

i.e., Barack Obama → Obama, Barack
All Uppercase Change every character to uppercase

i.e., Hillary → HILLARY
All Lowercase Change every character to lowercase

i.e., Hillary → hillary
Word Capital Capitalize the first character of each token

i.e., barack obama → Barack Obama
Substitution Allow a single token replacement

i.e., 3 Ames St. → 3 Ames Street
SubstringEqLength Similar to java substring

i.e., 28 reviews → 28
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• There may be no predefined transformation match: The user would need to type in

the cleaned values manually. Table 5.1 lists available transformations supported by

Karma.

• More than one rule can be matched : Currently, Karma selects the first rule that

matches. In the future work, the user can be prompted with an option to select one

rule from matching rules.

• More than one transformations are needed to clean a data column: There maybe

some cases where a data column contains data in a mixed format. For example,

the first row might contain the data “12/03/2008 ”, while the second row might

contain the data “March 15, 2006 ”. To clean a column of mixed format data, more

than one transformation rule is required. However, the current version of Karma,

while it can be extended to support multiple transformation rules, only supports

one transformation rule for each column.

5.2.3 Discrepancy Detection: Misspelling

In our music example, Karma hints to the user that some data elements might need to

be cleaned by applying red on them. When the user enters the data cleaning mode, she

is presented with a possible replacement for each red data element. The replacement is

computed using the following algorithm:

Let:

1. A = the attribute of new data column.

2. VA = the value set under the attribute A.
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3. S = set of data sources in the database where each source has the attribute A as

one of their column.

4. VS = the union of all the values under the attribute A from each source in S.

5. F(v1,v2) = a string similarity function that takes in two data elements and return

the number ranging from 0 to 1. The closer the result to 1, the more similar between

v1 and v2.

6. X = the suggestion list for an arbitrary value v in VA.

Then, the suggestion list for each value in VA is computed using the following formula:

X = { vs|va ∈ VA ∧ vs ∈ VS ∧ F(vs,va) > 0.75}. Specifically, X is computed by comparing

each value in VA with each value in VS using a string similarity algorithm. In Karma, we

choose unsmoothed Jacard similiarty [15] for its fast computation and performance. If

the two strings are similar enough, the value in VS is added to X. For each value in VA

where its corresponding X is not empty, Karma sets the color of that data element to be

red on the table. When the user chooses to clean the data, Karma presents the user with

suggestions for replacement for each red element. If there is more than one suggestion,

the user can click on the suggestion cell to see the drop down list of available suggestions.

The performance of this approach is tied to how well the source modeling problem is

addressed. If the user selects a wrong attribute for a newly extracted data column, then

Karma will not be able to use the correct set of data to compute the suggestion set for

replacement. However, even if the user selects the wrong attribute, Karma does no worse

than other Mashup tools as they do not provide any support to detect misspellings in the

extracted data.
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5.3 Discussion

The data cleaning approach in this chapter fits the Karma framework by using all three

key ideas mentioned in chapter 1. First, the user focuses on the data. By specifying

the cleaning result that the user wants to see, she indirectly induces the cleaning trans-

formation function. Second, Karma leverages existing databases to detect misspelling,

so the user does not have to spend time locating these errors. Third, as soon as the

source modeling problem is solved (e.g., attribute is specified), Karma uses the informa-

tion about that attribute to help determine which existing data set should be used to

detect misspelling.
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Chapter 6

Data Integration

This chapter is divided into four sections. The first section defines what data integration

is and why it is important. The second section shows two scenarios of how a user would

interact with Karma to solve the data integration problem. The third section explains

the technical details in the backend that enable such interactions. The fourth section

elaborates on how my approach to the data integration problem fits the overall Karma

framework.

6.1 Problem Definition

From chapter 3 through chapter 5, we have focused on instances where the user retrieves,

models, and cleans data from one single source. The data integration problem takes that

source and figures out how to combine that data source with other data sources. For

example, the political data source used in the two previous chapters is interesting, but

it lacks party affiliation or candidate ages. If we can combine the political data source

with another data source that contains such information, the overall data will be more

complete and more meaningful. There are two overall issues that we need to examine.
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The first issue is locating and obtaining related data sources. The second issue is figuring

out how to combine data sources.

When building Mashups, if a user knows which data from which sites to combine, then

the first issue is solved. However, given the magnitude of existing web pages, locating

good related sources maybe difficult and time consuming.

Assuming that related sources can be located, the next step is to figure out how to

combine them. This issue can be thought of as a query building problem where we need to

come up with a query (i.e., SQL) that combines multiple data tables together. However,

such queries can be complex due to the composition of data sources:

• Binding sources: Some sources that have form input, such as the tea example in

chapter 3, has binding constraints. To get the data, we need to supply input values.

• Multiple sources coverage: Sometimes more than two sources are required during

the data integration process. For example, to retrieve the age of each presidential

candidate, we might need to access two sources: one with age information for can-

didates belonging to the Democrat party, and another source with age information

for candidates belonging to the Republican party.

• Multiple linking : Sometimes multiple sources must be linked together in order to

access the needed data. For example, the Google music example contains only

album information, but not reviews. To obtain review ratings, we might need to

link the Google music data source with the Amazon data source using a database

join over artist and album name to retrieve the review rating.
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The next section will show the case study walkthrough that lets the user combine

multiple data sources; and the approach section will elaborate on how Karma solves the

two issues above.

6.2 Case Study Walkthrough

There are two examples in this section. The first example continues to expand from the

political contribution scenario, while the second example is a new example showing how

a user can build a table of data derived from database without having to extract data

from a new source.

6.2.1 Mashup Building

Given the political campaign data, the user can ask Karma to suggest what related in-

formation she can get. This information comes from existing databases. These databases

grow larger as users extract more data from new sources and save them into databases.

The user can start the data integration process by going into the Integration tab as shown

in Figure 6.1. Once the data integration mode is activated, the user can get suggestions of

new attributes that could be added to the table. This is done by going into the Attributes

tab and selecting one of the empty columns (e.g., Column 4) as shown in Figure 6.2.

Once the user selects the new column to work on, Karma will show what kinds of

information it can get from the existing database. Figure 6.3 shows three available choices:

age, full state, and party. This means that based on the data from the political campaign

source, Karma can get candidate’s age information, the full name for each state, and the

party affiliation. Let us assume that the user selects age (Figure 6.4) and clicks the Update
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button (Figure 6.5), the fifth column on the table will be updated with the new attribute

information. The user can repeat the process by continuing to add more attributes in

empty columns as shown in Figure 6.6 and Figure 6.7.

After the user finishes adding new attributes, the user can click the button Fill under

the Attributes tab. Karma will then automatically generate the queries that combine the

new source (i.e., political campaign) with existing sources from databases so the table is

filled as shown in Figure 6.8. The user is sheltered from the detail of sources and query

formulations and is presented with information that Karma can integrate.

While focuses of the thesis is not on data display, if the table contains any geospatial

information (e.g., State), the user can display the data on the map by clicking on the Map

button in the Table tab. Figure 6.9 show the data in the table displayed on a Google

map. The state information is used as a location for each data point. When the user

clicks on a point, the corresponding data from the table will be shown.

6.2.2 Building Query by Example

Suppose we want to find good Japanese and Vietnamese restaurants in Los Angeles. TIn

addition, these restaurants must have an A health rating. Because restaurant review

sites do not contain the health rating information, combining data from multiple sources

is necessary. With these criteria in mind, we let the user create a table by interactively

filling in values using Karma’s data integration mode. Figure 6.10 shows what the end

result should look like.

To create the data table shown in Figure 6.10, the user can enter values in a method

similar to Google Suggest (http://labs.google.com/suggest); Google Suggest suggests a
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Figure 6.1: The user begins the process of data integration by choosing the Integration
tab and clicks Start.
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Figure 6.2: To get the suggestion from Karma for extra attributes that can be added
to an empty column, the user chooses the Attributes tab and chooses one of the empty
columns (e.g., column 4).
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Figure 6.3: Karma suggests attributes from database that can be added to the table to
expand the extracted data.
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Figure 6.4: The user can choose from the list. In this case, the user chooses age.
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Figure 6.5: Once the user clicks the Update button, the attribute on the fourth column
is set to age.
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Figure 6.6: The user chooses to add more attributes by selecting an empty column (i.e.,
Column 5) and chooses Party.
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Figure 6.7: When the user clicks the Update button, the fifth column attribute is changed
to Party.
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Figure 6.8: After completing the process of choosing extra attributes, the user clicks the
button Fill and Karma will generate queries that combine and integrate the data from
the new source with existing sources.
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Figure 6.9: If the table contains geospatial information, the user can display the data on
the map by choosing the tab Table and clicking Map. In this example, the state is used
as a location for each data point.
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Figure 6.10: The end result of the data table generated by using Karma’s data integration
mode starting from an empty table.

list of possible words and search terms when given a partial keyword search. Once the

user provides some sample data, Karma will translate partially-filled rows into queries

that retrieve data from multiple sources, and fills in the table. Karma’s novel approach of

using constraints and partial plans allows the user to enter values without any knowledge

about the query language or data sources. Moreover, Karma generates consistent queries

that always return data. Figure 6.11 to 6.25 show the steps of the user interacting within

Karma to build the table shown in Figure 6.10.

6.2.3 Augmenting data with query integration

The first walkthrough builds the Mashup by extracting data from a webpage and then

augments it with existing data from databases through the help of the Karma data

integration module. The second walkthrough builds the Mashup by incrementally adding
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Figure 6.11: Step 1: The user begins the process of data integration by choosing the
Integration tab and clicks Start.
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Figure 6.12: Step 2: The user can click any cell and choose C:Suggest (i.e., C as Com-
mand) to tell Karma that she wants a value suggestion.
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Figure 6.13: Step 3: When the users chooses C:Suggest, the selected cell is recognized by
Karma (i.e., Cell: 0,1 ) to the left of the suggestion box. In this case, the user decide to
specify the cuisine first. As the user types, Karma eliminate choices and suggests a list
of possible values to fill in a cell.
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Figure 6.14: Step 4: Assuming that the user picks Japanese and clicks Update, the value
is updated in the original selected cell.
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Figure 6.15: Step 5: The user now repeats the same process with the cell below cell that
contains Japanese
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Figure 6.16: Step 6: After the user clicks Update the cell is filled with the value viet-
namese. Note that at this point Karma determines that the attribute under this column
can only be Cuisine and proceeds to automatically set the attribute to Cuisine.
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Figure 6.17: Step 7: In addition to getting a value suggestion, the user can ask Karma
to suggest an attribute too. In this step, the user clicks the Attribute tab, picks column
number, and selects from a list of available attributes. Note that only the attribute that
is related to Cuisine will be shown. However, the user does not need to know the data
sources where those attributes come from and how these atttributes are related to cuisine.

Figure 6.18: Step 8: Once the user chooses the new attribute and clicks Update attribute,
the new attribute is set on the table.
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Figure 6.19: Step 9: The user can continue to select a new attribute for another column.
In this case, the user wants to select the attribute City for Column 2.

