Commonsense Knowledge Graphs

Filip Ilievski ilievski@isi.edu

Pedro Szekely pszekely@isi.edu

USC Information Sciences Institute

08:00 PST	1 hr 50 mins	Part I - Review of CSKGs
	15 min	Introduction to commonsense knowledge (slides) - Pedro
	25 min	Review of top-down commonsense knowledge graphs (slides) - Mayank
	70 min	Review of bottom-up commonsense knowledge graphs (slides+demo) - Mayank, Filip, Pedro
	10 min	Break
10:00 PST	45 min	Part II - Integration and analysis
	35 min	Consolidating commonsense graphs (slides) - Filip
	10 min	Consolidating commonsense graphs (demo) - Pedro
	10 min	Break
10:55 PST	1 hr 05 mins	Part III - Downstream use of CSKGs
	50 min	Answering questions with CSKGs (slides+demo) - Filip
	15 min	Wrap-up (slides) - Mayank

Introduction to commonsense knowledge

Pedro Szekely

What Is Common Sense?

Common sense is sound practical judgement concerning everyday matters,

or a basic ability to perceive, understand, and judge that is shared by ("common to") nearly all people.

Wikipedia

Slide by Yejin Choi

Humans reason about the world with mental models [Graesser, 1994]

Personal experiences

[Conway et al., 2000]

World knowledge

[Kintsch, 1988]

Humans reason about the world with mental models [Graesser, 1994]

A Common Sense Task

Input: a set of common concepts

dog | frisbee | catch | throw

Output: a sentence using these concepts

https://inklab.usc.edu/CommonGen/

A Common Sense Task

Input: a set of common concepts

Output: a sentence using these concepts dog | frisbee | catch | throw

- A dog leaps to catch a thrown frisbee.
- The dog catches the frisbee when the boy throws it.
- A man throws away his dog 's favorite frisbee expecting him to catch it in the air.

https://inklab.usc.edu/CommonGen/

[Humans]

A Common Sense Task

Input: a set of common concepts

Output: a sentence using these concepts dog | frisbee | catch | throw

- A dog leaps to catch a thrown frisbee.
- The dog catches the frisbee when the boy throws it.
- A man throws away his dog 's favorite frisbee expecting him to catch it in the air.

GPT2: A dog throws a frisbee at a football player. [Machines]
UniLM: Two dogs are throwing frisbees at each other.
BART: A dog throws a frisbee and a dog catches it.
T5: dog catches a frisbee and throws it to a dog

https://inklab.usc.edu/CommonGen/

[Humans]

Role Of Knowledge

Common Sense Knowledge Graphs

Information Sciences Institute

Dimensions Of Common Sense Knowledge

Representation

- \circ symbolic
- o natural language
- \circ neural

Creation method

- expert input
- \circ crowdsourcing
- information extraction, machine learning

Knowledge type

- \circ entities and actions
- o inferential/rules

Topic

- general
- o social

Representation Method

Creation Method

Knowledge Type

Topic

Design Approach

08:00 PST	1 hr 50 mins	Part I - Review of CSKGs
	15 min	Introduction to commonsense knowledge (slides) - Pedro
	25 min	Review of top-down commonsense knowledge graphs (slides) - Mayank
	70 min	Review of bottom-up commonsense knowledge graphs (slides+demo) - Mayank, Filip, Pedro
	10 min	Break
10:00 PST	45 min	Part II - Integration and analysis
	35 min	Consolidating commonsense graphs (slides) - Filip
	10 min	Consolidating commonsense graphs (demo) - Pedro
	10 min	Break
10:55 PST	1 hr 05 mins	Part III - Downstream use of CSKGs
	50 min	Answering questions with CSKGs (slides+demo) - Filip
	15 min	Wrap-up (slides) - Mayank

Review of top-down commonsense knowledge graphs

Mayank Kejriwal

Why is top-down knowledge necessary?

- "In Artificial intelligence, commonsense knowledge is
- the set of **background information** that an individual is
- intended to know or assume and the ability to use it when appropriate."
- Argument: This knowledge cannot be acquired simply

through text (or in an otherwise 'inductive' fashion)

Some important concepts necessary in a top-down CSKG

- Scales, time, spaces and dimension, material, causal connections, (in other domains) force, shape, systems and functionality, hitting, abrasion, wear
 - (and related concepts)
- Competency vs. coverage theories
- Naive physics vs. psychology theories

All reasoning (ultimately) depends on axioms...

What are the 'axioms' of commonsense 'psychology'?

