
AAAI 2018 Tutorial
Building Knowledge Graphs

Craig Knoblock

University of Southern California

Wrappers for
Web Data Extraction

Extracting Data from Semi-
structured Sources

NAME Casablanca Restaurant

STREET 220 Lincoln Boulevard

CITY Venice

PHONE (310) 392-5751

Approaches to Wrapper
Construction
•Manual Wrapper Construction

• Learning Wrappers from Labelled
Examples

•Grammar Induction for Automatic
Wrapper Construction

February 3, 2018University of Southern California5

Grammar Induction Approach

• Pages automatically generated by scripts
that encode results of db query into HTML

• Script = grammar

• Given a set of pages generated by the
same script

• Learn the grammar of the pages

• Wrapper induction step

• Use the grammar to parse the pages

• Data extraction step

February 3, 2018University of Southern California6

RoadRunner
[Crescenzi, Mecca, & Merialdo]

• Automatically generates a wrapper from
large web pages
• Pages of the same class

• No dynamic content from javascript, ajax, etc

• Infers source schema
• Supports nested structures and lists

• Extracts data from pages

• Efficient approach to large, complex pages
with regular structure

February 3, 2018University of Southern California7

Example
Pages

• Compares two pages at a
time to find similarities
and differences

• Infers nested structure
(schema) of page

• Extracts fields

February 3, 2018University of Southern California8

Extracted Result

February 3, 2018University of Southern California9

Union-Free Regular Expression
(UFRE)
• Web page structure can be represented as
Union-Free Regular Expression (UFRE)

• UFRE is Regular Expressions without
disjunctions

• If a and b are UFRE, then the following are
also UFREs

• a.b

• (a)+

• (a)?

February 3, 2018University of Southern California10

Union-Free Regular Expression
(UFRE)
• Web page structure can be represented as
Union-Free Regular Expression (UFRE)

• UFRE is Regular Expressions without
disjunctions

• If a and b are UFRE, then the following are
also UFREs

• a.b  string fields

• (a)+  lists (possibly nested)

• (a)?  optional fields

• Strong assumption that usually holds

February 3, 2018University of Southern California11

Approach

• Given a set of example pages
• Generate the Union-Free Regular
Expression which contains example pages

• Find the least upper bounds on the RE
lattice to generate a wrapper in linear time

• Reduces to finding the least upper bound
on two UFREs

February 3, 2018University of Southern California12

Matching/Mismatches

Given a set of pages of the same type

• Take the first page to be the wrapper (UFRE)

• Match each successive sample page against the wrapper

• Mismatches result in generalizations of wrapper
• String mismatches

• Tag mismatches

February 3, 2018University of Southern California13

Matching/Mismatches

Given a set of pages of the same type

• Take the first page to be the wrapper (UFRE)

• Match each successive sample page against the wrapper

• Mismatches result in generalizations of wrapper
• String mismatches

• Discover fields
• Tag mismatches

• Discover optional fields

• Discover iterators

February 3, 2018University of Southern California14

Example Matching

February 3, 2018University of Southern California15

String Mismatches: Discovering
Fields
• String mismatches are used to discover
fields of the document

• Wrapper is generalized by replacing
“John Smith” with #PCDATA

<HTML>Books of: John Smith

 <HTML> Books of: #PCDATA

February 3, 2018University of Southern California16

Example Matching

February 3, 2018University of Southern California17

Tag Mismatches: Discovering
Optionals
• First check to see if mismatch is caused by
an iterator (described next)

• If not, could be an optional field in
wrapper or sample

• Cross search used to determine possible
optionals

• Image field determined to be optional:
• ()?

February 3, 2018University of Southern California18

Example Matching

String Mismatch

String Mismatch

February 3, 2018University of Southern California19

Tag Mismatches:
Discovering Iterators
• Assume mismatch is caused by repeated elements in a

list
• End of the list corresponds to last matching token:
• Beginning of list corresponds to one of the mismatched tokens:

 or
• These create possible “squares”

• Match possible squares against earlier squares
• Generalize the wrapper by finding all contiguous

repeated occurrences:
• (<I>Title:</I>#PCDATA)+

February 3, 2018University of Southern California20

Example Matching

February 3, 2018University of Southern California21

Internal Mismatches

• Generate internal mismatch while trying to
match square against earlier squares on
the same page