Figure 6.20: Step 10: The attribute selection is continued using the same process for each
column until the user has five attributes: restaurant name, cuisine, city, review rating,
and health rating.
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Figure 6.21: Step 11: Since the user wants the restaurant to be in Los Angeles, the user
picks a cell under the column City and gets a suggestion to see if Los Angeles is a possible
value. Note that if Karma does not have a Japanese restaurant in Los Angeles, it would
not suggest Los Angeles as a choice.
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Figure 6.22: Step 12: The user fills in the two cells with the value Los Angeles as a way to
indirectly specify the constraint that the restaurants in this table must be in Los Angeles,
in addition to serving either Japanese or Vietnamese cuisine.
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Figure 6.23: Step 13: Next the user clicks the cell under health rating to get a suggestion
list. Note that since the user wants a list of restaurants with health rating equals to A,
the user would select A and click Update. Note that Karma offers three values (A,B,C)
if and only if there are Japanese restaurants for each of the health ratings.
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Figure 6.24: Step 14: After the user clicks Update, the cell is filled with the value A.

values using Karma’s suggestions without extracting data from any web page. While the

two scenarios start out differently, the structure of the problem during the data integration

phrase is similar; both cases use Karma’s databases to augment a table with more data

from the databases. In the next section, we will show how the augmenting process is done

starting from an empty table. However, one can imagine the case where the user starts

with some data in the table (whether that data comes from new source or by using only

Karma’s suggestion from the database) and then continues to augment it similarly to the

way it is done in the first walkthrough.
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Figure 6.25: Step 15: The user repeats this step to specify the health rating for the
Vietnamese cuisine. Note that at this point, the user finishes selecting cells and specifying
data values that express the goal constraint. At this point, the user clicks Fill and asks
Karma to generate the query to fill the table based on the partially filled table. The
result is the table shown in the beginning in Figure 6.10
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6.3 Approach

In this section, we will show how to build data integration queries indirectly using exam-

ples. We will break down the approach into small cases and explain the technical detail

of how Karma handles each case. First, we will explain the intuition and how indexing

is used in Karma. Second, we will go into each problem case. Finally, we will discuss

advantages and limitations of the query building approach.

6.3.1 Intuition

The intuition behind our approach is simple. Each data structure or process has its

own constraints. By exploiting these constraints, we can narrow the search space of the

solution. When the user selects a particular value, that value implies specific data sources

and attribute names. These qualified data sources and attributes can be used to constrain

the next value/attribute that the user may select.

Given a set of data sources in the relational form, we can index the data very much as

search engines index web pages. We index all the values to construct a map v → {(a,s)}

that maps the value (v) to the source (s) and the attribute (a) in that source where the

value appear. A single value can be associated with multiple attribute names and data

sources. For example, the mapping

Los Angeles → {(city, Zagat), (city, LA health rating), (hotel name, Orbitz)}

implies that a keyword value Los Angeles exists in a) the data source Zagat under

the attribute city b) the data source LA health rating under the attribute city and c)

the data source Orbitz under the attribute hotel name. We also index all the attribute
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names to construct a map of a → {s}; for each attribute name; and we identify a list of

data sources that contain such an attribute name. Once we index all the attributes and

values, as the user types in a partial keyword, we can retrieve and suggest the possible

set of candidates using SQL Boolean queries. Each attribute or value selected and filled

by the user introduces global constraints that further limit the next attribute and value

that the user can select. For example, when the user enters Los Angeles as one of the

values, the number of data sources for that particular attribute is narrowed down to only

three sources, and the number of possible distinct attributes is narrowed down to only

two.

6.3.2 Indexing tables and data source definition

By indexing attributes and values into A and V hash tables, Karma can deduce infor-

mation about possible values and attributes to suggest to the user.

Let:

• S : a set of all available web sources

• att(s): a procedure that returns the set of attributes from the source s

• val(a,s): a procedure that returns the set of values associated with the attribute a

in the source s

• A: a lookup hashtable with its key and value being a → {s} where, 1) {s} ⊆ S and

2) ∀s ⊂ S : a ∈ att(s)

• V : a lookup hashtable with its key and value being v → {(a,s)} where ∀(a,s): v ∈

val(a,s) ∧ S : a ∈ att(s)
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We will walk through the example scenario and show how we use constraints and

partial plans to formulate complex queries. We will start from a simple task of building a

one column table and then move to the more complicated case of building a multi-column

table. We will assume that we have the following data sources in our scenario:

• Zagat($restaurant name, $cuisine, $address, $city, $state, $zipcode, review rating)

• Asian food review($restaurant name, $cuisine, $price, $address, $city, $state,$zipcode,

review rating)

• LA health rating($restaurant name, $address, $city, $state, $zipcode, inspec-

tion date, health rating)

• EU country info($country name, language, population, gdp, date, location)

Zagat and Asian Food Review are both restaurant review sources. However, Asian

Food Review only contains Asian food. EU Country Info is a data source that contains

information about European Union countries. Note that EU Country Info may not be

related to food. However, we introduce this data source to show how the values from

different attributes and data sources can be overlapping, which often occurs in a repository

of many sources.

Each data source has a set of attributes associated with it. For example, Zagat is

a table with seven attributes. The $ sign determines the primary key constraint, which

we will explain later. Note that the source modeling step is taken care of by users when

they extract and save these data sources. As a result, the attribute names defined here

are uniform (e.g., we use $address in all the definitions rather than the possibly different

attribute names that the sources may have had before alignment).
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6.3.3 Single column case

Figure 6.26: Building a single column table starting by entering an attribute.

With a blank single column table, the user can choose to enter an attribute or a value.

Let us assume that the user chooses to enter an attribute first as shown in Figure 6.26.

Since we do not have any constraints to start with, the attributes that can be suggested

are all keys {a} from A. Assume that the user chooses Cuisine and its associated sources

are Zagat and Asian food review. At this point, if the user wants to enter a value, a

possible list of values is constrained by the attribute selected and its associated data

sources. As a result, the set of possible values that Karma can use to suggest to the user

is:

{v} = val(a,s) where s ⊂ {s}

For example, this mathematical expression can be translated into a query as:

(SELECT Cuisine FROM Zagat)UNION(SELECT Cuisine FROM Asian food review)

Karma also allows the user to start by entering a value without having to specify

any attribute, as shown in Figure 6.27. Since we do not have any constraint for the first

value, the possible suggest candidate set is simply all {v} from V. Let us assume that

the first value the user selects is Japanese and its associated {(a,s)} is {(Cuisine, Zagat),

(Language, EU country info)}; this means that the value Japanese exists in two data
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sources and can be associated to two attribute names - Japanese can either be a Cuisine

or a Language.

Figure 6.27: Building a single column table starting by entering a value first.

The value entered creates a constraint that limits the set of possible attributes and the

set of values in the next step. For the sake of simplicity, we will postpone describing what

the constraint is and assume that a second value Vietnamese satisfies the constraint.

At this point, we can describe the constraint that dictates the possible candidate set

of the attribute name. If we only have Japanese in the table, the possible candidate

set for the attribute name is {Cuisine, Language}. However, once we have both values

(Japanese and Vietnamese) in the table, the possible candidate set for the attribute name

must be attributes shared by both values. We formalize this idea as the set intersection

constraint.

6.3.3.1 Set Intersection Constraint

We compute the attribute candidate set using the set intersection. The set intersection

of the possible attribute name consistent with each row in Figure 6.27 is simply: Cuisine.

At any point, if the attribute name is not defined, the possible candidate set for attribute

names is:
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{x} = Set intersection({a}) over all the value rows

Now, we can revisit the constraint that we ignored when the user wants to enter a

second value after entering the first value Japanese. To enter a value, the possible value

set is:

{v} = val(a,s) where a ∈ {x} ∧ s is any source where att(s) ∩ {x} 6= {}

To enter a value, we first compute the set intersection (which can be more than one

attribute) between all value rows. Then we retrieve a candidate set from any data source

that contains any attribute in the set intersection. The query to retrieve the candidate

set for the second value (Vietnamese) is:

(SELECT Cuisine FROM Zagat)UNION(SELECT Language FROM EU country info)

After the user chooses Vietnamese as a second value, if the user wants the enter the

third value, the query to retrieve the candidate set will be:

(SELECT Cuisine FROM Zagat)UNION(SELECT Cuisine FROM Asian food review)

Note that

• The query for the third value does not include the attribute Language from the

source EU country info because the attribute Language does not belong to the

updated set intersection.

• As the user enters the attribute or values, the possible choices are becoming more

limited.

• Once the choices are narrowed down to only one value (i.e., the set intersection

of the attribute between Japanese and Vietnamese = Cuisine), Karma will fill
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that attribute/value in the table automatically. In our case, once the user selects

Vietnamese, Karma will also update the unfilled attribute name to be Cuisine.

6.3.4 Multiple column case

The multiple-column case is more complex, because a value entered in one column can

affect how Karma suggests attributes and values in other columns. First, we will introduce

the concept of reachable attributes. Then we will describe partial plans. We will show

different examples to explain each concept.

6.3.4.1 Computing reachable attributes

In traditional databases, we can link different tables together using the join operation.

Depending on the join condition, it is possible to create a successive chain of tables. Figure

6.28 shows an example of how tables in a database can be linked. Given an employee

ID, we could retrieve the following attributes using join conditions through foreign keys:

SSN, name, address, phone number, latitude, and longitude

Figure 6.28: Joining condition through foreign keys in traditional database
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We define a reachable attribute as an attribute that can be reached from a particular

data source (e.g., longitude is reachable from S1). If we have a well-defined database

like the one shown in Figure 6.28, join conditions between tables can be composed over

foreign keys. Joining two tables using non-foreign key attributes (e.g., name) is possible,

but the result generated may not make sense. For example, there might be a record with

name John Smith in S1 and S2 who are completely different people with different SSNs.

In Karma, we use a primary key constraint. The set of attributes with the $ in the

data source model acts as primary keys. For example, the primary key constraint for the

LA health rating source is: $restaurant name, $address, $city, $state, and $zipcode.

What the constraint means is that if we want to retrieve inspection date and health

rating, the join condition must be over restaurant name, address, city, state, and zipcode.

In many web sites, to retrieve information, we need to fill out a web form. For

example, to get a health rating for a particular restaurant, we need to fill out a form

(e.g., restaurant name, address). For a wrapper to retrieve the data from these sites, it

will also need this information, hence the input requirement. In Karma, we retain this

input requirement information and use it as the primary key constraint. The reachable

attribute definition allows us to handle the case where the user wants to enter a new

attribute in a multi-column table.

Continuing from the single column case (Figure 6.27), if the user wants to enter

the new attribute as shown in Figure 6.29, the possible set of valid attributes must be

reachable from each row in the table (i.e., both the Japanese row and the Vietnamese

row). For example, the attribute price is only reachable from the Vietnamese row, because

price is the attribute that belongs to the Asian food review data source. If we allow price
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Figure 6.29: Entering an attribute in the new column requires a computation of the set
intersection of ”reachable” attributes between each row.

to be used as the new attribute, we will not be able to suggest any value for the Japanese

row, because price is not reachable from that row (since the first row does not contain

Asian food review).

As a result, the first constraint for entering a new attribute in the table is: the set

intersection of reachable attributes of all partially filled rows

However, simply matching the primary key constraint between data sources does not

guarantee that all attributes in the set intersection will create a join condition that does

not return the empty value. The second constraint that Karma imposes is: each attribute

in the set intersection of the reachable attributes set must produce a non-empty suggested

value set.

This can be accomplished by executing multiple queries through partial plans as if

Karma wants to suggest possible values for each attribute from (1) in each partially-filled

row, and eliminate the ones that produce an empty set from reachable attribute list.

This constraint allows Karma to guarantee that for each empty cell in a non-empty row,

Karma can fill those cells. Note that it is also possible to configure Karma to relax these

two constraints to allow a partially filled table with some missing values in case where we
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do not have enough coverage from data sources to be able to suggest at least one value

in each row.

6.3.4.2 Partial Plans

Assuming that the user selects restaurant name for the new attribute in Figure 6.29, the

user might want to (a) have Karma fill the blank cells in the table. (i.e., find all the

restaurants with Cuisine = Japanese or Cuisine = Vietnamese) or (b) fill in some cells

under the column restaurant name by letting Karma suggest the available choices (as in

Figure 1). In both instances, Karma uses partial plans to help evaluate what data should

be used to either fill the table or suggest values to the user.

Each individual row in the Karma table contains a partial plan in the form of a tree

that keeps track of selected values and attributes. Each row can contain more than one

partial plan depending on the number of data sources. For example, the second row in

Figure 6.27 would contain two partial plans (one plan using Zagat, and the other using

Asian food review).