This is a controversial question

A more fruitful approach might be to understand the 'representational areas' of commonsense psychology (Gordon and Hobbs, 2004)

30 representational areas

Gordon (2001a) noted that there is an interesting

relationship between concepts that participate in

commonsense psychology theories and planning strategies

Described 30 representational areas by studying

planning strategy

Taxonomy of 30 representational

Examples of representational areas

Explanations: the process of generating satisfying explanations for effects that have unknown causes

Similarity Comparison: the mental process of making comparisons and drawing analogies in order to find similarities and differences

Managing knowledge: concepts of knowledge, belief, assumptions, justifications and the mental processes that manipulate these concepts in reasoning

Example of 'theory': Accessibility by association

• Memory retrieval by

association is well-known

in psychology

'Encode' it as a theory by

defining appropriate

predicates and concepts

'Encoding knowledge' of commonsense psychology

Not an easy problem, reminiscent of 'expert system' era

Two eventualities e_1 and e_2 are "causally linked" in a set of "causally involved" relations if there is a chain of relations in s between e_1 and e_2 , regardless of direction.

 $\begin{array}{l} (\forall e1, e_2, s)[causally-linked(e_1, e_2, s) \\ \equiv [(\exists r)[causally-involved'(r, e_1, e_2) \land member(r, s)] \\ \lor (\exists r)[causally-involved'(r, e_2, e_1) \land member(r, s)] \\ \lor (\exists e_3, r)[[causally-involved'(r, e_1, e_3) \lor [causally-involved'(r, e_3, e_1)] \\ \land member(r, s) \land causally-linked(e_3, e_2, s - \{r\}]]] \end{array}$

Open question how we can encode such knowledge in a way that makes it

robust to noisy or incomplete data

Some more examples (belief in goals)

It will be useful below to state that if one believes he or she has a goal, then defeasibly he or she really does have the goal. Though not always true, we are usually pretty reliable about knowing what we want.

```
(forall (e e1 a)
  (if (and (goal' e e1 a)(believe a e))
        (Rexist e)))
```

However, it is possible for an agent to have a goal without knowing it.

Some more examples (trying, succeeding and failing)

When we try to bring about some goal, we devise at least a partial plan to achieve it, including subgoals of the original goal which are actions on our part, and we execute some of those subgoals. Moreover, our executing those actions is a direct result of our having those actions as subgoals. We can take this as a definition of "trying".

Other representational work

Bodies are intact, damaged, or destroyed.

A person has a body and a mind.

(forall (p) (if (person p) (exists (b m) (and (body b p) (mind m p)))))

(1)

(forall (b p) (if (body b p) (xor (intact b) (damaged b) (destroyed b)))))

Minds are active, impaired, or inactive.

(forall (m p) (if (mind m p) (xor (active m) (impaired m)

(2)

(3)

(inactive m)))))

CYC: Using Common Sense Knowledge to Overcome Brittleness and Knowledge Acquisition Bottlenecks

Doug Lenat, Mayank Prakash, & Mary Shepherd

Microelectronics & Computer Technology Corporation, 9430 Research Boulevard, Austin, Texas 78759

The major limitations in building large software have problems that were not foreseen by its builders, and (b) the amount of manpower required. The recent history of expert systems, for example, highlights how constricting the brittleness and knowledge acquisition bottlenecks are. Moreover, standard software methodology (c.g., working from a detailed "spee") has proven of little use in AI, a field which by definition tackles ill attructured problems.

How can these bottlenecks be widened? Attractive, elegant answere have included machine learning, automatic programming, and natural language understanding. But decades of work on such systems (Green *et al.*, 1974; Lenat *et al.*, 1983; Lenat & Brown, 1984; Schank & Abelson, 1977) have convinced us that each of these approaches has difficulty "scaling up" for want of a substantial base of real world knowledge.

Making AI Programs More Flexible

[Expert systems'] performance in their specialized domains are often very impressive Nevertheless, hardly any of them have certain commonsense knowledge and ability possessed by any nonfeeble-minded human. This lack makes them "brittle." By this is meant that they are difficult to expand beyond the scope originally contemplated by their designers, and they usually do not recognize their own limitations. Many important applications will require commonsense abilities... Common-sense facts and methods are only very partially understood today, and extending this understanding is the key problem facing artificial intelligence. John McCarthy, 1983, p. 120.

How do people flexibly cope with unexpected situations? As our specific "expert" knowledge fails to apply, we draw on increasingly more general knowledge. This general knowledge is less powerful, so we only fall back on it reluctantly.

"General knowledge" can be broken down into a few types. First, there is real world factual knowledge, the sort found in an encyclopedia. Second, there is common sense, the sort of knowledge that an encyclopedia would assume the reader knew without being told (*e.g.*, an object can't be in two places at once).

