Agenda

08:30 PST | 10 mins | Introduction to commonsense knowledge (Filip)

08:40 PST | 25 min Part | - Axiomatization of commonsense knowledge (Mayank)

09:05 PST | 40 min Part Il - Consolidating commonsense knowledge (Filip)

09:45 PST | 15 min Break

10:00 PST | 45 min Part Ill - Extracting and contextualizing commonsense knowledge (Simon)
10:45 PST | 45 min Part IV - Language models, QA, and evaluation challenges (Antoine)

11:30 PST | 15 min Way forward: KGs+LMs+axioms? (Filip)
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The way forward

Filip llievski
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Why axiomatize commonsense?

e Fundamental reasons: is our conception of common sense sound
and complete? Put another way, are there examples of common
sense that can’t be modeled by one or more of the proposed
axioms?

e Axiomatization can provide explainability and also help us think
about common sense from a cognitive-science perspective

e Axiomatization is a type of top-down knowledge that has become
increasingly necessary to complement bottom-up knowledge
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Top-down axiomatization

Scales, time, spaces and dimension, material, causal

connections, (in other domains) force, shape, systems and

functionality, hitting, abrasion, wear (and related concepts) | BremCon

Competency vs. coverage theories

Naive physics vs. psychology theories

General Knowledge about Various Domains

Specific data, facts, and observations
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Gordon and Hobbs (2004)
CYC (Lenat, 1995)



DeSign Approach GenericskKB

COMET

Atomic

Quasimodo KB

WebChild bottom up
ConceptNet
NELL
Wikidata )
OpenCye > dt:VSn
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Aspects Or Common

GenericskB
Sense Knowledge o
Representation
o symbolic Atomic

o natural language

.O . .neural Quasimodo KB
Acquisition method
o expert input WebChild

o crowdsourcing
o information extraction, machine learning

ConceptNet

Knowledge type

o entities and actions NELL

o inferential/rules
Topic Wikidata

o general

o social

OpenCyc
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Consolidating Knowledge Graphs

ConceptNet =< semantic network
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Dimensions (=Bottom-up axioms!)

Dimension | ATOMIC ConceptNet WebChild Other Wikidata
IsA perspective _on (FN) subClassOf
taxonomic InstanceOf hasHypernymy inheritance (FN) instanceOf
MannerOf hypernym (WN) description
PartOf HasPart (HP)
HasA physicalPartOf meronym (WN) has part
part-whole MadeOf memberOf holonym (WN) member of
AtLocation* substanceOf material used
AtLocation* location location
spatial LocatedNear spatial anatomical location
creation CreatedBy creator
ReceivesAction
utility UsedFor hassynsetmember using (FN) used by
CapableOf activity use
~NotCapableOf participant uses
xIntent CausesDesire
xWant MotivatedByGoal
desire/goal oWant Desires
—NotDesires
ObstructedBy
shape
size
quality HasProperty color frame _element (FN)
—NotHasProperty taste property color
xAttr SymbolOf temperature has quality
comparative 6.3k relations
xNeed HasFirstSubevent subframe (FN)
xEffect HasLastSubevent time precedes (FN)
temporal oEffect HasSubevent emotion inchoative _of (FN)
xReact HasPrerequisite prev causative_of (FN) has cause
oReact Causes next has effect
Entails
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Increasing the coverage of CSK from text

Open IE
headword

(1) (23)
— Sentence TuDLigg;ir;“on‘
pe—r Selection ——=
- ——| extraction
L > — [
_*-'., Search |[==| a\‘
engine ;‘J 2
Domain- :
Corpus appropriate  Open
sentences IE

tuples

(4) (5) (6)
Refinement Phrasal Canonical
and scoring tuple schema

regeneration induction

=) —
3 (@\\ 7| g'

High =7 %, High J Final

Turk+ 4 recision precision Learn & high
auto-  peadword phrasal  apply precision
scoring  tuples tuples schema KB

mapping rules

Practical human knowledge

(car, slip on, ice)

Problems linked to a subject

(pen, can, leak)

Emotions linked to events

(divorce, can, hurt)

Human behaviors

(ghost, scare, people)

Visual facts

(road, has_color, black)

Cultural knowledge (USA)

(school, have, locker)

Comparative knowledge

(light, faster than, sound)

Pipeline Example Outputs:

Inputs: corpus + vocabulary + types
1. Sentence selection:
“In addition, green leaves have chlorophyll.”)
2. Tuple Generation:
(“green leaves” “have
3. Headword Extraction:
(“leat” “have” “chlorophyll”)
4. Refinement and Scoring:
(“leaf™ “have” “chlorophyll”) @0.89 (score)
5. Phrasal tuple generation:
(“leaf” “have” “chlorophyll”) @0.89 (score)
(“green leaf” “have” “chlorophyll”) @0.89 (score)
6. Relation Canonicalization:

(“leaf™ “have” “chlorophyll”) @0).89 (score)
(“green leaf” “have” “chlorophyll”’) @0.89 (score)
(“leaf” “contain” “chlorophyll”) @0.89 (score)
(“green leaf” “contain” “chlorophyll”) @0.89 (score)

LIRS

chlorophyll”)
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Facts about 'polar bear"
Concept-facets dependencies: V(s,p) € S X P

Click on a property for more details on the statement. Click on a column header to use it as a sorting key.