The partial plan tree can easily be translated into queries to retrieve the candidate

values to suggest to users. First, we will show the final tree (Figure 6.30) that Karma

constructs for the first row from the table in Figure 6.25. Then, we will explain: (1) node

types and parent types (2) how we can use the tree to evaluate the possible suggestion

set that can be used to suggest a value for a cell or fill the whole table, and (3) how we

construct such a tree.
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Figure 6.30: The partial plan for the first row of the table in Figure 6.25 that includes
joining between two data sources according to the primary key constraint.
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6.3.4.3 Node types and parent types

Each node represents a cell in a row, except for a root node, which is used as a starting

point. There are three types of nodes: a value node (blue), a place holder node (white),

a hidden node (black). The value node is the node where the user has already specified a

value in that cell (i.e., Japanese, Vietnamese). The place holder node is a node where the

user has not selected any value yet, but the attribute for that column is already specified.

For example, an empty cell on the first row under the attribute restaurant name in the

table in Figure 6.25 corresponds to a place holder node. The hidden node is a node that

is required as a part of the joining condition through the primary key constraint, but is

not selected into the table by the user (nodes b,d,e). Each node will contain a triplet

of attribute, source, and value. For example, node f will contain f(a,s,v) = (cuisine,

Zagat, Japanese), while node ‘a’ (a place holder node) will contain a(a,s,v) = (restaurant

name, Zagat, PLACE HOLDER). When the user first enters a value, we designate its

corresponding data source as a starting source. Any node with its ‘s’ equal to the starting

source has the root as its parent, while a node that is the result of a joining data source

will have multiple parents. Those parent nodes are essentially nodes with primary key

attributes.

6.3.4.4 Tree evaluation

The partial plan tree can be used to suggest a particular set of available values by trans-

lating it into a query for a particular node. This process can also be used to verify wheter

a particular attribute will produce a non-empty suggest value set or not. To translate a

tree into a query, we use the following rules:
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1. A value node implies a value equal ’=’ condition.

2. A place holder node can only be included in the SELECT part of the query

3. A node with multiple parents implies a join condition over its parents.

For example, a possible candidate set for the attribute restaurant name (a place holder

node a in Figure 6.30) in the first row is:

SELECT DISTINCT Zagat.‘restaurant name’

FROM Zagat, LA health rating as L

WHERE Zagat.city = “Los Angeles” AND

Zagat.cuisine = “Japanese” AND

L.’health rating’ = “A” AND

Zagat.’restaurant name’=L.’restaurant name’ AND

Zagat.’address’ = L.’address’ AND

Zagat.’city’ = L.’city’ AND

Zagat.’state’ = L.’state’ AND

Zagat.’zipcode’ = L.’zipcode’;

The first three conditions are the constraints imposed by value nodes (rule 1), while

the rest are the constraints imposed by joining conditions (rule 3).

Note that we can also create a query that fills the whole table by retrieving the possible

set by including: city, cuisine, review rating, and health rating in the SELECT part of

the query above.
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6.3.4.5 Tree construction

In our scenario, the user starts in the single column table with an empty table and selects

Japanese in a cell. That is when we add the first value node f into the tree. On the other

hand, if the user starts with selecting an attribute first, we will add a place holder node

instead, because the value for that cell has not been specified by the user yet.

Figure 6.31: The first row partial plan generated by Karma as the user enters attributes
and values.

To add the first node, the set intersection constraint must be satisfied. Note that it

is possible that (a) the size of the set intersection is more than one (the value selected

corresponds to more than one attribute name), or (b) the corresponding data sources

are more than one. In such cases, we permute over each data source to create multiple

partial plan trees for each row, where each plan uses one data source. As the user enters

more values that result in the elimination of attributes/data sources according to the set

intersection constraints, Karma removes the partial plan trees that refer to the eliminated

attributes/data sources. For example, (Language, EU country info) is eliminated when

we compute the set intersection constraint in Figure 6.27. From the second node on, we

are dealing with a multiple-column table case. For example, to add a second node (node

‘a’) in Figure 6.31:
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• Compute the set intersection of the reachable attributes of all the rows. Then, keep

only reachable attributes that return non-empty suggest value sets.

• At this point, we have a set of attributes that Karma can suggest to the user. If the

user selects the attribute (as in Figure 6.29), create a place holder node (node ‘a’

in Figure 6.31). If the attribute is in the same data source as the starting source,

add the new node as the child of the root. However, if the attribute is in a different

source, create necessary hidden nodes according to the primary key constraints and

set the new node as the child of those hidden nodes.

• On the other hand, if the user decides to enter a value instead of selecting the

attribute in Figure 6.29, permute the partial plan for the set intersection attribute

set in (1). At this point, we will have multiple partial plans similar to that of a

plan in Figure 6.31, although the attribute of the node ‘a’ will be permuted over

all set of reachable attributes. We can evaluate each plan to retrieve the possible

values from node ‘a’ of all partial plans. The union of the result will be used as a

suggest set for the user. Once the attribute can be determined, remove the partial

plans that do not correspond to that attribute.

We have demonstrated how the set intersection and the reachable constraints can be

applied to partial plans. This approach allows the user to select any cell in the Karma

table, get a list of suggestions, and, once satisfied, tell the system to fill the remaining

part of the table with the data that satisfies all the constraints.
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6.4 Discussion

Our approach is based on the idea that every problem has a structure that dictates the

constraints. Once we find the constraints, we use them to limit the search space of the

solution. Our work illustrates how past approaches [66] underutilize the information

from the structure of the problem that, once exploited, can reduce the user’s time and

knowledge requirement to perform a task. We describe the advantages and limitations or

our approach below.

6.4.1 Advantages

The advantages of our approach are the following:

• Consistent Query Generation: The problem in many query systems is that the user

can formulate a query, but that query is not guaranteed to return a non-empty

result set. Our approach uses the set intersection and reachable constraints to

ensure that if we suggest a new attribute, we can fill every row in that column with

non-empty values. Since we only allow the user to select attributes/values from the

list of possible attributes/values, there is no way a user can make a mistake.

• True Query by Example: Our approach is a true query by example. By abstracting

away the data sources and their linking information, the user only needs to enter

values to create a complex query.
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6.4.2 Limitations

The limitations of our approach are the following:

• Primary Keys Requirement : As discussed in the multiple-column cases, we need pri-

mary keys between data sources to compute reachable attributes. For web sources,

we can use the wrapper input requirement as the primary key constraint. However,

if we want to integrate a data source that is not a wrapper, we will need an expert

to label the primary key of that particular source.

• Scaling : In terms of indexing all the attributes and values into A and V lookup

tables, we believe that it is feasible on the WWW scale; Google Suggest is one

such example. Our limitation in terms of scaling belongs to computing reachable

attributes. Given enough attributes and the right set of primary key constraints, we

can link data sources in a very long chain. Since our suggest set relies on evaluating

and verifying partial plans to eliminate the ones that return empty data, the size

and the number of partial plans can be exponentially high. Currently we limit the

length of the chain to be only two (the partial plan tree can only have a maximum

depth of three).
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Chapter 7

Related Work

This chapter surveys previous work related to Mashups. First, I discuss existing Mashup

building tools from both academia and industry. Then I discuss each research area based

on how I segment the Mashup building problems: data extraction, source modeling, data

cleaning, and data integration.

7.1 Mashup building tools

There exists an array of Mashups building tools. However, one predominant approach

adopted by many tools is the widget approach. As a result, I have dedicated a subsection

to it. I other approaches in separate subsection. Finally, I show how Mashup tools that

aim to support average users address each Mashup building issues.

7.1.1 Widget Approach

The Mashup tools in this category use a widget paradigm as their basis. This ap-

proach probably originates from a merger between visual programming lauguage [10]

and dataflow programming [55]. A visual programming language allows users to specify
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programming elements graphically instead of textually [1]. A survey of existing visual

language research can be found at [10]. Dataflow programming views programming as a

graph of interconnected operations [1]. In the widget paradigm, a user selects a widget,

drops a widget onto a canvas, customizes the widget, and specifies how to connect that

widget to other widgets, creating a connected graph.

The following systems use the widget paradigm: Yahoo’s Pipes, Microsoft’s Popfly,

Marmite[62], JackBe (http://www.jackbe.com), Bungee Labs (http://www.bungeelabs.com),

Proto Software (http://www.protosw.com), and IBM QED Wiki (http://www.ibm.com).

Yahoo’s Pipes, Microsoft’s Popfly, and CMU’s Marmite[62] are similar structurally in

terms of their approach. They rely on the widget paradigm where users select a widget,

drop a widget onto a canvas, customize the widget, and specify how to connect widgets.

The difference between each system is the number of widgets (e.g., 43 for Pipes and

around 300 for Popfly), the type of widgets supported, and the ease of use. For exam-

ple, Marmite and Popfly will suggest possible widgets that can be connected to existing

ones on the canvas, while Pipes will rely on users to select the right widgets. Compared

to these systems, Karma uses a unified paradigm that does not require users to locate

widgets or understand how each widget works.

Bungee Labs (www.bungeelabs.com), IBM’s QED wiki (www.ibm.com), and Proto

Software (www.protosw.com) are example Mashup tools for enterprise applications. These

tools also use widgets to support most Mashup building functionality. As a result, experts

are required to use them because configuring these widgets to handle industry strength

applications is difficult.
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7.1.2 Paradigm Comparison

While it would be interesting to report detailed comparison between each system that

uses the widget approach and Karma, it is impossible to obtain and test each software

since a) some are commerical applications that require purchasing and b) some are re-

search prototypes that cannot be obtained. However, we can compare Karma with these

systems based on their approach paradigm. Karma differs from the widget paradigm in

three different aspects: interface, interaction, and problem segmentation. The differences

between the Karma paradigm and the widget paradigm are listed below:

• Interface: In the widget paradigm, a user builds a Mashup by composing a connected

graph of widgets on a canvas. Except for Marmite, users of these systems have to

re-execute all the widgets while debugging a Mashup to see any intermediate result.

Also, as the Mashup becomes more complicated, the user has to navigate through a

complex graph to debug or add new widgets. In Karma, the user builds a Mashup

by trying to populate one table with data. As a result, the user sees the current

state of a Mashup from the table and can shape the final Mashup by filling the data

in the table.

• Interaction: In the widget paradigm, the user needs to customize a widget and

specifies how to connect widgets. This can be challenging, and it requires the user

to understand how each widget works. In Karma, the user specifies an example in

the form of data and has Karma indirectly infer operations from the sample data.

• Problem segmentation: In the widget paradigm, there is no clear standard for sep-

arating each Mashup building problem type. Each system groups widget selection
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window based on what the designer sees fit, which can be confusing and unintuitive

for users. For example, Yahoo’s Pipes has ten types of widgets: Sources, User in-

puts, Operators, Url, String, Date, Location, Number, My Pipes, and Deprecated.

In Karma, the user can trigger different modes (i.e., data extraction, source mod-

eling, data cleaning, and data integration) based on the Mashup building stage she

is in.

7.1.3 Other approaches

Besides the widget approach, there are other approaches to building Mashups. These

approaches are covered below:

Simile [30], the earliest system developed at MIT, focuses mainly on retrieving the

data from web pages using a DOM tree. Similar works as a Firefox plugin where users

can click on a particular text on a website and save it in the repository. If that data

element belongs to a list, the rest of elements are also highlighted and extrated. After

extracting data from web pages, users can also tag sources with keywords that can be

searched and published later.

Dapper improves over Simile by providing an end-to-end system to build a Mashup.

In Dapper, users are led step by step linearly through an interaction screen, where they

address data extraction, source modeling, and data integration problem. However, they

still have to do most of the work manually. Dapper also provides only one cleaning

operation that enables users to extract a segment of text (similar to Javas substring).

