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Approaches to Wrapper 
Construction
•Manual Wrapper Construction

• Learning Wrappers from Labelled 
Examples

•Grammar Induction for Automatic 
Wrapper Construction 



February 3, 2018University of Southern California5

Grammar Induction Approach

• Pages automatically generated by scripts 
that encode results of db query into HTML

• Script = grammar

• Given a set of pages generated by the 
same script

• Learn the grammar of the pages

• Wrapper induction step

• Use the grammar to parse the pages

• Data extraction step
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RoadRunner
[Crescenzi, Mecca, & Merialdo] 

• Automatically generates a wrapper from 
large  web pages
• Pages of the same class

• No dynamic content from javascript, ajax, etc

• Infers source schema 
• Supports nested structures and lists

• Extracts data from pages

• Efficient approach to large, complex pages 
with regular structure
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Example
Pages

• Compares two pages at a 
time to find similarities 
and differences

• Infers nested structure 
(schema) of page

• Extracts fields
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Extracted Result
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Union-Free Regular Expression 
(UFRE)
• Web page structure can be represented as 
Union-Free Regular Expression (UFRE)

• UFRE is Regular Expressions without 
disjunctions

• If a and b are UFRE, then the following are 
also UFREs

• a.b

• (a)+

• (a)?



February 3, 2018University of Southern California10

Union-Free Regular Expression 
(UFRE)
• Web page structure can be represented as 
Union-Free Regular Expression (UFRE)

• UFRE is Regular Expressions without 
disjunctions

• If a and b are UFRE, then the following are 
also UFREs

• a.b  string fields

• (a)+  lists (possibly nested)

• (a)?  optional fields

• Strong assumption that usually holds
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Approach

• Given a set of example pages
• Generate the Union-Free Regular 
Expression which contains example pages

• Find the least upper bounds on the RE 
lattice to generate a wrapper in linear time

• Reduces to finding the least upper bound 
on two UFREs
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Matching/Mismatches

Given a set of pages of the same type

• Take the first page to be the wrapper (UFRE)

• Match each successive sample page against the wrapper

• Mismatches result in generalizations of wrapper
• String mismatches

• Tag mismatches
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Matching/Mismatches

Given a set of pages of the same type

• Take the first page to be the wrapper (UFRE)

• Match each successive sample page against the wrapper

• Mismatches result in generalizations of wrapper
• String mismatches

• Discover fields
• Tag mismatches

• Discover optional fields

• Discover iterators
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Example Matching
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String Mismatches: Discovering 
Fields
• String mismatches are used to discover 
fields of the document

• Wrapper is generalized by replacing 
“John Smith” with #PCDATA

<HTML>Books of: <B>John Smith

 <HTML> Books of: <B>#PCDATA
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Example Matching
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Tag Mismatches: Discovering 
Optionals
• First check to see if mismatch is caused by 
an iterator (described next)

• If not, could be an optional field in 
wrapper or sample

• Cross search used to determine possible 
optionals

• Image field determined to be optional:
• ( <img src=…/>)?
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Example Matching

String Mismatch

String Mismatch
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Tag Mismatches: 
Discovering Iterators
• Assume mismatch is caused by repeated elements in a 

list
• End of the list corresponds to last matching token: </LI>
• Beginning of list corresponds to one of the mismatched tokens: 

<LI> or </UL>
• These create possible “squares”

• Match possible squares against earlier squares
• Generalize the wrapper by finding all contiguous 

repeated occurrences:
• ( <LI><I>Title:</I>#PCDATA</LI> )+
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Example Matching
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Internal Mismatches

• Generate internal mismatch while trying to 
match square against earlier squares on 
the same page

• Solving internal mismatches yield further 
refinements in the wrapper

• List of book editions

• <I>Special!</I>
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Recursive Example
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Discussion

• Assumptions:
• Pages are well-structured

• Structure can be modeled by UFRE (no 
disjunctions)