Abstract

MCC's CYC project is the building, over the coming decade, of a large knowledge base (or KB) of real world facts and heuristics and—as a part of the KB itself—methods for efficiently reasoning over the KB. As the title of this article suggests, our hypothesis is that the two major limitations to building large intelligent programs might be overcome by using such a system. We briedly illustrate how common sense reasoning and analogy can widen the knowledge acquisition bottleneck. The next section ("How CYC Worls") illustrates how those same two abilities can solve problems of the type that sigmic current experies systems. We then report how the project ical mothodology, and a case study of how we are currently putting that into practice. We conclude with a discussion of the project's feasibility and timetable.

THE AI MAGAZINE 65

What is Cyc?

- Very large, multi-contextual knowledge base and inference engine.
- Founded in 1984 by Stanford professor Doug Lenat (president and founder of the Cycorp, Inc.).

Viterbi

- What is the objective of Cyc?
 - to assemble an comprehensive ontology and Knowledge Base of common sense knowledge.
 - to codify, in machine-usable form, millions of pieces of knowledge that comprise human common sense.
 - Example:
 - "Every tree is a plant" && "Plants eventually die" from which we can infer "All trees die".

We would like to thank MCC and our colleagues there and elsewhere for their support and useful comments on this work. Special thanks are due to Woody Bledsoe, David Bridgeland, John Scely Brown, Al Clarkson, Kim Fairchild, Ed Feigenbaum, Mike Genessreth, Ken Haase, Alan Kay, Ben Kuipers, John McCarthy, John McDermott, Tom Mitchell, Nils Nilsson, Elaine Rich, and David Wallace

Example of a 'top-down' CSKG: Cyc

Limitations of top-down CSKGs

- Many of the same issues that other top-down systems (including, famously, expert systems) have, such as brittleness, expense of acquisition...
- When does work in AI stop, and work in philosophy and psychology begin?
- Even if it were possible, we can never get away from language models completely

08:00 PST	1 hr 50 mins	Part I - Review of CSKGs
	15 min	Introduction to commonsense knowledge (slides) - Pedro
	25 min	Review of top-down commonsense knowledge graphs (slides) - Mayank
	70 min	Review of bottom-up commonsense knowledge graphs (slides+demo) - Mayank, Filip, Pedro
	10 min	Break
10:00 PST	45 min	Part II - Integration and analysis
	35 min	Consolidating commonsense graphs (slides) - Filip
	10 min	Consolidating commonsense graphs (demo) - Pedro
	10 min	Break
10:55 PST	1 hr 05 mins	Part III - Downstream use of CSKGs
	50 min	Answering questions with CSKGs (slides+demo) - Filip
	15 min	Wrap-up (slides) - Mayank

Review of bottom-up commonsense knowledge graphs: ConceptNet

Mayank Kejriwal

ConceptNet: An introduction

- "a freely-available semantic network, designed to
- help computers understand the meanings of words that people use"
- "an open, multi-lingual knowledge graph"

https://www.conceptnet.io/

The many faces of ConceptNet

Sources of knowledge

Similar to previous versions, relational knowledge

contributed to Open Mind Common Sense and its

sister projects in other languages

- Subset of DBpedia
- Wiktionary (a dominant source)
 - Dictionary-style information also used from Open Multilingual WordNet

High-level ontology from OpenCyc

Human-generated knowledge: Games with a purpose (GWAP)

"multi-player online game that is designed to be fun

and accomplish tasks that are easy for humans but

beyond the capability of today's computers."

https://www.cmu.edu/homepage/computing/2008/summer/games-with-a-purpose.shtml

Example: Verbosity

https://www.cs.cmu.edu/~biglou/Verbosity.pdf

Lesson: GWAPs are useful for acquiring crowdsourcing CS acquisition

	Home try OMCSentics
Hourglass Game	Related Links Sentic Computing Open Mind Common Sense
(10) leave over	User login 🖉 Username: Password:
	Create new account Forgot the password?
Copyright (\$ 2011. Skekit Solutions Ltd.	All Rights Reserved.

Accessing ConceptNet

- ConceptNet has a Linked Open Data API
 - Available as JSON-LD
- ExternalURL links in ConceptNet are used to fulfill LD Principle 4
 - Linked to several other vocabularies, including
 WordNet, DBPedia, and OpenCyc
 - **API documentation:**

https://github.com/commonsense/ conceptnet5/wiki/API

@id:	"/a/[/r/UsedFor/,/c/en/example/,/c/en/explain/]"
dataset:	"/d/conceptnet/4/en"
end:	
@id:	"/c/en/explain"
label:	"explain something"
language:	"en"
term:	"/c/en/explain"
license:	"cc:by/4.0"
▼ rel:	
@id:	"/r/UsedFor"
label:	"UsedFor"
<pre>sources:</pre>	
v 0:	
activity:	"/s/activity/omcs/omcs1_possibly_free_text"
contributor:	"/s/contributor/omcs/pavlos"
▼ start:	
@id:	"/c/en/example"
label:	"an example"
language:	"en"
term:	"/c/en/example"
<pre>surfaceText:</pre>	"You can use [[an example]] to [[explain something]]"
weight:	1
<pre> @context:</pre>	
▼ 0:	"//api.conceptnet.io/ld/conceptnet5.7/context.ld.json"
▼ 1:	"//api.conceptnet.io/ld/conceptnet5.7/pagination.ld.json"

With all this knowledge...