Compared to Simile and Dapper, Karma extends the DOM tree approach to support

more data structures and extraction from detail pages.
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Potluck [31] is a recent Mashup tool developed at MIT. Potluck assumes that web

sources already have RDF descriptions that enable easy extraction and provide infrastruc-

ture that addresses souce modeling, data cleaning, and data integration. One could use

Simile (e.g., for data extraction) in conjunction with Potluck to build Mashups. Potluck

does provide suggestions to users during data cleaning. Compared to Karma, however,

Potluck lacks many automated features that enable users to address Mashup building

problems quickly. For example, Potluck’s users need to manually map attributes between

sources and specify data integration without any system suggestion.

Intel’s MashMaker[21] took a different approach where its platform supports multi-

ple levels of users. In MashMaker, expert users would do all the work in each area. A

normal user would use the system by browsing a page (e.g., Craigslists apartment), and

MashMaker will suggest data from other sources that can be retrieved and combined

(e.g., movie theaters nearby) with data on the user’s current page. Note that Mash-

Maker supports only web pages that are already extracted through Dapper. Compared

to Karma, MashMaker limits choices for normal users to pages that exist in Dapper and

data integration plans that have already been specified by experts.

Cards [20] views a Mashup as a collection of cards; a different way to define a tuple

of data. Its users extract data from a website and store it in a card. Users can model

relationships between sources and indirectly specify a way to integrate them by drawing

a link between attributes, between cards, or between a card and a web site. A collection

of cards can also be combined to create Mashups. While the concept of cards and linking

cards together is new, Cards do not cover data cleaning. In Karma, data cleaning is

154



supported. Moreover, Karma can suggest sources to link to a newly extracted data

source automatically from previously built Mashups.

D.Mix[27] and OpenKapow (openkapow.com) allow users to cut and paste data from

web pages to be used later. However, both systems assume some level of expertise in

programming in HTML and Javascript. On the other hand, Karma does not require

users to understand any programming language.

Google MyMaps allows users to create and import map points from limited sources.

However, the process of adding a map point is often done manually. Aside from Google

MyMaps, Google also has its own Mashup Editor (editor.googleMashups.com). However,

it is aimed at programmers.

Agent Wizard[58] lets users create a Mashup by answering a series of questions. Its

users build Mashup incrementally in a bottom up manner. As users answer more ques-

tions, more operations are added to an overall plan that extracts, filters, and integrates

data. However, agent wizard has two disadvantages compared to Karma. First, as a

Mashup gets more complicated, Agent Wizard’s users need to answer many more ques-

tions. Second, they also need to understand how to specify filter and join conditions. In

Karma, those steps are done indirectly through data samples given by users.

7.1.4 Mashup Buildling Problem Coverage

Table 7.1 shows a detailed comparison of the Mashup tools. I have only selected tools

that are targeted to nonexpert users for comparison.
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Table 7.1: Approach comparison between different Mashup tools segmented by problem
areas.

System Data Source Data Data Mashup Type
Retrieval Modeling Cleaning Integration Supported

MIT’s Simile DOM Manual N/A N/A 1
MIT’s Pot Luck RDF Manual PBD Manual 1,3,4
Dapper DOM Manual Manual Join only 1,2,4
Yahoo’s Pipes Widgets Manual Widgets Union only 1,2,3
MS’s Popfly Widgets Manual Widgets Widgets 1,2,4
CMU’s Marmite Widgets Manual Widgets Widgets 1,2,4
Intel’s Mashmaker Dapper Manual Widgets Expert 1,2,3,4
Google MyMap Widgets Manual N/A Union only 1,2
Agent Wizard Q/A Q/A Q/A Q/A 1,3,4
Cards DOM Manual N/A Manual 1,2,4
Karma DOM Database PBD PBD 1,2,3,4

The terminology of how each tool handles each problem area is shown below:

• Database means that databases are leveraged to help generate suggestions to assist

users in a specific problem area.

• DOM means that the document object model approach is used to handle extrac-

tion. However, there is also a varying degree of how each system utilize the DOM.

For example, Simile might only uses the DOM as is. However, Karma might build

on DOM to enchance data extraction on some difficult cases.

• Experts means that an expert is required to solve that specific problem area.

• N/A means that the specific problem area is not addressed or supported or the

information about it cannot be found.

• Join only means that only database join is supported in the data integration step.
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• Manual means that the specific problem area is supported, but a user needs to do

it manually. For example, a manual approach in source modeling means that the

user has to specify the relationship between data sources.

• PBD means that the technique Programming by Demonstration is used to solve

that specific problem area.

• Q/A means that the user has to answer one or more questions to solve a specific

problem area. The answer might also involve specifying a join condition between

sources.

• RDF means that the data extraction step assumes that a web source has an RDF

representation which allows easy retrieval of data.

• Widgets means that a widget must be selected and customized to tackle that

specific problem area.

• Union only means that only database union is supported in the data integration

step.

Recall from Chapter 2 the four types of Mashups that Karma supports:

1. Type 1: One simple source: Extracting a list of data from a single data source

2. Type 2: Combining data points from two or more separate sources:

Database union of two sources

3. Type 3: One source with form: Extracting a list of data from a single data

source that has HTML form input.

157



4. Type 4: Combining two or more sources using a database join: The data

from the one source needs to be joined with data from another source.

As shown in Table 7.1, the only Mashup building tools that support all four types

of Mashups is Intel Mashmaker. However, Mashmaker requires an expert user to

customize at least Mashups of type 3 and type 4. Most systems support up to three

types of Mashups, where type 3 seems to be ignored because of the complexity of

capturing HTML forms.

7.2 Data Retrieval

Research in data extraction aims at converting web pages into a relational data table

that can be integrated into databases or used by agents. Research work in this area can

be divided into two categories. The first category is automatic extraction where an agent

tries to extract the data from a web source automatically. The second category requires

some form of user input. This category can be furthered divided into a) a machine

learning approach, and b) a DOM approach.

Earlier research work attempts to extract web sources that have structured data such

as lists or tables. For example, RoadRunner[16] and Adel[37] can extract those lists and

tables automatically. However, those systems cannot extract data from semi-structure

sources. Stalker[46] uses active learning where users label training examples for the

system to learn rules to extract data from semi-structure sources. Stalker’s approach is

semi-supervised and requires users to label sample data. When the structure of a web

source is complicated, the amount of labeling required increase propotionally.
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DOM is a tree-like structure that a web browser uses to interpret a HTML page.

This structure is readily available and accessible from a web browser. I have provided

a detailed discussion about the DOM in chapter 3. Simile[30], Dapper, PLOW[4], and

Cards[20] use a document object model (DOM) tree to help identify the list and table

structure of the data to extract.

Karma uses the DOM tree approach like[30] to help identify extracted data and lists.

However, Karma improved on the DOM to handle difficult extraction cases. As discussed

in Chapter 3, Karma handles a) extracting a list within a list, and b) extracting and

linking data across multiple detailed pages.

7.3 Source Modeling

The problem of schema matching aims to find the mapping of elements between two

sets of schemas[51]. The problem of source modeling aims to understand what a new

source does in terms of existing sources. These two problems are closely related, because

understanding what a new source does might require mapping attributes between the

new source and existing sources. In addition, both problems employ similar techniques,

such as bootstrapping overlapping data and string similarity.

The early research[50] defines the problem of source modeling as the category transla-

tion problem [11]. However, this work made a simplified assumption about the property of

data sources (i.e., no binding constraints). Recently, the work by [29, 18, 11] improves the

process of source modeling using various techniques to find semantic similarities between

sources.
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In the schema matching domain, [51, 26] provide good surveys of the work done in

the area. Initially, researchers centered their efforts on 1:1 matching (i.e., matching one

attribute to another attribute). Early works, such as TranScm[45] and Artemis[7], use a

rule-based approach to determine how to map attributes together. Later on, Semint[38]

and ILA[50] employed machine learning techniques to learn matching attributes from

training samples. LSD[19] provides the framework to support multiple learners to achieve

better matching accuracy. Currently, the n:m matching problem, where one or more

attribute can be mapped to multiple attributes, is addressed in [64, 18].

As stated earlier, the work in this area aims to generate the candidate matches auto-

matically. However, the accuracy of existing approaches (50-86%)[18] is still not efficient

enough to solve the problem automatically. My thesis does not aim to invent a new

technique to solve the problems of source modeling and schema matching. Karma uses

simple techniques, such as string similarities comparison, and rely on users to interac-

tively narrow the candidate match. Currently, Karma only supports 1:1 mapping, but it

can be extended to support complicated matchings under the same interaction paradigm.

7.4 Data Cleaning

A review of available commercial data cleaning tools is covered in [12]. Most commer-

cial tools focus on the process of Extraction-Transformation-Loading (ETL) through a

scripting language; only trained experts can use these tools.

Potter’s Wheel[52] takes an interactive approach to data cleaning by letting users

specify the clean data and then inducing transformation language adaptation techniques
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described in [2, 14, 33]. Karma also lets users specify the clean data for transformation

induction. Additionally, Karma suggests cleaning values based on the overlapping of new

data and existing data in the databases.

The record linkage problem is sometimes referred as data cleaning[40]. Specifically,

record linkage aims at determining if two records from different sources relate to the same

entity. A good survey of the work in this area is covered in [61]. My approach does not

aim to match two records. Instead, once the matching attribute is identified, only values

under those two attributes will be matched. However, record linkage techniques, such as

string similarities [9], are leveraged in Karma’s interactive process.

Data extraction from unstructured information [44] can also be considered data clean-

ing since the process of the extraction is the conversion from unstructured text into a

structured database. Often a reference set is used in the process of extraction and clean-

ing in this type of work [3, 43]. In Karma, every aligned source is considered as a potential

reference set for cleaning, while existing work only has a specific set of reference sets used

for cleaning.

In comparison, my approach leverages existing techniques that help users clean data

interactively through the source modeling process. The process of indirectly gaining

training samples to induce transformations is a huge improvement over Potter’s Wheel,

where users need to provide training samples manually.
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7.5 Data Integration

The data integration module in Karma exploits the structure of a table to enable con-

straint formulations that create database queries. The approach of exploiting structure

to solve a problem has been used in many research areas, such as operations research [48]

and constraint satisfaction problem [41].

The goal of the data integration research is to allow casual users to access, locate,

and integrate data using a uniform query interface [26]. The general survey of the data

integration field in the past twenty years can be found at [25, 26].

When the data integration field was still in early stages, Ullman proposed the Uni-

versal Relation concept[59] that aims to reduce the complexity of writing queries by

eliminating source specification from the query. By abstracting the whole database into

one single source, users can write the query without having to specify data sources and

join conditions. However, Karma abstracts both queries and sources from users, so they

never have to write any query.

Query by example (QBE)[66] is a two dimensional query interface. Users formulate

the query by working in a table similar to Karma. Filtering and join condition can be

specified through a more simplified query language. However, the users still need to select

sources manually, and the query created is not guaranteed to return results. On the other

hand, Karma induces the sources to use automatically and guides users to fill in only valid

values. As a result, users do not need to know about data sources and queries generated

by Karma will always return results.
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RABBIT[60] and HELGON[23] use the technique of retrieval by formulation. This

technique allows users to form partial descriptions of a goal. Based on the partial de-

scription, these systems retrieve data that closely matches the description. The users can

criticize the data and their criticism will be used to help reformulate new queries to re-

trieve new results. However, the users need to know which source schema concepts to use

in order to form the partial description. In contrast, Karma’s users can guess concepts

and values to form the partial description.

The work in graphical visual query language [6, 28, 49] uses a graph to represent

a query. Users can construct graphs of a query by specifying nodes (e.g., sources and

attributes) and links (e.g., filtering conditions and aggregation functions). There is a

parallel mapping between the graphs from graphical visual query language to the tree

generated by Karma. However, Karma generates this tree automatically as users enter

values, so they do not need to know the details of how sources and constraints are specified.