• Solving internal mismatches yield further
refinements in the wrapper

• List of book editions

• <I>Special!</I>

February 3, 2018University of Southern California22

Recursive Example

February 3, 2018University of Southern California23

Discussion

• Assumptions:
• Pages are well-structured

• Structure can be modeled by UFRE (no
disjunctions)

• Search space for explaining mismatches
is huge
• Uses a number of heuristics to prune space

• Limited backtracking

• Limit on number of choices to explore

• Patterns cannot be delimited by optionals

• Will result in pruning possible wrappers

February 3, 2018University of Southern California24

Limitations

• Learnable grammars

• Union-Free Regular Expressions (RoadRunner)

• Variety of schema structure: tuples (with optional
attributes) and lists of (nested) tuples

• Does not efficiently handle disjunctions – pages
with alternate presentations of the same attribute

• Context-free Grammars

• Limited learning ability

• User needs to provide a set of pages of the same type

February 3, 2018University of Southern California25

Inferlink Web
Extraction Software

Extraction
USC Information Sciences InstituteCC-By 2.0 26

Structured Extraction

CC-By 2.0 27

Automated Extraction
[Minton et al., Inferlink]

• Title

• Description

• Seller

• Post Date

• Expiry Date

• Price

• Location

• Category

• Member Since

• Num Views

• Post ID

USC Information Sciences InstituteCC-By 2.0 28

Automated Extraction

Input: A Pile of Pages

USC Information Sciences InstituteCC-By 2.0 29

Automated Extraction

input:

a pile of pages

Classify by
Templates

pages clustered

by template

USC Information Sciences InstituteCC-By 2.0 30

Clustering

• Cluster
• Based on the visible text

• Page is broken into chunks
• These are continuous blocks of text

• Search for common visible chunks
• Remove chunks that occur in all pages

• Remove those that occur in fewer than 10 pages

• Greedy algorithm to cluster the pages based on the
remaining chunks
• Sort by the size of the clusters created by each chunk

Automated Extraction

input:

a pile of pages

Classify by
Templates

pages clustered

by template

Infer
Extractor

Infer
Extractor

Infer
Extractor

Infer
Extractor

extractor

USC Information Sciences InstituteCC-By 2.0 32

Extractor Learning

• Input: cluster

• Select 5 random pages to build a template

• Tokenize on space & punctuation

• Start with n-grams of tuples of size n

• Find those n-grams that occur on all pages

• Keep only those n-grams that occur exactly once per page

• Decompose pages based on these n-grams

• Run algorithm recursively on decomposed page

• Repeat above for size n-1 down to n=2

• Construct template based on the decomposition

Unsupervised Extraction Tool

USC Information Sciences InstituteCC-By 2.0 34

Extraction Evaluation

Title Desc Seller Date Price Loc Cat
Member
Since

Expires Views ID

Perfect 1.0
(50/50)

.76
(37/49)

.95
(40/42)

.83
(40/48)

.87
(39/45)

.51
(23/45)

.68
(34/50)

1.0
(35/35)

.52
(15/29)

.76
(19/25)

.97
(35/36)

Including
partial

and extra
data

1.0
(50/50)

.98
(48/49)

.95
(40/42)

.83
(40/48)

.98
(44/45)

.84
(38/45)

.88
(44/50)

1.0
(35/35)

.55
(16/29)

1.0
(25/25)

1.0
(36/36)

10 websites, 5 pages each

fields

USC Information Sciences InstituteCC-By 2.0 35

Discussion

• Inferlink approach solves some of the key
limitations of Roadrunner

• Pages do not all have to be of the same type

• Multiple optionals would be treated as different
page types

• Scales well with complex pages

Web Data Extraction Software

• Beautiful Soup
• http://www.crummy.com/software/BeautifulSoup/

• Python library to manually write wrappers

• Jsoup
• http://jsoup.org/

• Java library to manually write wrappers

• ScrapingHub
• http://scrapinghub.com/

• Portia provides a wrapper learner

• Others
• https://www.quora.com/Which-are-some-of-the-best-web-data-

scraping-tools

• Tell us if you find a good one!

http://www.crummy.com/software/BeautifulSoup/
http://jsoup.org/
http://scrapinghub.com/
https://www.quora.com/Which-are-some-of-the-best-web-data-scraping-tools