• Why not use it to understand the nature of

commonsense knowledge?

 Key idea: Analyzing ConceptNet using a rigorous methodology can enable data-driven understanding of concepts like 'context' and 'negation'

Early work

- In 2013, a report showed what we would expect from inductively derived KGs like ConceptNet: inconsistency
- Structural analysis showed that some concepts are much more frequent than

others

46

More recent work: using ConceptNet to study 'context'

- What is context and why is it important?
- We used PBG for getting KG embeddings on a 4 million-triples sample, and Fit-SNE for visualizations

Findings: HasContext sub-structures

Example triples from two

'obvious' clusters (1 and 6)

	/c/fr/sapide/a	/c/en/literary
	/c/hu/szir?n/n	/c/en/literary
1	/c/ga/eo/n/wikt/en_3	/c/en/literary
	/c/af/elk/n	/c/en/literary
	/c/ga/gair/v/wikt/en_1	/c/en/literary

	/c/en/azodicarbonamide/n	/c/en/chemistry
	/c/en/ricinoleate/n	/c/en/chemistry
6	/c/fi/rikkiyhdiste/n	/c/en/chemistry
	/c/en/test/v/wikt/en_1	/c/en/chemistry
	/c/en/vinyl_acetate/n	/c/en/chemistry

Similar results

Another experiment: Understanding 'negation'

• Can we distinguish between a relation, its

negation and its 'unknowns' in a visual space?

• What if we train a classifier on the embeddings?

Results (Desires/NotDesires)

- Answer to the first question is no, though 'unknowns' are more distinctive
- Answer to the second question is yes
- May help explain why language models don't (or can't) do well on negation tasks without extra work

Review of bottom-up commonsense knowledge graphs: **Other KGs**

Filip Ilievski

Атоміс:

inferential knowledge in natural language form

https://mosaickg.apps.allenai.org/kg_atomic

Slides adapted from Sap et al. <u>https://homes.cs.washington.edu/~msap/acl2020-commonsense/</u>

Knowledge of causes and effects

• Humans have theory of mind, allowing us to

- make inferences about people's mental states
- understand likely events that precede and follow (Moore, 2013)
- AI systems struggle with *inferential* reasoning
 only find complex correlational patterns in data
 limited to the domain they are trained on

(Pearl; Davis and Marcus 2015; Lake et al. 2017; Marcus 2018)

JUDEA PEARL

AND DANA MACKENZIE

THE

BOOK OF

THE NEW SCIENCE OF CAUSE AND EFFECT

	Event	Type of relations	Inference examples	Inference dim.
		If-Event-Then-Mental-State	PersonX wanted to be nice PersonX will feel good PersonY will feel flattered	xIntent xReact oReact
	"PersonX pays PersonY a compliment"	If-Event-Then-Event	PersonX will want to chat with PersonY PersonY will smile PersonY will compliment PersonX back	xWant oEffect oWant
		If-Event-Then-Persona	PersonX is flattering PersonX is caring	xAttr xAttr
		If-Event-Then-Mental-State	PersonX wanted to be helpful PersonY will be appreciative PersonY will be grateful	xIntent oReact oReact
	"PersonX makes PersonY's coffee"	If-Event-Then-Event	PersonX needs to put the coffee in the filter PersonX gets thanked PersonX adds cream and sugar	xNeed xEffect xWant
		If-Event-Then-Persona	PersonX is helpful PersonX is deferential	xAttr xAttr
		If-Event-Then-Mental-State	PersonX wants to report a crime Others feel worried	xIntent oReact
	"PersonX calls the police"	If-Event-Then-Event	PersonX needs to dial 911 PersonX wants to explain everything to the police PersonX starts to panic Others want to dispatch some officers	xNeed xWant xEffect oWant
Information Science	1	If-Event-Then-Persona	PersonX is lawful PersonX is responsible	xAttr xAttr

Best-effort mappings to ConceptNet

- Wants: MOTIVATEDByGOAL, HASSUBEVENT, HAS-FIRSTSUBEVENT, CAUSESDESIRE
- Effects: Causes, HasSubevent, HasFirst-Subevent, HasLastSubevent
- Needs: MOTIVATEDBYGOAL, ENTAILS, HASPREREQ-UISITE
- Intents: MOTIVATEDByGOAL, CAUSESDESIRE, HAS-SUBEVENT, HASFIRSTSUBEVENT
- Reactions: Causes, HasLastSubevent, Has-Subevent
- Attributes: HASPROPERTY