Programming by Demonstration[17, 35, 39] learns the procedure to perform a repeti-

tive task by observing users perform a particular task. This approach can be effective in

various domains[54, 36, 24] where users understand and know how to do such tasks. Once

the procedure is learned, it can be executed to finish the task whenever it recognizes that

the particular task is needed. In Karma, users may not know how to formulate queries

and only interact with the system through data. In addition, the task of forming queries

in Karma is unique, because every selection requires human judgment.

The mediator based system, such as Prometheus [57], uses planning techniques to

translate a query, formulated according to the domain model, into multiple queries that

integrate multiple sources. This approach is very powerful as the mediator system can
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detect overlapping conditions between sources and derive the optimal queries with the

maximum data coverage. However, experts are required to use these systems since the

mediator query must be formulated according to the predefined domain model.

Clio [65] is a system that supports user-based schema mapping and query building.

The users can get suggestions about schema choices and join conditions. However, the

system seems to focus on semi-expert users. While the users do not have to manually

map schemas or write queries, they need to understand the source schema and database

operations suggested by the system. Karma can create a more complex query because

each tree that corresponds to each row of data in Karma can use different sources.

BANK [8] is a system that lets users create a query by typing in keywords that will

be matched against current source relations and their attributes. BANK then creates

multiple ranked queries and results. Q [56] is a similar system that improves over BANK

by letting users provide feedback to help adjust the weight of each query. In Karma,

the interface focuses on helping users generate the final data in the form of table. The

user is shielded from complicated details of generated queries and data sources. On the

other hand, Q focuses on helping users generate and refine queries though an interactive

webform. It also allows users to fine tune a query by exposing which data sources are

used.
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Chapter 8

Evaluation

This chapter presents a formal user evaluation to validate my thesis statement and claims

of research contributions. The overall evaluation plan follows the evaluation methodology

outlined in [32]. First, I will state the claims and hypotheses that I want to evaluate.

Second, I describe two types of users (i.e., programmers and non-programmers) in my

evaluation and provide cretiria and justification for their selection. Third, based on those

claims above, I explain three tasks designed to evaluate those claims. Fourth, I explain

how the evaluation precedure is carried out in three steps: familiarization, practice, and

test. Fifth, I outline the data collection and normalization process. Finally, I shows the

evaluation result and discuses how it measures up to the claims made earlier.

8.1 Claims

1. Claim 1: User with no programming experiences can build all four Mashup types

specified in section 2.1.3.
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2. Claim 2: Karma takes less time to complete each subtask (e.g., data extraction,

source modeling, data cleaning, and data integration) and scales better as the task

gets more difficult.

Rationale: Karma’s approach allow users to specify operations by example, while

the widget approach requires users to spend time customizing and verifying the

result.

3. Claim 3: Overall, the user takes less time to build the same Mashup in Karma

compared to Dapper/Pipes.

Rationale: There are two factors that make Karma faster: a) Karma’s approach of

letting users specify results by example; and b.) Karma’s idea of using information

gained from one subproblem to help solve another subproblem.

8.2 Users

While the approach in this thesis is designed for users with no programming experience,

the evaluation needs baseline tools (i.e., Karma and Dapper) for comparison. Given the

time required to teach users how to use each of the systems, it was not possible to find

nonprogrammer subjects to commit to the evaluation. As a trade off, there will be two

types of users in my evaluations: users with programming experience and users with

no programming experience. The user with programming experience will do each task

outlined in section 8.3 twice: once using Dapper/Pipes and once using Karma. The user

with no programming experience will do each task outlined in section 8.3 once using

Karma. The evaluation result from nonprogrammers will be used to satisfy claim 1,
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while the result from the programmer will be used to satisfy claim 2 and claim 3. The

background for each user type is discussed below.

8.2.1 Users with Programming Experience

These users are Master and PhD students in a graduate-level class focusing on the problem

in information integration on the Web. The total number of students who participated

in the evaluation is 20. They are prime candidates as subjects for the evaluation. Since

they were given one assignment on Dapper and two assignments on Pipes in the course,

they spent a significant amount of times learning and practicing with Dapper/Pipes.

8.2.2 Users with No Programming Experience

We have selected three users with no programming experience. One of the users is a

master degree student in accounting and the others are administrative assistants. All of

them has no prior programming experience, but they are familiar with Web technology

and Excel.

8.3 Tasks

There will be three tasks in the evaluation. These tasks are designed to capture the

structure of the four Mashup types discussed in section 2.1.3. The first task involves

building a Mashup from one simple source. The second task is building a Mashup that

combines multiple query results using database union from webpages with HTML form.

Finally, the third task is building a Mashup that combines data from multiple sources

using database join.
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8.3.1 Baseline selection

For each task, a programmer subject will build the same Mashup twice: once using Karma

and once using the combination of Dapper and Pipes which we refer to as Dapper/Pipes

and a nonprogrammer subject will build a Mashup for each task once. The result from

Dapper/Pipes will be used as a comparison in terms of performance between the approach

in my thesis and the widget approach.

As discussed in Chapter 7, Yahoo’s Pipes is a state-of-the-art Mashup building system

that employs the widget approach. Furthermore, it is readily available on the Web. As a

result, I chose it as a baseline system for comparison. However, since Pipes does not have

enough capability to do data extraction, I chose Dapper to fill that role; a subject has to

extract data from a web page using Dapper, then process it using Pipes. This combination

approach to building Mashups is often used by programmers who build Mashups.

8.3.2 Task 1: The UPS Store Locator

Figure 8.1 shows a snapshot of a website that lists UPS stores. In this task, a user needs

to extract the following store information: store names, addresses, and phone numbers.

This task maps to the first type of Mashup that only involves extracting data from one

data source. In this Mashup type, the process usually involves data extraction, source

modeling, and data cleaning. The data extraction part in this task is not trivial as there

are optional tags in the DOM tree. For example, most entries have “Pack & Ship Promise

Location* ”, while one entry has no such data element.

Figure 8.2 shows the output that the user needs to generate in Karma, while Figure

8.3 shows the output that the user needs to generate in Pipes. Note that the output from
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Figure 8.1: The first task involves extracting data from a listing of UPS stores.

Figure 8.2: The output that the user needs to generate in Karma for task 1.

Figure 8.3: The output in RSS format that the user needs to generate in Pipes for task
1. While the RSS output for Dapper/Pipes has a built-in redundancy (i.e., multiple
occurrence of titles), the user only needs to extract the data once.
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Pipes is only in RSS format. As a result, the output shown in Figure 8.3 is the closest

direct comparison to the output from Karma in Figure 8.2.

The data extracted can be put on a map and Karma has a capability to do so.

However, since data display is not the focus of this thesis, the user is only asked to

extract the data and put it in a cleaned format (i.e., street and city-state-zip). Note that

the address part in the result specification contains no country (e.g., USA), so the user

would need to clean the address part to get rid of that data token.

8.3.3 Task 2: Housing Rental Using Craigslist

Figure 8.4 shows a housing search section of a website called Craigslist. In this task, the

user has to extract the post and its rental type from two areas: venice and westwood.

To extract this information, the user needs to execute a form search in each area, extract

the required data separately, and finally union it together. This task is a combination of

the second and the third type of Mashup; database union and HTML form input.

Figure 8.5 shows the output that the user needs to generate in Karma, while Figure

8.6 shows the output that the user needs to generate in Pipes. Note that the post listing

in the result specification contains no ending dash (-) symbol, so the user would need to

clean each post to get rid of that character.

8.3.4 Task 3: Celebrity Address

Figure 8.7 shows a snapshot of a website with a list of actors. In this task, the user needs

to extract the actors’ names and link the names with another data source that contains

their address, email, and URL information. This task maps to the forth type of Mashup
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Figure 8.4: The second task involves extracting data from a website that has HTML form
input.

Figure 8.5: The output that the user needs to generate in Karma for task 2. The Karma
table contains the post and rental type, along with HTML form input information: query
(westwood) and category abbreviation (hhh).
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Figure 8.6: The output in RSS format that the user needs to generate in Pipes for task 2.
The rental type is stored under the description tag.

that combines two or more sources using a database join. In this case, the join key is the

actor’s name.

To simplify the running time of the source invocation with the second source that

contains HTML form input, I have modified the web page to shorten the actor list, while

preserving the structural integrity as shown in Figure 8.8.

Figure 8.9 shows another web page that the subject could use to integrate with the

actor page. This website (http://www.infospace.com/info/celeb/celebrity.htm) takes a

celebrity name as an input and outputs his/her address, email, and URL information.

Figure 8.7: The original web page containing a list of actors.

This task demonstrates the difficulty of finding the right data sources to combine. In

this task, the user will be given information only about the first website (i.e., a list of

actors). For the Dapper/Pipes task, the user would have to search the previously built
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Figure 8.8: The modified web page containing a shortened list of actors.

Figure 8.9: The second data source used for joining with the first data source.

Figure 8.10: The output that the user needs to generate in Karma for task 3.
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Figure 8.11: The output that the user needs to generate in Dapper/Pipes for task 3.
Since Dapper offers a join operator, while Pipes only offers a union operator, this task is
done solely using Dapper and the output is displayed using Dapper.

Infospace celebrity Dapp to integrate with the actor source. For the Karma task, the user

would have to use the data integration feature to locate attributes that can be expanded

based on the current data extracted from a new source.

Figure 8.10 shows the output that the user needs to generate in Karma, while Figure

8.11 shows the output that the user needs to generate in Dapper. Specifically, the result

in Karma is generated by combining the data from the first data source (obtained from

extraction) with the infospace celebrity data source (stored in Karma’s database as one

of the tables). The result in Dapper is generated by linking the data from the first Dapp

(obtained by wrapping the first web source) with the second Dapp (founded by searching

through a list of previously created Dapps by other users).

8.3.5 Difficulty Breakdown for Each Mashup Building Problem

Table 8.1 show how difficult it is to solve each Mashup building subtask in each task.

Differentiating how hard each subtask is will allow me to do fine grain comparisons for

each subtask as well as overall comparisons.
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Table 8.1: Difficulty breakdown for each Mashup building subtask in each task. Note
that ask 1 has no data integration subtask, while task 3 has no data cleaning subtask

Data Extraction Source Modeling Data Cleaning Data Integration
Task 1 Moderate Simple Hard N/A
Task 2 Hard Simple Simple Union (Simple)
Task 3 Simple Simple N/A Join (Hard)

In terms of data extraction subtasks, the first task is moderately difficult because the

DOM structure is irregular. The second task is difficult because it involves extracting

data from a site with an HTML form.

In terms of source modeling subtasks, they are all simple, because a) Dapper/Pipes

allows users to type in any attribute name they want; and b) Karma will suggest attributes

automatically for the user if there is an overlapping set of values in the database (as

discussed in Chapter 4).

In terms of data cleaning subtasks, the first task is difficult because the irregular

DOM results in poor extracted data. The data cleaning in the second task is simple, as

it involves removing a dash symbol at the end of each post. Task 3 does not have any

data cleaning subtask.

In terms of data integration subtasks, task 1 is not applicable as no data integration

is required. Task 2 requires a database union, while task 3 requires a database join. As

a result, task 3 is more difficult than task 2, because specifying a join condition is more

complicated.
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8.4 Experimental Procedure

The experimental procedure is divided into three phrases: familiarization, practice, and

test. The detail for each phrase is discussed below.

8.4.1 Familiarization

For subjects with programming experience, the tutorial for Dapper, Pipes, and Karma

(videos and Word documents) is sent out two days before the experiment date. The

tutorial contains all the concepts and examples of Mashups structurally similar to the

three evaluation tasks. On the day of the experiment, each subject is given a quick 30

minute tutorial that covers all three systems to refresh their memory. For subjects with

no programming experience, I gave a 15 minute tutorial on Karma on the day of the

experiment.

8.4.2 Practice

After finishing the quick tutorial, both type of subjects are given two practice tasks in

Karma. Note that these subjects have seen a tutorial on Karma but have never used

Karma. The two practice tasks cover the basics of how to extract data, assign attributes,

clean data, and integrate data across multiple sources. These two practice tasks take

about 10 minutes to complete and give them a chance to use Karma.

