
1

Speculative Plan Execution for
Information Agents

Greg Barish
University of Southern California

June 30th, 2003

Prof. Craig Knoblock (chair)
Dr. Steven Minton, Fetch Technologies
Prof. Paul Rosenbloom
Prof. Cyrus Shahabi
Prof. Jean-Luc Gaudiot (external member)

Thesis Committee

2

Outline
1. Introduction and motivating example

2. Thesis statement & contributions

3. Expressive & efficient information agent plans

4. Speculative plan execution

5. Value prediction for speculative execution

6. Related work

7. Summary & future work

3

• Automate the querying of data networks (e.g., the Web)
– Gather, combine & process data from multiple remote sources

(e.g., Web sites)

• Sample information agent task:
– Buying a used car: safety ratings and reviews for certain criteria
– Example:

• 2002 Midsize coupe/hatchbk, $4K-$12K, no Oldsmobiles

Information agents

combinecombine
filterfilter

monitormonitor

Information agent

extractextract

4

The CarInfo agent
1. Locate cars that

meet criteria
- Edmunds.com

2. Filter out
Oldsmobiles

5

The CarInfo agent
1. Locate cars that

meet criteria
- Edmunds.com

2. Filter out
Oldsmobiles

3. Gather safety
reviews for each

- NHSTA.gov

6

The CarInfo agent
1. Locate cars that

meet criteria
- Edmunds.com

2. Filter out
Oldsmobiles

3. Gather safety
reviews for each

- NHSTA.gov

4. Gather detailed
reviews of each

- ConsumerGuide.com

7

ConsumerGuide navigation
• ConsumerGuide requires navigation from

original search results to desired answer

8

Agent Execution Performance
• Standard von Neumann model

– Execute one operation at a time
– Each operation processes all of its input before

output is used for next operation
– Assume: 1000ms per I/O op, 100ms per CPU op

• Execution time = 13.4 sec

time (seconds)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Select
Edmunds

NHTSA
CG Search

CG Summary
CG Full

CPU-bound operation
I/O-bound operation

9

MUL

MUL

ADD

a b c d

Streaming dataflow model
• Dataflow

– Operations scheduled by data availability
• Independent operations execute in parallel
• Maximizes horizontal parallelism

– Dataflow computers [Dennis 1974] [Arvind 1978]

– Example: computing

• Streaming
– Operations emit data as soon as possible

• Independent data processed in parallel
• Maximizes vertical parallelism

– Network query engines
[Ives et al. 1999] [Naughton et al. 2000] [Hellerstein et al. 2001]

Producer

Consumer

(a*b) + (c*d)

MUL MUL

ADD

a b c d

10

Dataflow-style CarInfo agent plan

WRAPPER
ConsumerGuide

Search

(Midsize coupe/hatchback,
$4000 to $12000,
2002)

((http://cg.com/summ/20812.htm),
other summary review URLs)

((http://cg.com/full/20812.htm),
other full review URLs)

search
criteria

WRAPPER
ConsumerGuide

Summary

WRAPPER
ConsumerGuide

Full Review

(car reviews)
WRAPPER

Edmunds
Search

((Oldsmobile Olero),
(Dodge Stratus),
(Pontiac Grand Am),
(Mercury Cougar))

JOIN

SELECT
maker !=

"Oldsmobile"

WRAPPER
NHTSA
Search

(safety reports)

((Dodge Stratus),
(Pontiac Grand Am),
(Mercury Cougar))

11

Streaming dataflow performance

• Improved, but plan remains I/O-bound (76%)
• Main problem: remote source latencies

– Meanwhile, local resources are wasted

• Complicating factor: binding constraints
– Remote queries dependent on other remote queries

• Question: How can execution be more efficient?

time (seconds)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Select
Edmunds

CG Search
CG Summary

CG Full
Join

12

Thesis statement

Speculative execution of
streaming dataflow plans increases
the degree of run-time parallelism
for information agents.