• Search space for explaining mismatches 
is huge
• Uses a number of heuristics to prune space

• Limited backtracking

• Limit on number of choices to explore

• Patterns cannot be delimited by optionals

• Will result in pruning possible wrappers
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Limitations

• Learnable grammars

• Union-Free Regular Expressions (RoadRunner)

• Variety of schema structure: tuples (with optional 
attributes) and lists of (nested) tuples

• Does not efficiently handle disjunctions – pages 
with alternate presentations of the same attribute

• Context-free Grammars

• Limited learning ability

• User needs to provide a set of pages of the same type
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Inferlink Web 
Extraction Software



Extraction
USC Information Sciences InstituteCC-By 2.0         26



Structured Extraction
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Automated Extraction
[Minton et al., Inferlink]

• Title

• Description

• Seller

• Post Date

• Expiry Date

• Price

• Location

• Category

• Member Since

• Num Views

• Post ID
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Automated Extraction

Input: A Pile of Pages
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Automated Extraction

input: 

a pile of pages

Classify by
Templates

pages clustered

by template 
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Clustering

• Cluster
• Based on the visible text

• Page is broken into chunks
• These are continuous blocks of text

• Search for common visible chunks
• Remove chunks that occur in all pages

• Remove those that occur in fewer than 10 pages

• Greedy algorithm to cluster the pages based on the 
remaining chunks
• Sort by the size of the clusters created by each chunk



Automated Extraction

input: 

a pile of pages

Classify by
Templates

pages clustered

by template 

Infer
Extractor

Infer
Extractor

Infer
Extractor

Infer
Extractor

extractor
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Extractor Learning

• Input: cluster 

• Select 5 random pages to build a template

• Tokenize on space & punctuation

• Start with n-grams of tuples of size n

• Find those n-grams that occur on all pages

• Keep only those n-grams that occur exactly once per page

• Decompose pages based on these n-grams

• Run algorithm recursively on decomposed page

• Repeat above for size n-1 down to n=2

• Construct template based on the decomposition



Unsupervised Extraction Tool
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Extraction Evaluation

Title Desc Seller Date Price Loc Cat
Member
Since

Expires Views ID

Perfect 1.0
(50/50)

.76
(37/49)

.95
(40/42)

.83
(40/48)

.87
(39/45)

.51
(23/45)

.68
(34/50)

1.0
(35/35)

.52
(15/29)

.76
(19/25)

.97
(35/36)

Including 
partial 

and extra 
data

1.0
(50/50)

.98
(48/49)

.95
(40/42)

.83
(40/48)

.98
(44/45)

.84
(38/45)

.88
(44/50)

1.0
(35/35)

.55
(16/29)

1.0
(25/25)

1.0
(36/36)

10 websites, 5 pages each

fields
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Discussion

• Inferlink approach solves some of the key 
limitations of Roadrunner

• Pages do not all have to be of the same type

• Multiple optionals would be treated as different 
page types

• Scales well with complex pages



Web Data Extraction Software

• Beautiful Soup
• http://www.crummy.com/software/BeautifulSoup/

• Python library to manually write wrappers

• Jsoup
• http://jsoup.org/

• Java library to manually write wrappers

• ScrapingHub
• http://scrapinghub.com/

• Portia provides a wrapper learner

• Others
• https://www.quora.com/Which-are-some-of-the-best-web-data-

scraping-tools

• Tell us if you find a good one!

http://www.crummy.com/software/BeautifulSoup/
http://jsoup.org/
http://scrapinghub.com/
https://www.quora.com/Which-are-some-of-the-best-web-data-scraping-tools


Aligning and Integrating 
Data in Karma



Karma
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Hierarchica

l Sources

Services

Karma

Tabular

Sources

Database

RDF

…

Interactive tool for rapidly extracting, cleaning, 

transforming, integrating and publishing data

CSV

http://www.isi.edu/integration/karma @KarmaSemWeb

http://www.isi.edu/integration/karma
https://twitter.com/KarmaSemWeb


Information Integration in Karma
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Domain Model