8.4.3 Test

The detail of the test phrase is listed below:

• The test phrase lasts about one hour.
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• Each subject is given three tasks discussed in section 8.3. The order of tasks given

is task 3, task 2, and task 1.

• For subjects with programming experience, the subject starts implementing each

task in Karma first. Then the subject does the same task using Dapper/Pipes.

Note that this setup gives an advantage to Dapper/Pipes, because the subject can

familiarize herself with web sources and requirements while finishing the task using

Karma.

• For subjects with no programming experience, the subject starts implementing each

task only in Karma.

• Hints and advice are given when asked.

• The computer screen is recorded using the video capture software for later analysis.

• If a subject gets stuck in a particular subtask (e.g., cleaning and integration) more

than 5 minutes, the cutoff time is enforced and task will be marked as fail.

• If the subject makes a mistake that crashes the software, the software will be

restarted and the subject will have to redo all previous steps again. However,

the time used for the analysis will be the time taken prior to that mistake plus the

time taken to finish the task after the subject redoes all the previous steps up to

the point of the mistake.

177



8.5 Collecting and Processing Data

As mentioned earlier, the computer screen is recorded while subjects are completing

three evaluation tasks. These video records allow us to see how long each subject took

to complete each task and what kind of choices and options each subject made.

8.5.1 Normalizing Data

All the videos recorded are segmented into multiple time slots based on the four subtasks

(i.e., data extraction, source modeling, data cleaning, and data integration) and other

miscellaneous operations. Table 8.2 shows an example how the raw data is first processed.

Table 8.2: An example showing how the data is segmented for subject No.1 doing the
second task using Dapper/Pipes.

Subtask Time Range (in minutes) Time Taken (in minutes)
Data Extraction 0:00 - 2:10 2:10

Page Loading 2:10 - 2:22 0:12
Data Extraction 2:22 - 2:50 0:28
Source Modeling 2:50 - 3:12 0:22

Page Loading 3:12 - 3:30 0:18
Data Extraction 3:30 - 5:30 2:00
Data Integration 5:30 - 6:45 1:15

Data Cleaning 6:45 - 9:30 2:45

To ensure fairness in the evaluation, the following segments are not counted toward

the time taken: page loading time, and interfacing time between Dapper and Pipes (when

applicable). During the experiment, if the time allocated for the whole evaluation (one

hour) is up and a subject does not have time to start working on a particular task, the

data is marked as n/a. On the other hand, if a subject cannot complete a task because

one or more of its subtasks are too difficult, then the time spent on that particular subtask

is marked as Fail.
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To enable a comparison when a subject fails on a task, there needs to be a way to

quantify those failures. In the final result, we substitute the Fail slot with the cut off

time of 5 minutes.

8.5.2 Experimental Results

After normalizing the data, the final results in terms of minutes spent, segmented by

subtasks, in each task are shown in table 8.3, 8.4, and 8.5. Note that since there are

two subjects (i.e., No.3 and No.17) who did not have time to finish task 1, the result

from these two subjects will be excluded from results that involve task 1 to ensure a fair

comparison.

8.6 Discussion

In this section, we discuss the results from the experiment. The results will be segmented

and discussed based on each of the claims made earlier. For claim 2 and claim 3, we

compute statistical significance tests to support our results. In our evaluation, we imposed

a time limit of 5 minutes for each subtask. Note that [53] argued that time bound

experiment can bias the result of the evalution and Etzioni [22] extensively discussed

some possible solutions. In our case, the time bound is applied to both Dapper/Pipe and

Karma result. However, every subject can finish his/her task under the time limit using

Karma. As a result, the scenario introduced in [53] that shows a possible bias in time

bound experiments does not apply to our experimental results.
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Table 8.3: Normalized data for task. E stands for data extraction, M stands for source
modeling, and C stands for data cleaning. The asterisk indicates time substitution when
failures happen. The data is reported in minutes. The first 20 subjects have programming
background, while the last 3 subjects have no programming background.

Task1 Dapper/Pipes Karma
Subject E M C Total E M C Total
No.1 *5:00 0:20 *5:00 10:20 2:19 1:08 1:00 4:27
No.2 1:43 0:30 *5:00 7:13 1:00 0:40 0:29 2:09
No.3 n/a n/a n/a n/a n/a n/a n/a n/a
No.4 0:52 0:48 *5:00 6:40 1:12 1:00 0:50 3:02
No.5 5:00 0:35 *5:00 10:35 1:15 1:18 1:20 3:53
No.6 2:30 0:15 *5:00 7:45 1:00 0:54 0:28 2:22
No.7 1:20 0:22 *5:00 6:42 0:51 0:51 0:46 2:28
No.8 1:40 0:14 *5:00 6:54 1:04 0:41 0:33 2:19
No.9 1:26 0:16 *5:00 6:42 1:14 1:00 1:10 3:24
No.10 1:39 0:10 *5:00 6:49 0:53 0:42 0:50 2:26
No.11 2:00 0:19 *5:00 7:19 1:04 1:00 0:53 2:57
No.12 2:00 0:49 2:00 4:49 1:07 1:00 0:40 2:47
No.13 2:00 0:05 *5:00 7:05 0:58 0:50 0:56 1:44
No.14 2:46 0:15 *5:00 8:01 1:12 0:45 0:48 2:45
No.15 2:27 0:14 3:11 5:52 1:10 0:49 1:20 3:19
No.16 1:16 0:12 *5:00 6:28 0:58 0:42 0:25 2:05
No.17 n/a n/a n/a n/a 2:00 1:00 0:50 3:50
No.18 2:30 0:14 *5:00 7:44 1:06 1:10 1:46 4:02
No.19 1:38 0:47 1:20 3:45 1:20 0:49 0:35 2:44
No.20 1:30 0:16 *5:00 6:46 1:04 0:44 0:35 2:23
No.21 n/a n/a n/a n/a 1:11 1:17 0:59 3:27
No.22 n/a n/a n/a n/a 2:58 1:46 1:24 6:08
No.23 n/a n/a n/a n/a 1:19 1:40 1:14 4:13
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Table 8.4: Normalized data for task 2. E stands for data extraction, M stands for source
modeling, C stands for data cleaning, and I stands for data integration. The asterisk
indicates time substitution when failures happen. The data is reported in minutes. The
first 20 subjects have programming background, while the last 3 subjects have no pro-
gramming background.

Task2 Dapper/Pipes Karma
Subject E M C I Total E M C I Total
No.1 4:38 0:22 2:45 1:15 9:00 1:26 0:43 0:43 0:00 2:52
No.2 1:35 0:12 3:30 0:12 5:29 0:50 0:57 0:57 0:00 2:44
No.3 *5:00 0:25 *5:00 *5:00 15:25 2:52 1:00 3:00 0:00 5:52
No.4 4:49 0:17 3:29 0:38 9:14 1:26 0:48 1:03 0:00 3:18
No.5 *5:00 0:29 1:44 1:16 8:29 1:43 0:45 1:20 0:00 3:48
No.6 *5:00 0:20 *5:00 *5:00 15:20 2:07 0:30 0:50 0:00 3:27
No.7 2:17 0:15 4:46 0:18 7:36 1:13 0:25 0:52 0:00 2:31
No.8 3:23 0:21 *5:00 *5:00 13:44 1:10 0:21 0:24 0:00 1:55
No.9 4:11 0:21 *5:00 *5:00 14:32 1:22 0:47 2:11 0:00 4:20
No.10 2:16 0:07 3:14 0:20 5:50 1:04 0:20 1:06 0:00 2:30
No.11 3:04 0:17 *5:00 *5:00 13:21 1:06 0:34 0:53 0:00 2:33
No.12 2:00 0:27 *5:00 0:20 7:47 1:23 0:30 0:37 0:00 2:30
No.13 *5:00 0:07 1:43 0:10 7:00 1:42 0:32 0:41 0:00 2:55
No.14 3:03 0:23 4:42 0:10 8:21 1:40 0:31 0:56 0:00 3:07
No.15 2:06 0:12 3:13 0:22 5:53 1:30 0:24 2:05 0:00 3:59
No.16 3:58 0:11 3:29 0:27 8:05 0:51 0:17 1:00 0:00 2:08
No.17 4:15 0:28 3:39 0:30 8:52 1:04 0:28 1:18 0:00 2:50
No.18 *5:00 0:23 *5:00 *5:00 15:23 1:17 0:30 1:10 0:00 2:57
No.19 4:01 0:14 2:42 0:21 7:16 1:39 0:21 0:50 0:00 2:50
No.20 1:36 0:43 0:36 0:22 3:17 1:07 0:28 0:40 0:00 2:15
No.21 n/a n/a n/a n/a n/a 1:03 0:21 0:55 0:00 2:19
No.22 n/a n/a n/a n/a n/a 3:56 1:52 2:50 0:00 8:38
No.23 n/a n/a n/a n/a n/a 2:15 0:31 1:27 0:00 4:13
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Table 8.5: Normalized data for task 3. E stands for data extraction, M stands for source
modeling, and I stands for data integration. The asterisk indicates time substitution when
failures happen. The data is reported in minutes. The first 20 subjects have programming
background, while the last 3 subjects have no programming background.

Task3 Dapper/Pipes Karma
Subject E M I Total E M I Total
No.1 1:30 0:26 *5:00 6:56 0:14 0:00 2:16 2:30
No.2 0:30 0:10 *5:00 5:40 0:25 0:00 0:26 0:54
No.3 1:00 0:15 *5:00 6:15 0:15 0:00 0:44 0:59
No.4 0:40 0:16 *5:00 5:56 0:20 0:00 1:06 1:26
No.5 0:40 0:14 *5:00 5:54 0:20 0:00 0:37 0:57
No.6 0:30 0:10 *5:00 5:40 0:20 0:00 0:31 0:51
No.7 0:27 0:10 *5:00 5:37 0:14 0:00 0:50 1:04
No.8 0:29 0:20 *5:00 5:49 0:30 0:00 0:51 1:21
No.9 0:40 0:23 *5:00 6:03 0:13 0:00 0:44 0:57
No.10 0:30 0:10 *5:00 5:40 0:20 0:00 0:35 0:55
No.11 0:51 0:20 *5:00 6:11 0:16 0:00 1:05 1:21
No.12 1:05 0:18 *5:00 6:23 0:30 0:00 0:46 1:16
No.13 0:31 0:14 *5:00 5:45 0:16 0:00 0:57 1:13
No.14 0:36 0:14 *5:00 5:50 0:14 0:00 2:00 2:14
No.15 0:26 0:21 *5:00 5:47 0:30 0:00 0:45 1:15
No.16 0:27 0:13 *5:00 5:40 0:15 0:00 0:56 1:11
No.17 0:33 0:38 1:56 3:07 0:30 0:00 0:46 1:16
No.18 1:03 0:07 *5:00 6:10 0:20 0:00 1:10 1:30
No.19 0:33 0:17 *5:00 5:50 0:25 0:00 1:20 1:45
No.20 0:18 0:13 *5:00 5:31 0:12 0:00 0:44 0:56
No.21 n/a n/a n/a n/a 0:15 0:00 0:39 0:54
No.22 n/a n/a n/a n/a 0:21 0:00 2:50 3:11
No.23 n/a n/a n/a n/a 0:12 0:00 0:51 1:03
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8.6.1 Nonprogrammers vs Programmer

Note that the evaluation results from nonprogrammer are used to satisfy claim 1, while

the result from programmers is used to satisfy claim 2 and claim 3. We believe that if

programmer subjects, who are familiar with workflows and widget paradigms in general,

spend more time to implement a task using Dapper/Pipes compared to Karma, then

nonprogrammer subjects would also spend more time to implement the same task using

Dapper/Pipes (if they were to learn how to use these systems) compared to Karma.