COMET*i***: Commonsense Transformers for Automatic Knowledge Graph Construction**

Antoine Bosselut ^{\$} Hannah Rashkin ^{\$} Maarten Sap ^{\$} Chaitanya Malaviya ^{\$} Asli Celikyilmaz ^{\$} Yejin Choi ^{\$}

◇Allen Institute for Artificial Intelligence, Seattle, WA, USA
 ◆Paul G. Allen School of Computer Science & Engineering, Seattle, WA, USA
 ◆Microsoft Research, Redmond, WA, USA

Abstract

We present the first comprehensive study on automatic knowledge base construction for two prevalent commonsense knowledge graphs: ATOMIC (Sap et al., 2019) and ConceptNet (Speer et al., 2017). Contrary to many conventional KBs that store knowledge with canonical templates, commonsense KBs only store loosely structured open-text descriptions of knowledge. We posit that an important step toward automatic commonsense completion is the development of *generative* models of commonsense knowledge, and propose *COMmonsEnse Transformers* (COMET()) that learn to generate rich and

Building Common Sense KGs Is Hard

• Commonsense knowledge is

immeasurably vast, making it

- impossible to manually enumerate
- Commonsense knowledge is often implicit, and often can't be directly extracted from text

Slide by Antoine Bosselut

Traditional KB Completion

Gather training set of knowledge tuples Learn relationships among entities

(person, CapableOf, buy)

(Socher et al., 2013) (Bordes et al., 2013) (Riedel et al., 2013) (Toutanova et al., 2015) (Yang et al., 2015) (Trouillon et al., 2016) (Nguyen et al., 2016) (Dettmers et al., 2018) Predict new relationships

(person, CapableOf, **?**)

Store in knowledge graph

Slide by Antoine Bosselut

U<mark>SC</mark>Viterbi

COMET Idea

Gather training set of knowledge tuples Learn relationships among entities

TT

....

Predict new relationships

(person, CapableOf, **?**)

Store in knowledge graph

ATOMIC Input Template and ConceptNet Relation-only Input Template

s tokens		mask tok	ens	<i>r</i> token		o tokens
PersonX goes	to	the mall	[MASK]	<xintent></xintent>	to	buy clothes

ConceptNet Relation to Language Input Template

	s tokens	mask tokens		<i>r</i> tokens	mask	tokens	o to	kens
go	to mall	[MASK]	[MASK]	has prereq	uisite	[MASK]	have	money

(person, CapableOf, buy)

Symbolic Knowledge Graph

Knowledge stored as triples

Knowledge is not contextualized

Knowledge is incomplete

Symbolic Knowledge Graph

Knowledge stored as triples

Knowledge is not contextualized

Knowledge is incomplete

COMET Knowledge Base Transformer

Knowledge generated dynamically

Input format is natural language

Kai knew that things were getting out of control and managed to keep his temper in check

- Kai wants to avoid trouble
- Kai intends to be calm
- Kai stays calm
- Kai is viewed as cautious

	Seed Concept	Relation	Generated	Plausible
,	X holds out X's hand to Y	xAttr	helpful	\checkmark
	X meets Y eyes	xAttr	intense	\checkmark
lovel	X watches Y every	xAttr	observant	\checkmark
	X eats red meat	xEffect	gets fat	\checkmark
าร	X makes crafts	xEffect	gets dirty	\checkmark
	X turns X's phone	xEffect	gets a text	
VIIC	X pours over Y's head	oEffect	gets hurt	\checkmark
	X takes Y's head off	oEffect	bleeds	\checkmark
	X pisses on Y's bonfire	oEffect	gets burned	
	X spoils somebody rotten	xIntent	to be mean	
	X gives Y some pills	xIntent	to help	\checkmark
	X provides for Y's needs	xIntent	to be helpful	\checkmark
	X explains Y's reasons	xNeed	to know Y	\checkmark
	X fulfils X's needs	xNeed	to have a plan	\checkmark
	X gives Y everything	xNeed	to buy something	\checkmark
	X eats pancakes	xReact	satisfied	\checkmark
	X makes at work	xReact	proud	\checkmark
	X moves house	xReact	happy	\checkmark
	X gives birth to the Y	oReact	happy	\checkmark
	X gives Y's friend	oReact	grateful	\checkmark
titute	X goes with friends	oReact	happy	\checkmark
e e e e e e e e e e e e e e e e e e e	T T		4 44	/