Aligning and Integrating
Data in Karma

Karma

39

Hierarchica

l Sources

Services

Karma

Tabular

Sources

Database

RDF

…

Interactive tool for rapidly extracting, cleaning,

transforming, integrating and publishing data

CSV

http://www.isi.edu/integration/karma @KarmaSemWeb

http://www.isi.edu/integration/karma
https://twitter.com/KarmaSemWeb

Information Integration in Karma

40

Domain Model

Source Mappings

Karma

Samples of

Source Data

Information Integration in Karma

41

Domain Model

Karma

Samples of

Source Data

Source Mappings

Secret Sauce: Karma Understands
Your Data

42

Domain Model

Source

Mappings

Karma

Samples of

Source Data

Karma semi-automatically builds a

semantic model of your data

Semantic Model

of the Data

What is a Semantic Model?

43

Source

object property
data property
subClassOf

Domain

Model

Person

Organization

Place

State

name

birthdate
bornIn

worksFor state

name

phone

name

livesIn

City
Event

ceo
location

organizer

nearby

startDate

title

isPartOf

postalCode

name date city state workplace

1 Fred Collins Oct 1959 Seattle WA Microsoft

2 Tina Peterson May 1980 New York NY Google

Describe sources using classes & relationships in an ontology

Semantic Types

Person OrganizationCity State

name birthdate name namename

44

Person

name date city state workplace

1 Fred Collins Oct 1959 Seattle WA Microsoft

2 Tina Peterson May 1980 New York NY Google

Relationships

OrganizationCity State

name birthdate name namename

45

Person

name date city state workplace

1 Fred Collins Oct 1959 Seattle WA Microsoft

2 Tina Peterson May 1980 New York NY Google

bornIn

worksFor

state

Semantic Model

OrganizationCity State

name birthdate name namename

46

Person

name date city state workplace

1 Fred Collins Oct 1959 Seattle WA Microsoft

2 Tina Peterson May 1980 New York NY Google

bornIn

worksFor

state

Key ingredient to automate source discovery, data integration,

and publishing semantic data (RDF triples)

Semantic models will be formalized as Source Mappings

Knowledge
Graphs

Karma uses semantic models to create knowledge graphs

Knowledge
Graphs

Karma uses semantic models to create knowledge graphs

Karma semi-automatically builds semantic models

Knowledge
Graphs

Karma uses semantic models to create knowledge graphs

Karma semi-automatically builds semantic models

… and provides a nice GUI to edit them

Semi-automatically Building
Semantic Models in Karma

Approach
[Knoblock et al, ESWC 2012]

51

Domain Ontology

Learn

Semantic Types

Extract

Relationships

Steiner
Tree

Sample Data

Construct a Graph

Example
Source

object property
data property
subClassOf

Domain Ontology

52

name date city state workplace

1 Fred Collins Oct 1959 Seattle WA Microsoft

2 Tina Peterson May 1980 New York NY Google

Find a semantic model for the source (map the source to the ontology)

Learning Semantic Types
[Krishnamurthy et al., ESWC 2015]

53

class?

property ?

Learning Semantic Types

54

CulturalHeritageObject

extent

1- User specifies

2- System learns

CulturalHeritageObject

Learning Semantic Types

55

extent

CulturalHeritageObject CulturalHeritageObject

Learning Semantic Types

56

extent extent

Requirements

• Learn from a small number of examples

• Work on both textual and numeric values

• Learn quickly and highly scalable to large
number of semantic types

57

Approach for Textual Data

• Document: each column of data

• Label: each semantic type

• Use Apache Lucene to index the
labeled documents

• Compute TF/IDF vectors for
documents

• Compare documents using Cosine
Similarity between TF/IDF vectors

58

Approach for Textual Data

59

Approach for Numeric Data

60

• Distribution of values in
different semantic types is
different, e.g., temperature vs.
population

• Use Statistical Hypothesis
Testing to see which
distribution fits best

• Welch’s T-test, Mann-Whitney
U-test and Kolmogorov-
Smirnov Test

Approach for
Numeric Data

61

Similarity features

Similiarity
Features

Attribute
names

similarity

Jaccard

Value
Similarity

TF-IDF Jaccard

Distribution
Similarity

Mann-
Whitney test

Kolmogorov-
Smirnov test

Histogram
Similarity

Mann-
Whitney test

Training machine learning model
[Pham et al., ISWC 2016]