8.6.2 Claim 1: User with no programming experiences can build all

four Mashup types

Figure 8.12 shows how much time is spent in each of the tasks for each nonprogrammer

subject. Overall, each subject was able to complete all three tasks (designed to be rep-

resentative of four Mashup types) without failing. On average, it takes nonprogrammers

3:47 minutes to build a Mashup.

Figure 8.12: The result from nonprogrammer evaluation for Karma segmented by tasks.
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Table 8.3, 8.4, and 8.5 show the detailed results of how each nonprogrammer (i.e.,

subject No. 21-23) performs on each task using Karma and confirm our claim that user

with no programming experiences can build all four Mashup types.

8.6.3 Claim 2: Karma takes less time to complete each subtask and

scales better as the task gets more difficult.

In this subsection, we will show the comparison for each subtask based on its difficulty.

Specifically, the result from data extraction (Figure 8.13, 8.14, 8.15), data cleaning (Fig-

ure 8.19, 8.20), and data integration (Figure 8.21, 8.22) all show that when a subtask

gets harder, subjects take more time to complete that subtask using Dapper/Pipes com-

pared to Karma. Note that while the results show that Karma performs worse in source

modeling (Figure 8.16 and Figure 8.17), the time spent during the source modeling helps

subjects finish the Mashup task faster during the integration subtask (Figure 8.22).

8.6.3.1 Data Extraction

Figures 8.13, 8.14, and 8.15 show the performance measurement between Karma and

Dapper/Pipes for the data extraction subtask. In each graph, the x-axis is the time

spent to complete the data extraction subtask, while the y-axis is the number of subjects

that fall into each time segment.

In task 3, the extraction task is very simple as it involves extracting only one field

of data. The result shown in Figure 8.13 indicates that most subjects can finish the

extraction task using Karma in less than 30 seconds, while most of them finish the

extraction task using Dapper in around 30 seconds to one minute.
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Figure 8.13: The performance comparison (programmers) between Karma and Dap-
per/Pipes for the data extraction subtask (simple) in Task 3.

Figure 8.14: The performance comparison (programmers) between Karma and Dap-
per/Pipes for the data extraction subtask (moderate difficulty) in Task 1.
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In task 1, the extraction task is of medium difficulty because of the irregular DOM

structure of the web source. The result shown in Figure 8.14 shows that Karma performs

better as more subjects finish the subtask faster using Karma.

Figure 8.15: The performance comparison (programmers) between Karma and Dap-
per/Pipes for the data extraction subtask (hard) in Task 2.

In task 2, the extraction task is hard because it involves extracting data from a data

source with HTML form. The result shown in Figure 8.15 shows that Karma performs

better than Dapper/Pipes as all subjects finish the subtask using Karma in less than 3

minutes, while 9 subjects take 3 minutes and longer and 14 subject fail to finish the same

subtask using Dapper/Pipes.

Table 8.6 shows the T-test for the hypothesis that Karma is faster than Dapper/Pipes

for data extraction in each of the tasks and the overall subtask.

We also want to show that as the extraction task gets progressively harder, Karma

performs better in terms of time spent to finish the subtask. For each programmer subject,

we compute the following values:
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Table 8.6: The statistical significance test result for data extraction subtask
Task No T-test
Task 3 (Simple) t=4.69, degree of freedom=38, and p < 0.01
Task 1 (Moderate) t=3.58, degree of freedom=34, and p < 0.01
Task 2 (Hard) t=7.05, degree of freedom=38, and p < 0.01
Overall data extraction t=5.35, degree of freedom=114, and p < 0.01

1. DiffD: Σ{time spent using Dapper/Pipes in task 2 (extraction, hard) - time spent

using Dapper/Pipes in task 3 (extraction, easy)}

2. DiffK: Σ{time spent using Karma in task 2 (extraction, hard) - time spent using

Karma in task 3 (extraction, easy)}

Table 8.7: The comparision between DiffD and DiffK for each programmer subject for
data extraction subtasks. The unit is in seconds.

Subject No. DiffD DiffK
No.1 188 72
No.2 65 25
No.4 249 66
No.5 260 83
No.6 271 107
No.7 110 59
No.8 174 40
No.9 211 69
No.10 106 44
No.11 133 50
No.12 55 53
No.13 269 86
No.14 147 86
No.15 100 60
No.16 211 36
No.18 237 57
No.19 208 74
No.20 78 55
Average 170 62

Table 8.7 show the time comparison of DiffD and DiffK. For example, the subjects

spent, on average, 170 seconds more to finish the difficult extraction subtask in task 2
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compared to the easy extraction subtask in task 3, when using Dapper/Pipes. On the

other hand, the same group spent 62 seconds, on average, more to finish the difficult

extraction subtask in task 2 compared to the easy extraction subtask in task 3, when

using Karma. What this table shows is that as the extraction subtask gets more difficult,

the increment in time spent using Dapper/Pipes is more than the increment in time

spent using Karma. In addition, the result is statistically significant (t=5.87, degree of

freedom=34, and p < 0.01)

8.6.3.2 Source Modeling

Figures 8.16, 8.17, and 8.18 show the performance measurement between Karma and

Dapper/Pipes for the source modeling subtask. In each graph, the x-axis is the time

spent to complete the data extraction subtask, while the y-axis is the number of subjects

that fall into each time segment.

Figure 8.16: The performance comparison (programmers) between Karma and Dap-
per/Pipes for the source modeling subtask in Task 1.
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Figure 8.17: The performance comparison (programmers) between Karma and Dap-
per/Pipes for the source modeling subtask in Task 2.

Figure 8.18: The performance comparison (programmers) between Karma and Dap-
per/Pipes for the source modeling subtask in Task 3.
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The results from Figure 8.16 and 8.17 suggest that Dapper/Pipes is faster than Karma

in task 1 and task 2. Karma does perform better in task 3 where attributes are set

automatically because of value overlapping in the database. However, Karma performs

worse than Dapper/Pipes overall, because of two factors:

• The table implementation of Java in Karma does not allow a user to set the attribute

directly by clicking at the attribute cell. Users need to go to the attribute tab to

select an attribute name for each column.

• When using Karma, subjects also look to see what kind of attributes are suggested

by Karma, while they can just type in any attribute value for Dapper.

While Karma performs worse than Dapper/Pipes in this subtask, notice that the

time spent doing source modeling compared to the overall Mashup building task is small.

Furthermore, by assigning the right attribute using Karma, it will be appararent that

users will save more time during the data integration subtask that involves a database

join (task 3).

8.6.3.3 Data Cleaning

Figures 8.19 and 8.20 show the performance comparison between Karma and Dapper/Pipes

for the data cleaning subtask. In each graph, the x-axis is the time spent to complete the

data cleaning subtask, while the y-axis is the number of subjects that fall into each time

segment.

Table 8.8 shows the T-test for the hypothesis that Karma is faster than Dapper/Pipes

for data cleaning in each of the task and the overall subtask. We also want to show that
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Figure 8.19: The performance comparison (programmers) between Karma and Dap-
per/Pipes for the data cleaning subtask (simple) in Task 2.

Figure 8.20: The performance comparison (programmers) between Karma and Dap-
per/Pipes for the data cleaning subtask (hard) in Task 1.

191



as the data cleaning subtask gets progressively harder, Karma performs better in terms

of time spent to finish the subtask. Table 8.9 shows the difference between DiffD and

DiffK for the data cleaning subtask. The data in table 8.9 differs from that of table 8.7

because it contains negative numbers and zeros. For example, DiffK for subject No.2 is

-28, which means that as the task gets harder, the subject actually spent less time solving

it using Karma.

Table 8.8: The statistical significance test result for data cleaning subtask
Task No T-test
Task 2 (Simple) t=7.68, degree of freedom=38, and p < 0.01
Task 1 (Hard) t=12.76, degree of freedom=34, and p < 0.01
Overall data cleaning t=13.54, degree of freedom=74, and p < 0.01

Table 8.9: The comparision between DiffD and DiffK for each programmer subject for
data cleaning subtasks. The unit is in seconds.

Subject No. DiffD DiffK
No.1 135 17
No.2 90 -28
No.4 91 -13
No.5 196 0
No.6 0 -22
No.7 14 -6
No.8 0 9
No.9 0 -61
No.10 106 -16
No.11 0 0
No.12 -180 3
No.13 197 15
No.14 18 -8
No.15 -2 -45
No.16 91 -35
No.18 0 36
No.19 -82 -15
No.20 264 -5
Average 72 -10
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The value zero in DiffD is the result from a subject failing to complete both cleaning

subtasks with the time bound. Since we use the time bound of five minutes, DiffD is 0.

Note that this is a case of doubly censored data [22]. In the case of doubly censored data,

where it is expensive to obtain more sample points, the standard statistical practice is

to throw away such data and consider the data that has a) singly censored pairs or b)

uncensored pairs [63]. As a result, the results from subject No.6,8,9,11,18 are discarded

and they are not factored in the mean. We found that the increment in time spent using

Dapper/Pipes is more than the increment in time spent using Karma for data cleaning

subtasks. In addition, the result is statistically significant (t=1.96, degree of freedom=24,

and p < 0.05)

The performance comparison difference between Karma and Dapper/Pipes is more

obvious in the data cleaning subtask compared to the earlier two subtasks. Furthermore,

only about 40 percents of subjects can complete the data cleaning subtask in task 2 using

Pipes, while all subjects can complete the same subtask using Karma.

By allowing a subject to enter the cleaned result and having Karma try to infer

the cleaning rule, he/she does not have to spend time customizing a cleaning widget.

Customizing a cleaning operation in Pipes can be difficult as it requires its users to

understand regular expressions; even students who know how to program had difficulty

trying to use it.

Karma’s cleaning by example does have a limitation. While it is easier to use, it is

less expressive than regular expressions; if Karma cannot match the user’s example with

its predefined rules, then the user would have to manually clean each result. However,

for casual Mashup building, providing a predefined set of rules that are most used is a
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logical trade off compared to spending a long time writing a regular expression to clean

the data.

8.6.3.4 Data Integration

Figures 8.21 and 8.22 show the performance comparison between Karma and Dapper/Pipes

for the data integration subtask. In each graph, the x-axis is the time spent to complete

the data extraction subtask, while the y-axis is the number of subjects that fall into each

time segment.

In the database union case shown in Figure 8.21, Karma does not require any time to

customize the database union because the spreadsheet structure allows a Karma user to

indirectly specify the union by dragging the data from a new similar source into a new

row. While it takes more time in Pipes to specify union, the time taken is small compared

to the overall time required to build Mashups.

Figure 8.21: The performance comparison (programmers) between Karma and Dap-
per/Pipes for the data integration subtask (database union) in Task 2.
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Table 8.10 shows the T-test for the hypothesis that Karma is faster than Dapper/Pipes

for data integration in each of the task and the overall subtask.

Table 8.10: The statistical significance test result for data integration subtask
Task No T-test
Task 2 Union (Simple) t=3.15, degree of freedom=38, and p < 0.01
Task 3 Join (Hard) t=20.51, degree of freedom=38, and p < 0.01
Overall data integration t=7.05, degree of freedom=78, and p < 0.01

We also want to show that as the data integration subtask gets progressively harder,

Karma performs better in terms of time spent to finish the subtask. Table 8.11 shows

the difference between DiffD and DiffK for the data integration subtask. Using the

same approach as the previous subsection, we discard the result from subject No. 3, 10,

12, 18. We found that the increment in time spent using Dapper/Pipes is more than

the increment in time spent using Karma for data integration subtasks. In addition, the

result is statistically significant (t=4.90, degree of freedom=30, and p < 0.01)

In the database join case shown in Figure 8.22, Karma performs much better than

Dapper/Pipes; all subjects completed this subtask in less than three minutes, while the

majority of the subjects cannot complete the task using Dapper/Pipes. This result shows

promise for Karma because one of the main advantages in Mashups is that once built, a

Mashup can be reused as a module in another Mashup. However, given the number of

existing Mashups, it would be time consuming for a casual user to locate and figure out

how to integrate a Mashup built by other people on their own. This is apparent in task

3, where a Dapper/Pipes subject needs to join her own Mashup with another one created

by someone else. Karma’s approach to data integration allows the subject to bypass the
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Figure 8.22: The performance comparison (programmers) between Karma and Dap-
per/Pipes for the data integration subtask (database join) in Task 3.