rbi

Randomly selected nove generations from ATOMIC

Information Sciences Institute

Randomly selected novel generations from ConceptNet

Seed	Relation	Completion	Plausible
piece	PartOf	machine	\checkmark
bread	IsA	food	\checkmark
planet	AtLocation	space	\checkmark
dust	AtLocation	fridge	
puzzle	AtLocation	your mind	9
college	AtLocation	town	\checkmark
dental chair	AtLocation	dentist	\checkmark
finger	AtLocation	your finger	
sing	Causes	you feel good	\checkmark
doctor	CapableOf	save life	\checkmark
post office	CapableOf	receive letter	\checkmark
dove	SymbolOf	purity	\checkmark
sun	HasProperty	big	\checkmark
bird bone	HasProperty	fragile	\checkmark
earth	HasA	many plant	\checkmark
yard	UsedFor	play game	\checkmark
get pay	HasPrerequisite	work	\checkmark
print on printer	HasPrerequisite	get printer	\checkmark
play game	HasPrerequisite	have game	\checkmark
live	HasLastSubevent	die	\checkmark
swim	HasSubevent	get wet	\checkmark
sit down	MotivatedByGoal	you be tire	\checkmark
all paper	ReceivesAction	recycle	\checkmark
chair	MadeOf	wood	\checkmark
earth	DefinedAs	planet	\checkmark

Information Sciences Institute

ΠT	01	11	Ter		
U	21	<u>ر</u> ر	/1t	er	D1
Wikidata

90M nodes

wikidata Json dump size in Gb over time

8k properties

How to distill commonsense knowledge?

Slides from Ilievski et al. (2020). <u>Commonsense Knowledge in Wikidata</u>. Wikidata Workshop at ISWC 2020

Information Sciences Institute

Principles of Commonsense Knowledge

P1: Concepts, not entities

houses have rooms

Versailles Palace has 700 rooms

WD guidelines on entity capitalization

Principles of Commonsense Knowledge

P1: Concepts, not entities

houses have rooms

Versailles Palace has 700 rooms

WD guidelines on entity capitalization

P2: Common concepts

<u>Container</u> used for <u>storage</u> <u>Noma</u> subclass of <u>aphthous stomatitis</u>

Corpus frequency

Relation	#edges	Examples
subclass of (P279)	172,535	saxophone - woodwind instrument
instance of (P31)	141,499	happiness - positive emotion
part of (P361)	9,118	shower - bathroom
different from (P1889)	7,767	vein - artery
has part (P527)	6,252	senses - touch
cell component (P681)	5,607	cholesterol - cell membrane
property constraint (P2302)	5,180	votes received - integer constraint
facet of (P1269)	4,792	wind - weather
strand orientation $(P2548)$	4,345	sac-1 - forward strand
use (P366)	3,045	crystal ball - psychic reading
opposite of (P461)	3,028	political opposition - government
properties for this type (P1963)	2,382	human - date of birth
molecular function (P680)	2,369	protein kinase - kinase activity
see also (P1659)	2,344	position held - member of
sport $(P641)$	2,338	head stand - gymnastics
followed by (P156)	2,244	middle school - secondary school
follows (P155)	2,234	queen - jack
material used $(P186)$	2,047	ice cream cone - wafer
is a list of (P360)	1,914	list of major opera composers - human
Wikidata property (P1687)	1,746	president - head of government
has quality (P1552)	1,739	elder sister - female
said to be the same as $(P460)$	1,664	belief - conviction
field of this occupation (P425)	1,616	jockey - horse racing
biological process (P682)	1,509	hypothetical protein - cell differentiation
uses (P2283)	1,431	reading - written work

After step 1 & 2: 414 relations 421k edges

Principles of Commonsense Knowledge

P1: Concepts, not entities

houses have rooms

Versailles Palace has 700 rooms

WD guidelines on entity capitalization

P2: Common concepts

<u>Container</u> used for <u>storage</u> <u>Noma</u> subclass of <u>aphthous</u> stomatitis