Predicting new attribute

Approach
[Knoblock et al, ESWC 2012]

65

Domain Ontology

Learn

Semantic Types

Extract

Relationships

Steiner
Tree

Sample Data

Construct a Graph

Construct a Graph
Construct a graph from semantic types and ontology

66

Person OrganizationCity State

name birthdate name namename

Person

name date city state workplace

1 Fred Collins Oct 1959 Seattle WA Microsoft

2 Tina Peterson May 1980 New York NY Google

Construct a Graph
Construct a graph from semantic types and ontology

date

Inferring the Relationships

• Search for minimal explanation

• Steiner tree connecting semantic types over ontology
graph
• Given graph G=(V,E), nodes S  V, cost c: E 

• Find a tree of G that spans S with minimal total cost

• Unfortunately, NP-complete

• Approximation Algorithm [Kou et al., 1981]
• Worst-case time complexity: O(|V|2|S|)

• Approximation Ratio: less than 2

68

Steiner Tree

69

V2

V9

V1

2

1

1

1

1

1

V3 V4

V5V6

V7

V8

9

2

8

1/2
10

1/2

V2

V1

4

V3

V4

4

4

4

4

4
V2

V1

4

V3

V4

4

4

V2

V9

V1

2

1

1

1

1

1

V3 V4

V5V6

V7

V8

2

1/2
1/2

V2

V9

V1

2

1 1

1

1

V3 V4

V5V6

V7

V8

2

1/2
1/2

V2

V9

V1

2

1 1

1

1

V3 V4

V5V6

2

4. Compute MST3. replace each link with the

corresponding shortest path in original G

5. remove extra links until

all leaves are Steiner nodes

2. Compute MST1. construct the complete graph (Nodes:

Steiner Nodes, Links Weights: shortest

path from each pair in original G)Steiner nodes: {V1, V2, V3, V4}

Inferring the Relationships
Select minimal tree that connects all semantic types

• A customized Steiner tree algorithm

70
date

Result in Karma

71

Refining the Model

72

Impose constraints on Steiner Tree Algorithm
– Change weight of selected links to ε

– Add source and target of selected link to Steiner nodes

date

Final Semantic Model

73

Karma Learns the Source Models
Taheriyan et al., ISWC 2013, ICSC 2014

Domain Ontology

Learn

Semantic Types

Sample Data

Construct a Graph

Generate

Candidate Models

Rank Results
Known Semantic

Models

Karma Use Cases

Pedro Szekely and Craig KnoblockUniversity of Southern California

Source Mapping Phase

Domain Model

Source Mappings

Karma

Domain
Expert

Mapping Phase

Pedro Szekely and Craig KnoblockUniversity of Southern California

Samples of
Source Data

Source Mapping and Query Time

Domain Model

Source Mappings

Karma

Samples of
Source Data

Domain
Expert

Mapping Phase

Karma
Runtime
System

Query Phase

Analyst

Query

Virtual Integration

Data Warehousing

Pedro Szekely and Craig KnoblockUniversity of Southern California

VIVO
• VIVO is a system to build

researcher networks across
institutions

• Used Karma to map the data
about USC faculty to VIVO
ontology and publish it as
RDF

• VIVO ingest the RDF data

• Video

78

http://vivoweb.org/
https://www.youtube.com/watch?v=EQcMc4TrfuE

American Art Collaborative
[Knoblock et al., ISWC 2017]

• Used Karma to convert
data of 13 American Art
Museums to Linked Open
Data

• Modeled according to
CIDOC-CRM Ontology

• Linked the generated RDF
to DBPedia and ULAN

• Video

79

https://www.youtube.com/watch?v=1Vaytr09H1w

Using Karma to map museum data to the CIDOC
CRM ontology

80

https://www.youtube.com/watch?v=h3_yiBhAJIc

https://www.youtube.com/watch?v=h3_yiBhAJIc

Discussion

• Automatically build rich semantic descriptions of data
sources

• Exploit the background knowledge from (i) the domain
ontology, and (ii) the known source models

• Semantic descriptions are the key ingredients to
automate many tasks, e.g.,
• Source Discovery

• Data Integration

• Service Composition

Mohsen TaheriyanUniversity of Southern California

More Info

karma.isi.edu