Table 8.11: The comparision between DiffD and DiffK for each programmer subject for
data integration subtasks. The unit is in seconds.

Subject No. DiffD DiffK
No.1 225 136
No.2 288 26
No.3 0 44
No.4 262 66
No.5 224 37
No.6 284 31
No.7 14 -6
No.8 282 50
No.9 277 51
No.10 0 44
No.11 280 35
No.12 0 65
No.13 280 46
No.14 290 57
No.15 290 120
No.16 278 45
No.17 273 56
No.18 0 70
No.19 279 80
No.20 278 44
Average 261 57
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search step and instead focuses on selecting what kind of data (suggested by Karma) to

integrate into a newly extracted data source.

8.6.4 Claim 3: Overall, the user takes less time to build the same

Mashup in Karma compared to Dapper/Pipes

Figure 8.23: The performance comparison (programmers) between Karma and Dap-
per/Pipes for Task 1.

Figures 8.23, 8.24, and 8.25 show the overall comparison between Karma and Dap-

per/Pipes in each task. Each graph combines the time spent for each subtask (i.e., data

extraction, source modeling, data cleaning, and data integration). For each task, Karma

performs noticeably better than Dapper/Pipes; most subjects spent less than 4 minutes

to complete each of the tasks using Karma. Table 8.12 shows the T-test for the hypothesis

that Karma is faster than Dapper/Pipes for each task and the overall result.
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Figure 8.24: The performance comparison (programmers) between Karma and Dap-
per/Pipes for Task 2

Figure 8.25: The performance comparison (programmers) between Karma and Dap-
per/Pipes for Task 3

Table 8.12: The statistical significance test result for each task
Task No T-test
Task 1 t=9.93, degree of freedom=34, and p < 0.01
Task 2 t=7.37, degree of freedom=38, and p < 0.01
Task 3 t=23.45, degree of freedom=38, and p < 0.01
Overall (combining 3 tasks) t=13.24, degree of freedom=114, and p < 0.01
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8.6.5 Failure Rate

Table 8.13 shows the failure rate in Dapper/Pipes. Note that both programmer and

nonprogrammer subjects were able to complete all three tasks using Karma without

failing. However, subjects who use Dapper/Pipe sometimes fail in a particular subtask.

The Overall row in Table 8.13 shows the percentage of users who fail on least one subtask

in each respective task.

Table 8.13: Individual and Overall failure rate in Dapper/Pipes.
Task Task 1 Task 2 Task 3

Data Extraction 5.5%( 1/18) 25%(5/20) 0%( 0/20)
Source Modeling 0%( 0/18) 0%(0/20) 0%( 0/20)

Data Cleaning 83%(15/18) 35%(7/20) n/a
Data Integration n/a 30%(6/20) 95%(19/20)

Overall 83%(15/18) 45%(9/20) 95%(19/20)

Besides the difficulty of customizing widgets, there are three additional factors that

contribute to failures in Dapper/Pipes. These factors are described below:

1. Cutoff Failure: In our evaluation, we use the cutoff time of 5 minutes; users who

spend more time than 5 minutes in a particular subtask is marked as failing. How-

ever, of all 53 instances of failures, there are 11 instances (i.e. 20% of all failure

instances) where users were able to complete the subtask using more than 5 minutes.

We did not take this extra time into the calculation to ensure a uniform result.

2. Cascading Failure: In task 2, failing to complete the data cleaning subtask can lead

to failing to complete the integration subtask. Five out of nine overall failures in

task 2 can be attributed to this type of failures. However, task 2 is designed such

that users could complete the integration subtask before doing the data cleaning
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subtask; users had cascading failures because of their decisions to solve a harder

subtask first.

3. Minimal Support Failure: In task 3, we have a failure rate of 95% for Dapper/Pipes.

This failure can be attributed to the length it takes users to customize the database

join operation. As mentioned in Chapter 1, most Mashup tools choose to focus on

particular subtasks while ignoring others. However, the breakdown of Mashup types

show that the database join is one of the important features. Karma’s support of

the database join operation allows users to build Mashups that combine two sources

through a join. The other Mashup tool that fully supports database join is Intel’s

Mashmaker[21]. However, Mashmaker requires experts to customize predefined join

operations between sources; casual users cannot customize database join between

data sources by themselves.

8.6.6 Summary

Table 8.14 shows a more quantitative comparison between Karma and Dapper/Pipes.

The value is computed by averaging the time spent for each subtask over three scenario

tasks from results using programmers. The overall result indicates Karma performs better

in each of the subtasks (except soure modeling) and in overall tasks. Among the four

subtasks, Karma performs extremely well in data cleaning and data integration due to

the reasons explained earlier.

While Karma performs worse than Dapper/Pipes for source modeling, the mean dif-

ference is only 10 seconds. In addition, this short coming is compensated during the

data integration step where Karma took about 2 minutes less on average to complete the
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Table 8.14: Overall comparison (programmers) between Dapper/Pipes and Karma aver-
age over three tasks. This result does not factor in subjects No.3 and No.17 for Task 1.

Task Avg time for Dapper/Pipes Avg time for Karma Factor of
in minutes in minutes improvement

Data Extraction 2:09 0:58 2.22
Source Modeling 0:19 0:28 -0.67

Data Cleaning 4:07 1:00 4.16
Data Integration 3:06 0:29 6.49

Overall 9:41 2:55 3.32

subtask. Overall, it takes our subjects 9:41 minutes on average to build a Mashup using

Dapper/Pipes, while it takes our programmer subjects only 2:55 minutes (3:47 minutes

for nonprogrammers) to build the same Mashup using Karma. As a result, Karma per-

forms better than Dapper/Pipes by more than a factor of 3. In addition, Karma also

allows users to build Mashups that they fail to build using Dapper/Pipes.
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Chapter 9

Conclusion and Future Work

To address the four mashup building problem (i.e., data extraction, source modeling, data

cleaning, and data integration), I have introduced the Karma framework for building

Mashups that focuses on three key ideas. The first idea is to focus on the data, not

the operation. By using the programming-by-demonstration paradigm, we can learn the

operation that the user wants to perform indirectly by looking at the data provided by

the user. The second idea is to leverage existing databases. By comparing the value

that the user enters with the data in the existing database, it is possible to deduce some

relationships between new data and existing data. These relationships allow Karma

to be able to assist users in the problems of source modeling, data cleaning, and data

integration. The third idea is to consolidate the Mashup building problems. Since many

Mashup building issues are interrelated, it is possible to exploit the structure such that

solving a problem in one area can help simplify the process of solving a problem in another

area.
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I have demonstrated the validity of my approach through a user evaluation that

compared my approach with the widget approach using Karma and Dapper/Pipes on

two types of users. The experiments have shown that:

• Users can finish three tasks designed to mimic the structure of the four Mashup

types using Karma. On the other hand, users have trouble finishing some of the

tasks using Dapper/Pipes.

• Users took less time to finish the same task using Karma compared to Dapper/Pipes.

The average time used in Karma to build Mashups is 2:55 minutes, while the average

time used in Dapper/Pipes is 9:41 minutes.

• Overall, Karma is faster by more than a factor of 3. The key saving areas are data

cleaning and data integration. In data cleaning phrase, Karma allows users to spec-

ify the result by example and automatically deduces the cleaning operation, while

Dapper/Pipes requires users to customize complicated widgets. In data integration

phrase, Karma leverages databases to help users decide what data is available to

add, while Dapper/Pipes requires users to manually search through existing sources

to link with the newly extracted data source.

9.1 Limitations

While my approach makes the Mashup building more effective, it still has some limita-

tions. I have divided limitations into three categories: approach limitation, algorithmic

limitation, and coverage limitation.
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9.1.1 Approach Limitation

Karma is based on a framework that links each subproblem together using a) programming-

by-demonstration and b) a database. This subsection lists the limitations intrinsic to this

framework.

• Dependency on existing databases: In Karma, its performance in source modeling,

data cleaning, and data integration steps partially depend on existing databases as

Karma use them to compute suggestions. As a result, if the new data source has no

data elements that overlap with existing data sources, users would have to address

those problems manually without suggestions from Karma.

• Fitting concepts into the framework: Karma uses existing concepts to help solve

each subtask. For example, Karma leverages DOM tree to help solve the problem

of data extration. There exist other concepts that can potentially be substitued

to increase Karma’s performance. However, they must be able to adapt to work

with a unified table and programming-by-demonstration; it might not be possible

to plugin every concepts or algorithms and make them fit the Karma framework.

9.1.2 Algorithmic limitation

Under the unified approach in Karma, Karma uses different algorithms to solve each

problem area. This subsection lists the limitation intrinsic to the algorithms used in

Karma.

• Data Extraction: Karma uses the DOM to help extract data from web sources.

Compared to machine learning approach such as Stalker [46], the DOM approach
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sacrifice some performances to make the interaction more user friendly. For example,

if there is a HTML tag irregularity in a particular member of the list, the DOM

approach will not be able to extract that member, while [46] could still extract that

member by asking it users to label more examples.

• Source Modeling: Karma uses simple value comparison to generate candidates for

column names. As a result, it cannot deal with the n:m case where the extracted

data value is actually a combination of multiple attributes.

• Data Cleaning: Karma uses string similarity to help identify potential mispelling.

This can be ineffective because it does not take information about domains into

account. In addition, cleaning by example relies on a libary of predefined transfor-

mations. If Karma cannot induce any transformation, users would have to manually

clean the data themselves.

• Data Integration: Karma is intended for casual users. As a result, we did not

incorporate any concept of quality into the system. In constrast, a query integration

system, such as Q [56], allows users to give feedback on the proposed suggestions

and uses that feedback to improve futher suggestions.

9.1.3 Coverage limitation

While the focus of this thesis is on the four Mashup types, there are other Mashup building

issues common among these four Mashup types that have not been addressed.

• Dynamic data: In its current state, users can build Mashups using Karma, but the

data is static; the data extracted from web sources does not get refreshed if web
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sources change. This limitation can be fixed by adding a planning component to

Karma so that Karma also captures a re-executable plan to retrieve the new data

for each user-built Mashup.

• Javascript: Many web sources use Javascript to display data that we might want to

extract on their pages. Unfortunately, existing data extraction approaches cannot

extract data from Javascript.

9.2 Future Work

9.2.1 Customize Display by Examples

In this thesis, we focus on generating a table of data which is the backbone of a Mashup.

While Karma provides a means to display the data in the table on the Map, users cannot

fine tune how the display should look like and how the display should behave. We believe

that we can apply the ideas used in Karma framework to address the data display problem

too. For example, programming-by-demonstration can be used to help Karma learn from

examples the kind of display that users might want to specify. In addition, a database

that contains past choices made by users can be used to match the pattern that users are

performing during the customization and suggest display operations.

9.2.2 Recovering From Errors

One of the limitations in Karma is recovering from errors. Karma uses heuristics to

capture Mashup building operations, but these heuristics can be wrong. Recovering

from errors is an active area of research in the programming-by-demonstration domain.
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However, in existing systems, users often need to trace through a concept tree induced

by PBD’s heuristic to fix these errors. As a result, it will be difficult for casual users to

trace and recover from errors using existing frameworks. A new interaction framework

that allows casual users to browse through different result scenarios instead of searching

through an error tree might be a possible approach to solve this problem.

9.2.3 Feedbacks and Quality

Not all data sources are created equal. Some data sources might be useful or pertinent to

users in one task, but not in another task. When integrating data from multiple sources,

Karma treats each data sources as equal. A concept of feedback and the quality of sources

can be incorporated in Karma to make the data integration step more robust and more

accurate.
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