Corpus frequency

P3: General-domain relations

wheel *is part* of a car

cholesterol <u>has component cell</u> membrane

Mapping to ConceptNet

Mapping general-domain relations to ConceptNet

Category	ConceptNet	Wikidata
distinctness	/r/DistinctFrom	different from (P1889)
antonymy	/r/Antonym	opposite of (P461)
synonymy	/r/Synonym	said to be the same as (P460)
similarity	/r/SimilarTo	partially coincident with (P1382)
derivation	/r/DerivedFrom	named after (P138), fictional analog of (P1074)
inheritance	/r/IsA	instance of (P31), subclass of (P279), subproperty of (P1647)
meronymy	/r/PartOf	part of (P361), *has part (P527), *has parts of the class (P2670)
material	/r/MadeOf	material used (P186), is a list of (P360), *has list (P2354)
attribution	/r/CreatedBy	*product or material produced (P1056)
utility	/r/UsedFor	use (P366), *uses (P2283), used by (P1535)
properties	/r/HasProperty	color (P462), has quality (P1552), properties of this type (P1963), Wikidata property (P1687), sex or gender (P21)
causation	/r/Causes	*has cause (P828), has effect (P1542), symptoms (P780)
ordering	/r/HasPrerequisite	*followed by (P156), follows (P155)
context	/r/HasContext	facet of (P1269), sport (P641), field of this occupation (P425), health specialty (P1995), competition class (P2094), genre (P136), studied by (P2579), field of work (P101), afflicts (P689), *practiced by (P3095), depicts (P180), main subject (P921)
other	/r/RelatedTo	see also (P1659), subject item of this property (P1629)

Wikidata-CS = 0.01% * Wikidata

	Wikidata-CS	Wikidata	Ratio
# nodes	71,243	84 million	0.08%
# edges	101,771	1.5 billion	0.01%

Commonsense Knowledge in Wikidata

shower part of bathroom

reading uses written work

queen follows jack

political opposition opposite of government

		2017-12-27	2018-12-10	2020-05-04
	/r/IsA	$31,\!668$	45,606 (144%)	72,707~(230%)
Has it	/r/PartOf	3,390	4,416~(130%)	7,938~(234%)
Πάδη	/r/HasContext	1,968	3,189~(162%)	6,152~(313%)
	/r/DistinctFrom	782	2,011~(257%)	4,934~(631%)
peen	/r/HasPrerequisite	413	1,965~(476%)	4,131~(1,000%)
_	/r/UsedFor	735	1,215~(165%)	2,469~(336%)
arowing	/r/Antonym	$1,\!109$	1,530~(138%)	2,184~(197%)
growing	/r/MadeOf	415	834 (201%)	1,426~(344%)
	/r/Synonym	478	655~(137%)	1,070~(224%)
over	/r/HasProperty	339	650~(192%)	1,049~(309%)
	/r/Causes	150	238~(159%)	651~(434%)
timo?	/r/DerivedFrom	190	293~(154%)	540~(284%)
	/r/SimilarTo	28	77 (275%)	345~(1,232%)
	/r/CreatedBy	51	68~(133%)	187~(367%)
	/r/Related To	33	40~(121%)	42~(127%)
	edges (Wikidata-CS)	41,769	62,787~(150%)	101,771~(244%)
	edges (Wikidata)	405,081,219	696,605,955 (172%)	1,105,944,515 (273%)
	nodes (Wikidata-CS)	$32,\!620$	$47,\!056$	71,243
formation Sciences Institute	nodes (Wikidata)	$42,\!187,\!222$	53,004,762	$84,\!601,\!621$

Never-Ending Language Learning (NELL)

NELL architecture

https://cacm.acm.org/magazines/2018/5/227193-never-ending-learning/fulltext

NELL statistics

NELL architecture

100M candidate beliefs

3M high-confidence facts

~3K predicates

https://cacm.acm.org/magazines/2018/5/227193-never-ending-learning/fulltext

https://cacm.acm.org/magazines/2018/5/227193-never-ending-learning/fulltext

Latest learned facts

Recently-Learned Facts twitter

Refresh

instance	iteration	date learned	confidence
translucent_paper is an office supply	1111	06-jul-2018	93.4 🏖 🕏
the_barbirolli_string_quartet is a musical artist	1111	06-jul-2018	99.2 🏠 🖏
private_support is an event outcome	1111	06-jul-2018	99.8 🏖 ኛ
vancouver_olympic_games is an instance of the olympics	1111	06-jul-2018	95.2 🏠 🖏
eddie_mathews is a person	1111	06-jul-2018	98.9 🏠 🖏
roswell_road is a street in the city atlanta	1116	12-sep-2018	93.8 🗳 🖏
james_madison is a U.S. politician who holds the office of secretary	1115	03-sep-2018	98.4 🏖 🕏
rice was born in the city orleans	1116	12-sep-2018	100.0 🏠 🖏
<u>republic</u> is a country <u>also known as</u> <u>china</u>	1111	06-jul-2018	100.0 🗳 🖑
dodge is a specific automobile maker dealer in utah	1115	03-sep-2018	93.8 🏠 🖏

WebChild

Automatic acquisition and organization of common sense

>18M assertions

>2M disambiguated concepts and activities

Tandon et al. (2017). <u>Webchild 2.0: Fine-grained commonsense knowledge distillation</u>. ACL 2017