13

Speculative plan execution
• Execute operators ahead of schedule

– Predict data based on past execution

• Allows greater degree of parallelism
– Solves the problem caused by binding constraints

time (seconds)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Select
Edmunds

CG Search
CG Summary

CG Full
Join

GOAL

14

Contributions of thesis
• Expressive plan language & efficient execution system

for information agents
– Dataflow plan language that enables more than basic querying
– Thread-pool model of streaming dataflow execution

• An approach to speculative plan execution
– Safe & fair
– Yields arbitrary speedups
– Algorithm for the automatic transformation of agent plans

• An approach to value prediction
– Combines caching, classification, and transduction
– Better accuracy and space efficiency than strictly caching

15

Outline
1. Introduction and motivating example

2. Thesis statement & contributions

3. Expressive & efficient information agent plans

4. Speculative plan execution

5. Value prediction for speculative execution

6. Related work

7. Summary & future work

16

Expressive agent plan language
• Operators support:

– Web data gathering
– Data manipulation

• and...
– Conditional execution
– Monitoring
– Async communication
– Agent management
– Extensibility

• Subplans
– Modularity, reusability
– Recursive subplans

17

Expressing the CarInfo agent plan
PLAN car-info {
INPUT: criteria
OUTPUT: reviews-and-ratings
BODY {
Wrapper ("Edmunds", criteria : cars)
Select (cars, "maker != 'Oldsmobile'" : filtered-cars)
Wrapper ("NHTSA", filtered-cars : safety-ratings)
Wrapper ("CG Search", filtered-cars : summary-urls)
Wrapper ("CG Summary", summary-urls : full-urls)
Wrapper ("CG Full", full-urls : car-reviews)
Join (safety-ratings, car-reviews, "l.make=r.make and

l.model=r.model" : reviews-and-ratings)
}

}

18

Streaming dataflow executor

Plan operators
(e.g., Wrapper, Select, etc.)

Thread
Pool

3

2

1

Plan
Input

Plan
Output

(Midsize cpe/hatchbk,
$4000 to $12000,
2002)

WRAPPER
Edmunds

Search

((Oldsmobile Olero),
(Dodge Stratus),
(Pontiac Grand Am),
(Mercury Cougar))

SELECT
maker !=

"Oldsmobile"
Example:

• Thread pool architecture
– Enables dynamic parallelism without losing control

19

Experimental results
• Hypothesis #1

– Language and executor enable
efficient information agents

• Hypothesis #2:
– Language is more expressive

than query languages of other
network query engines

• Hypothesis #3:
– Added expressivity does not

detract from performance

0
10000
20000
30000
40000
50000
60000
70000
80000

First tuple Last tuple

Ti
m

e
(m

s)

D-
D+S-
D+S+

0

20000
40000

60000

80000

100000
120000

140000

0 3000 6000 9000 12000

Time (seconds)

C
el

l u
pd

at
es

Telegraph
Theseus-3
Theseus-6
Theseus-10

20

Outline
1. Introduction and motivating example

2. Thesis statement & contributions

3. Expressive & efficient information agent plans

4. Speculative plan execution

5. Value prediction for speculative execution

6. Related work

7. Summary & future work

21

How to speculate?
• General problem

– Means for issuing and confirming predictions

• Two new operators
– Speculate: Makes predictions based on "hints"

– Confirm: Prevents errant results from exiting plan

Speculate
answers

hints

confirmations

predictions/additions

Confirm
confirmations

probable results
actual results

22

J
SW

WWW

W

BEFORE

How to speculate?
• Example: CarInfo

– Make predictions about cars based on search criteria
– Makes practical sense:

• Same criteria will always yield same cars

23

AFTER

How to speculate?
• Example: CarInfo

– Make predictions about cars based on search criteria
– Makes practical sense:

• Same criteria will always yield same cars

J
SW

W
Speculate

hints
predictions/additions

confirmations
answers

W

Confirm

W

W

24

Detailed example

J
SW

W
Speculate

W

Confirm

W

W

2002
Midsize coupe
$4000-$12000

Time = 0.0 sec

25

Issuing predictions

J
SW

W
Speculate

W

Confirm

W

W

Oldsmobile Olero T1
Dodge Stratus T2
Pontiac Grand Am T3
Mercury Cougar T4

Time = 0.1 sec

26

Speculative parallelism

J
SW

W
Speculate

W

Confirm

W

W

Dodge Stratus T2
Pontiac Grand Am T3
Mercury Cougar T4

Time = 0.2 sec

27

Answers to hints

J
SW

W
Speculate

W

Confirm

W

W

Oldsmobile Olero
Dodge Stratus
Pontiac Grand Am
Mercury Cougar Time = 1.0 sec

28

Continued processing

J
SW

W
Speculate

W

Confirm

W

W

T1
T2
T3
T4

Time = 1.1 sec

Additions (corrections), if any

29

Generation of final results

J
SW

W
Speculate

W

Confirm

W

W

Dodge Stratus (safety) (review) T2
Pontiac Grand Am (safety) (review) T3
Mercury Cougar (safety) (review) T4

Time = 4.2 sec

30

Confirmation of results

J
SW

W
Speculate

W

Confirm

W

W

Dodge Stratus (safety) (review)
Pontiac Grand Am (safety) (review)
Mercury Cougar (safety) (review)