Source Mappings

Karma

Samples of 

Source Data



Information Integration in Karma
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Domain Model

Karma

Samples of 

Source Data

Source Mappings



Secret Sauce: Karma Understands 
Your Data
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Domain Model

Source 

Mappings

Karma

Samples of 

Source Data

Karma semi-automatically builds a 

semantic model of your data

Semantic Model

of the Data



What is a Semantic Model?
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Source

object property
data property
subClassOf

Domain 

Model

Person

Organization

Place

State

name

birthdate
bornIn

worksFor state

name

phone

name

livesIn

City
Event

ceo
location

organizer

nearby

startDate

title

isPartOf

postalCode

name date city state workplace

1 Fred Collins Oct 1959 Seattle WA Microsoft

2 Tina Peterson May 1980 New York NY Google

Describe sources using classes & relationships in an ontology



Semantic Types

Person OrganizationCity State

name birthdate name namename
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Person

name date city state workplace

1 Fred Collins Oct 1959 Seattle WA Microsoft

2 Tina Peterson May 1980 New York NY Google



Relationships

OrganizationCity State

name birthdate name namename
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Person

name date city state workplace

1 Fred Collins Oct 1959 Seattle WA Microsoft

2 Tina Peterson May 1980 New York NY Google

bornIn

worksFor

state



Semantic Model

OrganizationCity State

name birthdate name namename
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Person

name date city state workplace

1 Fred Collins Oct 1959 Seattle WA Microsoft

2 Tina Peterson May 1980 New York NY Google

bornIn

worksFor

state

Key ingredient to automate source discovery, data integration, 

and publishing semantic data (RDF triples)

Semantic models will be formalized as Source Mappings



Knowledge
Graphs

Karma uses semantic models to create knowledge graphs



Knowledge
Graphs

Karma uses semantic models to create knowledge graphs

Karma semi-automatically builds semantic models



Knowledge
Graphs

Karma uses semantic models to create knowledge graphs

Karma semi-automatically builds semantic models

… and provides a nice GUI to edit them



Semi-automatically Building 
Semantic Models in Karma



Approach 
[Knoblock et al, ESWC 2012]
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Domain Ontology

Learn

Semantic Types

Extract

Relationships

Steiner 
Tree

Sample Data

Construct a Graph



Example
Source

object property
data property
subClassOf

Domain Ontology
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name date city state workplace

1 Fred Collins Oct 1959 Seattle WA Microsoft

2 Tina Peterson May 1980 New York NY Google

Find a semantic model for the source (map the source to the ontology)



Learning Semantic Types
[Krishnamurthy et al., ESWC 2015]
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class?

property ?



Learning Semantic Types
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CulturalHeritageObject

extent

1- User specifies

2- System learns



CulturalHeritageObject

Learning Semantic Types
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extent



CulturalHeritageObject CulturalHeritageObject

Learning Semantic Types
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extent extent



Requirements

• Learn from a small number of examples

• Work on both textual and numeric values

• Learn quickly and highly scalable to large 
number of semantic types
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Approach for Textual Data

• Document: each column of data

• Label: each semantic type

• Use Apache Lucene to index the 
labeled documents

• Compute TF/IDF vectors for 
documents

• Compare documents using Cosine 
Similarity between TF/IDF vectors

58



Approach for Textual Data
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Approach for Numeric Data
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• Distribution of values in 
different semantic types is 
different, e.g., temperature vs. 
population

• Use Statistical Hypothesis 
Testing to see which 
distribution fits best

• Welch’s T-test, Mann-Whitney 
U-test and Kolmogorov-
Smirnov Test



Approach for 
Numeric Data
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Similarity features