WebChild relations

1. object properties

hasTaste, hasShape, evokesEmotion

2. comparative

fasterThan, smallerThan

3. part-of

member of, physical part of, substance of

4. activities

WebChild label propagation

WebChild activity extraction

mountain: a land mass that projects well above its surroundings; higher than a hill

Example

Demo

TYPE OF	natural elevation		
	size to object, under the category of mountaineering		
PHYSICAL PROPERTIES	large high heavy cold hard More		
ABSTRACT PROPERTIES	elegant old safe holy risky More		
COMPARABLES	mountain,hill mountain,mount mountain, high hill valley,mountain More		
HAS PHYSICAL PARTS	mountain peak mountainside slope tableland hill More		
HAS SUBSTANCE	mixture metallic element material page wood More		
IN SPATIAL PROXIMITY	coast tunnel lake sea river More		
ACTIVITIES	climb mountain cross mountain move mountain see mountain ascend mountain		

Visual Genome

108k images

annotated with scene graphs

canonicalized to WordNet senses

Krishna et al. (2017). <u>Visual genome: Connecting language and vision using</u> crowdsourced dense image annotations. International journal of computer vision

Components

- 1. region descriptions
- 2. objects
- 3. attributes
- 4. relationships
- 5. region graphs
- 6. scene graphs
- question-answer pairs 7.

Statistics

- 108,077 images
- 50 descriptions per image
- objects
 - 3.8M in total (35 objects per image)
 - 33,877 categories (synsets)
- attributes
 - 26 per image
 - 68,111 categories (synsets)
- relationships
 - 21 per image
 - 42,374 categories (synsets)
- QA pairs
 - **1.7 million**

Top 10 synsets

Top 10 words

Top 10 object categories

Information Sciences Institute

Visual Genome as a KG

- **Objects = WordNet senses**
- 'red shoe' is the label
- shoe#n#1 is the node

Visual Genome as a KG

- **Objects = WordNet senses**
- 'red shoe' is the label
- shoe#n#1 is the node
- **Relationships = proximity**
- 'on top of' is the label
- /r/LocatedNear is the relation

Visual Genome as a KG

- **Objects = WordNet senses**
- 'red shoe' is the label
- shoe#n#1 is the node
- **Relationships = proximity**
- 'on top of' is the label
- /r/LocatedNear is the relation

Attributes

(POS=v) /r/CapableOf (POS=a) mw:MayHaveProperty (POS=n) -

Some other CKGs

WordNet

Tuple KB

FrameNet

Quasimodo KB

VerbNet

PropStore

ROGET

https://caninehq.com/best-dog-breeds-for-playing-frisbee/

Dog and Frisbee

Wikidata:

https://sqid.toolforge.org/#/view?id=Q144 (dog)

https://sqid.toolforge.org/#/view?id=Q131689 (frisbee)

ConceptNet:

https://www.conceptnet.io/c/en/dog

https://www.conceptnet.io/c/en/dogs

http://conceptnet.io/c/en/frisbee

https://www.conceptnet.io/c/en/dogs_catching_frisbees

VisualGenome

https://visualgenome.org/VGViz/explore?query=throwing%20frisbee%20dog

ATOMIC:

https://mosaickg.apps.allenai.org/kg_atomic/?I=PersonX%20throws%20a%20frisbee COMET:

comet dog

https://mosaickg.apps.allenai.org/comet_atomic/?I=PersonX%20throws%20frisbee

DICE

https://dice.mpi-inf.mpg.de/subject/dog

PersonX throws frisbee ATOMIC or COMET?

PersonX throws frisbee

PersonX throws frisbee ATOMIC or COMET?

PersonX throws frisbee

Catch and Throw

Wikidata:

https://sqid.toolforge.org/#/view?id=Q17144564 (throw) https://sqid.toolforge.org/#/view?id=Q91553195 (catch)

ConceptNet:

https://www.conceptnet.io/c/en/throw

https://www.conceptnet.io/c/en/catch

VisualGenome

https://visualgenome.org/VGViz/explore?query=catch%20frisbee

08:00 PST	1 hr 50 mins	Part I - Review of CSKGs
	15 min	Introduction to commonsense knowledge (slides) - Pedro
	25 min	Review of top-down commonsense knowledge graphs (slides) - Mayank
	70 min	Review of bottom-up commonsense knowledge graphs (slides+demo) - Mayank, Filip, Pedro
	10 min	Break
10:00 PST	45 min	Part II - Integration and analysis
	35 min	Consolidating commonsense graphs (slides) - Filip
	10 min	Consolidating commonsense graphs (demo) - Pedro
	10 min	Break
10:55 PST	1 hr 05 mins	Part III - Downstream use of CSKGs
	50 min	Answering questions with CSKGs (slides+demo) - Filip
	15 min	Wrap-up (slides) - Mayank