Time = 4.3 sec

31

Safety and fairness
• Safety

– Confirm blocks predictions (and results of) from
exiting plan before verification

• Fairness
– CPU

• Speculative operations executed by "speculative threads"
– Lower priority threads

– Memory and bandwidth
• Speculative operations allocate "speculative resources"

– Drawn from "speculative pool" of memory
– Other solutions exist, such as RSVP (Zhang et al 1994)

32

• Cascading speculation
– Single speculation allows a max speedup of 2

• Time spent either speculating or confirming

– Cascading speculation allows arbitrary speedups
• Up to the length of the longest plan flow

Getting better speedups

W

a
W W

b c
W

d
W W

e f
W

g
W W

h i
W

j
W W W W W W W W W W

S S S S S S S S S

C

33

Cascading speculation in CarInfo

• Use predicted cars to speculate about the
ConsumerGuide summary and full URLs

• Optimistic performance
– Execution time: max {1.2, 1.4, 1.5, 1.6} = 1.6 sec
– Speedup over streaming dataflow: (4.2/1.6) = 2.63

W

J

SW

W

SPEC
CONF

SPEC

W

WSPEC

34

Automatic plan transformation
• Amdahl's Law:

– Focus on most expensive path (MEP)

• Basic algorithm
1. Find MEP
2. Find best candidate speculative plan transformation
3. IF no candidate found, THEN exit
4. Transform plan accordingly
5. REPEAT

• The "best" candidate
– The one with the highest potential speedup

• Algorithm assumes some addtl speculative overhead
– Function of the amount of data speculated about

35

Web agent experiments

0.00

1.00

2.00

3.00

4.00

CarInfo RepInfo TheaterLoc FlightStatus StockInfo

0.00

1.00

2.00

3.00

4.00

CarInfo RepInfo TheaterLoc FlightStatus StockInfo

Average
speedup

(first tuple)

Average
speedup

(last tuple)

50% correct

100% correct

36

Distributed database experiments
• TPC-H benchmark

– Adhoc business queries for an order-entry schema
– Modeled each entity (table) in the schema as a

remote source
• Experiment

– Varied latency and database scale
– Tested on recurring queries

2000ms

4000ms

6000ms

8000ms

10000ms

Theoretical
max

S
pe

ed
up

1
2
3
4
5
6
7

Q2 Q3 Q4 Q5 Q7 Q8 Q9 Q10 Q12 Q16 Q17 Q19 Q20

TPC-H query

37

Outline
1. Introduction and motivating example

2. Thesis statement & contributions

3. Expressive & efficient information agent plans

4. Speculative plan execution

5. Value prediction for speculative execution

6. Related work

7. Summary & future work

38

Value prediction
• Better value prediction = better speedups

• Prediction capability

• Examples:

Edmunds car list from search criteria
2002 Midsize coupe 4K-12K
Olds Olero, Dodge Stratus, Pontiac Grand Am, Mercury Cougar

ConsumerGuide full review URL from summary URL
http://cg.com/summary/20812.htm
http://cg.com/full/20812.htm

Category Hint Prediction
A Previously seen Previously seen
B Never seen Previously seen
C Never seen Never seen

H
P

5K-12K ?

http://cg.com/summary/12345.htm ?

39

Value prediction techniques
• Caching

– Associate a hint with a predicted value

• Classification
– Use features of a hint to predict value
– EXAMPLE: Predicting car list from Edmunds

type = SUV: (Nissan Pathfinder, Ford Explorer)
type = Midsize
:...min <= 10000: (Olds Olero, Dodge Stratus)

min > 10000: (Honda Accord, Toyota Camry)

Year Type Min Max Car list
2002 Midsize 8000 15000 (Oldmobile Olero, Dodge Stratus)
2002 Midsize 7500 14500 (Oldmobile Olero, Dodge Stratus)
2002 SUV 14000 20000 (Nissan Pathfinder, Ford Explorer)
2001 Midsize 11000 18000 (Honda Accord, Toyota Camry)
2002 SUV 18000 22000 (Nissan Pathfinder, Ford Explorer)

Cache

Decision list

40

1
"http://cg.com/summary/" :

ε : COPY

3
"." :

2
ε : COPY

1 2 3 4 5

Value prediction techniques (cont'd)

• Transduction
– Transducers are FSA that translate hint into prediction

http://cg.com/summary/20812.htm

http://cg.com/full/20812.htm

To create full review URL:

1. Insert "http://cg.com/full/"

2. Extract & insert the dynamic
part of the summary URL (e.g.,
20812)

3. Insert ".htm"

41

Value transducers
• Synthesize predictions from hints

• Identify predicted value "templates"
– Alternating seq of STATIC/DYNAMIC elements

• Value transducers built from templates
– State transitions (arcs) = high-level operations:

• INSERT, CACHE, CLASSIFY, TRANSDUCE (hint chars)

http://cg.com/summary/20812.htm

http://cg.com/full/20812.htm

1
STATIC

2
DYNAMIC

3
STATIC

Dodge Stratus

TRANSDUCE

http://cg.com/summary/20812.htm

CACHE or CLASSIFY

1
STATIC

2
DYNAMIC

3
STATIC

42

Learning value transducers
• Identify STATIC/DYNAMIC template

– LCS-based approach (Hirschberg 1975) to identify
answer template

• For each STATIC element,
– Construct INSERT arc to next automata state

• For each DYNAMIC element,
– Construct TRANSDUCE, CLASSIFY, or CACHE

arc to next automata state
• Inducing character-level hint transducer also requires

identifying a template -- from the hints

43
?

Detailed example: CarInfo URLs

http://cg.com/summary/20812.htm

ANSWERS:

HINTS:

TEMPLATE

http://cg.com/full/[DYNAMIC].htm

http://cg.com/summary/12345.htm

http://cg.com/full/20812.htm

TRANSDUCE

http://cg.com/full/12345.htm

TRANSDUCE

44

Experimental results
• More space efficient than strictly caching

Hint classification
(CarInfo summary review URL)

Hint transduction
(CarInfo full review URL)

Number of examples Number of examples

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

2 10 100

0.00%

20.00%

40.00%

60.00%

200 400 600 800 1000

Space savings
(over caching)

45

Experimental results
• Better accuracy than strictly caching

Car-summary accuracy
Rep-list accuracy
Phone-state accuracy

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

200 400 600 800 1000

Number of new examples

A
cc

ur
ac

y

Predictor Average number of
examples required

Car-Full 3
Rep-Graph 8
Phone-Detail 3

Hint classification Hint transduction

46

Outline
1. Introduction and motivating example

2. Thesis statement & contributions

3. Expressive & efficient information agent plans

4. Speculative plan execution

5. Value prediction for speculative execution

6. Related work

7. Summary & future work

47

Related Work
• Efficient agent execution

– Dataflow computers [Dennis 1974] [Arvind et al. 1978]
• Parallel programming languages (Val, Id, SISAL, Haskell)
• Languages for embedded systems (Verilog, VHDL)

– Network query engines
• Tukwila [Ives et al. 1999] Niagara [Naughton et al. 2001]

Telegraph [Hellerstein et al. 2001]

– More general agent executors
• RPL [McDermott 1991], RAPs [Firby 1994], PRS-Lite [Myers et al. 1996]

• Speculative execution
– Approximate & partial query results [Hellerstein et al. 1997]

[Shanmugasundaram et al. 2000] [Raman and Hellerstein 2001]

– Executing anticipated actions in advance
• Continual computation [Horvitz 2001], time-critical decision making

[Greenwald and Dean 1994]

48

Related Work
• Speculative execution (cont'd)

– Predicting commands
• Command line prediction [Davison and Hirsh 2001], assisted browsing

[Lieberman 1995]

– Other types of speculative execution
• File system prefetching [Chang and Gibson 1999], control speculation in

workflow processing [Hull et al. 2000]

– Network prefetching

• Learning value predictors
– Value predition as speedup learning [Fikes et al. 1972], [Mitchell 1983],

[Minton 1988]

– Transducer learning [Oncina et al. 1994] [Hsu and Chang 2001]

– URL prediction [Zuckerman et al. 1999] [Su et al. 2000]

49

Outline
1. Introduction and motivating example

2. Thesis statement & contributions

3. Expressive & efficient information agent plans

4. Speculative plan execution

5. Value prediction for speculative execution

6. Related work

7. Summary & future work

50

Summary of contributions
• An expressive language and efficient

execution system for information agents

• An approach to speculative execution of
information agent plans
– Can yield arbitrary speedups
– Safe, fair

• Value prediction approach that combines
caching, classification, and transduction
– More accurate & space efficient than strictly caching

51

Future work
• Learning to compute speculative overhead

• Exploring more value prediction strategies
– Example: Stride value prediction

• Learning loop increments (e.g., [1,2,3], [2,4,6])
• Similar to learning ["...page=1", "...page=2"] for URLs

• Predictor compression
– Probabilistic classifiers

• Speculative execution of other types of agents
– Example: Robot soccer agents