Show scores as: Typlcal(s’ p) = Plau51ble(s, P)

Filter by source:[ ConceptNet ][ Quasimodo ] Salient(s, p) = Plausible(s, p)
Property Score Plausible Typical Remarkable Salient Source Typical(s 2 p) A Remarkable(s, p) == Salient(s, p)

adapt in summer 0.83 0.19 0.54 0.15 0.15 Quasimodo

adapt to environment 0.83 0.52 0.38 0.93 0.76 Quasimodo Sibllng dependencies: V(sl X p) (= S X P, VSZ (= SlbhngS(Sl)
adapt to tundra 0.83 0.10 0.40 0.14 0.10 Quasimodo

be at in arctic 0.67 0.17 0.29 0.93 0.18 ConceptNet Remarkable(s s P) — ﬁRemarkable( 52, p)
be at risk 0.83 0.62 0.54 0.88 0.80 Quasimodo

be at zoo 0.75 0.10 0.03 0.39 037 ConceptNet TypiC&l(Sl ’ p) = —Remar kable(sz, p)
be found in arctic 0.91 0.34 0.44 0.51 0.32 Quasimodo

be important to canada 092 043 0.70 027 029 Quasimodo —'Plausible(sl X p) A Plausible(SZ, p) = Remarkable(sz, p)
be in danger 0.82 0.91 0.93 ERTAT 0.97 Quasimodo

be under threat 0.83 0.83 0.80 0.85 0.95 Quasimodo AR

be used to snow 046 020 051 017 08)  Concepthet - r—cause—{ _ duetohunting |
be white 046 0.07 0,68 0.16 0.13 Conceptiet — degree — extremely |

| mud  |——manner—f as sunscreen

elephant uses \ —
[ tools | —other qty. — with its trunk
] ] i
E ‘ to spray on its body
nrichin
A= trans. obj —’I into its trunk
with context

consumes 300kg of food temporal —-I everyday
is =|| sensitive l— degree —'[ very

consists of —{__grass |

joadsysey

Information Sciences Institute




Limitations of (symbolic) CSKGs

- Situations rarely found as-is in commonsense knowledge graphs
- Connecting to knowledge graphs can yield incorrect nodes

- Suitable nodes are often uncontextualized

X keeps X's temper

Kai knew that things were getting
out of control and managed to
keep his temper in check




Alleviating the KG limitations with
commonsense transformers

- Learn implicit knowledge at scale from language models and web-scale text
- Learn explicit structure of knowledge from symbolic knowledge graphs

- Resulting knowledge model generalizes structure to other concepts
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Kai knew that things
were getting out of
control and managed to
keep his temper in check

Root Node s SN s
Generated Commonsense

Inference Nodes Bosselut et al., 2020

Try to help

7 Sink in the [Person?]. Savalbirasalf Wait for help ;
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Limitations of Language Models
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Combination: Pre-training language
models with KGs and dimensions

{ dimension } { CSKG } { RoBERTa }




Combination: Pre-training language

models with KGs and dimensions

dimension J

)

{

temporal

Dimensions | CSQA SIQA

Baseline 45.0 47.3

+part-whole 63.0(x1.4) 52.6(x1.9)
+taxonomic 62.6(x1.4) 52.2(x1.6)
+lexical 49.9(£2.9) 49.0(=0.4)
+distinctness 57.2(£0.5) 50.2(x1.5)
+similarity 61.4(x0.8) 53.5(+0.6)
+quality 65.7(x0.5)  60.0(x0.7)
+utility 67.4(£1.0) 54.8(x£0.7)
+creation 49.9(x+1.1) 47.8(+0.2)
+temporal 67.3(x0.3) 62.6(+0.9)
+relational-other | 58.2(+1.7) 51.3(+1.7)
+spatial 63.3(+0.2) 53.1(x0.3)
+desire/goal 65.0(£1.8)  60.0(x0.6)
+all 66.2(x1.4) 61.0(x£0.7)

[

CSKG }

{

\

RoBERTa

Question: losing weight is for?

A: being healthier B. embedded software C. buying things at store

Distractor sampling

(gaining weight, CauseDesire, change appearance) )(
| (losing weight, UsedFor, feeling better)

Sample

| (losing weight, UsedFor, being healthier) | (relaxing, UsedFor, fesling better) 3¢

(payment counter, UsedFor, buying things at store)
# I (embedded system, UsedFor, embedded software)

| losing weight is for being healthier. *

Lexicalization *

Question: losing weight is for?
A: being healthier B. embedded software C. buying things at store

Ma et al. (2021), llievski et al. (2021)

Dimensions Dev
part-whole 675
taxonomic 57.0
lexical 90.1
distinctness 17.3
similarity 65.6
quality 45.5
utility 67.9
creation 82.4
temporal 47.2
relational-other | 37.6
spatial 56.9
desire/goal 48.0
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- Way Forward
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https://usc-isi-i2.github.io/AAAI21workshop/