Similiarity 
Features

Attribute
names 

similarity

Jaccard

Value 
Similarity

TF-IDF Jaccard

Distribution 
Similarity

Mann-
Whitney test

Kolmogorov-
Smirnov test

Histogram 
Similarity

Mann-
Whitney test



Training machine learning model
[Pham et al., ISWC 2016] 



Predicting new attribute



Approach 
[Knoblock et al, ESWC 2012]
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Domain Ontology

Learn

Semantic Types

Extract

Relationships

Steiner 
Tree

Sample Data

Construct a Graph



Construct a Graph
Construct a graph from semantic types and ontology
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Person OrganizationCity State

name birthdate name namename

Person

name date city state workplace

1 Fred Collins Oct 1959 Seattle WA Microsoft

2 Tina Peterson May 1980 New York NY Google



Construct a Graph
Construct a graph from semantic types and ontology

date



Inferring the Relationships

• Search for minimal explanation 

• Steiner tree connecting semantic types over ontology 
graph
• Given graph G=(V,E), nodes S  V,  cost c: E 

• Find a tree of G that spans S with minimal total cost

• Unfortunately, NP-complete

• Approximation Algorithm [Kou et al., 1981]
• Worst-case time complexity: O(|V|2|S|)

• Approximation Ratio: less than 2
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Steiner Tree
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4. Compute MST3. replace each link with the 

corresponding shortest path in original G

5. remove extra links until 

all leaves are Steiner nodes

2. Compute MST1. construct the complete graph (Nodes: 

Steiner Nodes, Links Weights: shortest 

path from each pair in original G)Steiner nodes: {V1, V2, V3, V4}



Inferring the Relationships
Select minimal tree that connects all semantic types

• A customized Steiner tree algorithm

70
date



Result in Karma
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Refining the Model
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Impose constraints on Steiner Tree Algorithm
– Change weight of selected links to ε

– Add source and target of selected link to Steiner nodes

date



Final Semantic Model
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Karma Learns the Source Models
Taheriyan et al., ISWC 2013, ICSC 2014

Domain Ontology

Learn

Semantic Types

Sample Data

Construct a Graph

Generate 

Candidate Models

Rank Results
Known Semantic 

Models



Karma Use Cases

Pedro Szekely and Craig KnoblockUniversity of Southern California



Source Mapping Phase

Domain Model

Source Mappings

Karma

Domain
Expert

Mapping Phase

Pedro Szekely and Craig KnoblockUniversity of Southern California

Samples of 
Source Data



Source Mapping  and Query Time

Domain Model

Source Mappings

Karma

Samples of 
Source Data

Domain
Expert

Mapping Phase

Karma 
Runtime
System

Query Phase

Analyst

Query

Virtual Integration

Data Warehousing

Pedro Szekely and Craig KnoblockUniversity of Southern California



VIVO
• VIVO is a system to build 

researcher networks across 
institutions

• Used Karma to map the data 
about USC faculty to VIVO 
ontology and publish it as 
RDF

• VIVO ingest the RDF data

• Video

78

http://vivoweb.org/
https://www.youtube.com/watch?v=EQcMc4TrfuE


American Art Collaborative
[Knoblock et al., ISWC 2017]

• Used Karma to convert 
data of 13 American Art 
Museums to Linked Open 
Data

• Modeled according to 
CIDOC-CRM Ontology

• Linked the generated RDF 
to DBPedia and ULAN

• Video
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https://www.youtube.com/watch?v=1Vaytr09H1w


Using Karma to map museum data to the CIDOC 
CRM ontology 
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https://www.youtube.com/watch?v=h3_yiBhAJIc

https://www.youtube.com/watch?v=h3_yiBhAJIc


Discussion

• Automatically build rich semantic descriptions of data 
sources

• Exploit the background knowledge from (i) the domain 
ontology, and (ii) the known source models

• Semantic descriptions are the key ingredients to 
automate many tasks, e.g., 
• Source Discovery 

• Data Integration

• Service Composition 

Mohsen TaheriyanUniversity of Southern California



More Info

karma.isi.edu


