Feature Selection Methods For Understanding Business Competitor Relationships

Rahul Gupta¹, Jay Pujara¹, Craig Knoblock¹, Shushyam Sharanappa¹, Bharat Pulavarti¹, Gerard Hoberg¹, Gordon Phillips²
1: University of Southern California; 2: Dartmouth College

Data Science for Macro-modeling with Financial and Economic Data
6/15/18
Funded by National Science Foundation under grants 1561057 and 1561068.
What is competition?

• Products and differentiation (Hotelling, 1929)

• Production processes and industries (Pearce, 1957)

• Capital structure and financial performance (Fama & French, 1997)

• Co-occurrence in text and queries (Lee+, 2015)
Why do we care about competition?
How Does Data Science Keep Up?

- "Cloud"
- "Ridesharing"
- "Blockchain"
- Need for data-driven approaches that adapt to competition
Prior work: Text-Based Network Industry Classes

• Approach:
 – Use text from the business descriptions of SEC filings
 – Filter to remove non-noun phrases, locations, frequent terms
 – Use Jaccard similarity of text

• Drawbacks:
 – Restricted to public firms
 – SEC filings lack detail and have limited text
Web Text-Based Network Industry Classification

• Key idea: use company webpages instead of SEC filings

• Massive data collection:
 – 400K companies
 – 20 years
 – 8TB compressed text

• Developing more scalable comparison approaches

• Open question: how informative are company webpages?
Comparing SEC filings and Company Webpages

Frequency Distribution (Number of Words in Description)

200K Unique Words
Comparing SEC filings and Company Webpages

1.7M Unique Words
Comparison of Webpage Words

<table>
<thead>
<tr>
<th>Industry</th>
<th>N</th>
<th># words (std. dev)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemicals</td>
<td>92</td>
<td>53K (178K)</td>
</tr>
<tr>
<td>Cons. Durables</td>
<td>78</td>
<td>38K (42K)</td>
</tr>
<tr>
<td>Cons. Nondurables</td>
<td>140</td>
<td>37K (45K)</td>
</tr>
<tr>
<td>Energy</td>
<td>156</td>
<td>22K (61K)</td>
</tr>
<tr>
<td>Finance</td>
<td>992</td>
<td>16K (26K)</td>
</tr>
<tr>
<td>Health</td>
<td>617</td>
<td>25K (27K)</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>314</td>
<td>36K (64K)</td>
</tr>
<tr>
<td>Misc</td>
<td>432</td>
<td>28K (32K)</td>
</tr>
<tr>
<td>Retail</td>
<td>310</td>
<td>68K (119K)</td>
</tr>
<tr>
<td>Tech&Bus Equip</td>
<td>622</td>
<td>46K (56K)</td>
</tr>
<tr>
<td>Telecom</td>
<td>89</td>
<td>28K (21K)</td>
</tr>
<tr>
<td>All</td>
<td>3907</td>
<td>32K (60K)</td>
</tr>
</tbody>
</table>
What text should we use?

- Webpages contain all types of text, only some of which is relevant

- Terms used in SEC business descriptions are likely relevant
 - Low coverage, must be extended

- Information retrieval approaches are optimized to find relevant terms
 - High noise, must be filtered
Curated Term Lists

• Start with terms in business descriptions

• Identify frequent or discriminative terms and manually add these to a white list
 – “ethernet carrier”, “sleeper”, “tumor”

• Identify terms that are not relevant and manually add these to a black list
 – “admiralty”, “gardner”, “steinberg”

• Extract only whitelisted terms from webpage text
Term-Frequency, Inverse Document Frequency

- Use traditional information-retrieval metric for text

\[tf(t, d) = \sum_{x \in d} fr(x, t) \]

\[idf(t) = \log \frac{|D|}{1 + \sum_d I(t, d)} \]

\[fr(x, t) = \begin{cases}
1 & x = t \\
0 & x \neq t
\end{cases} \]

\[I(t, d) = \begin{cases}
1 & t \in d \\
0 & \text{otherwise}
\end{cases} \]

- Defined over entire corpus (e.g., average TF-IDF of term)
Evaluation Approach

• Data corpus of 3907 publicly traded firms with SEC business descriptions in 2015 10-K filing
• Webpages from Compustat Financial Database, use 500 webpages per company
• Predict asset-adjusted company profits using competitors

\[
\hat{F}(c_i) = \lambda F(R_i) + c
\]

\[
R^2 = 1 - \frac{\sum_i(F(c_i) - \hat{F}(c_i))^2}{\sum_i(F(c_i) - \overline{F})^2}
\]
Terms frequently used by a single company have high rankings:

- countsbaker
- geon
- ultratuf
- wilflex
- oncap

Data Issues: Proprietary Terminology

<table>
<thead>
<tr>
<th>Min Companies</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.258</td>
</tr>
<tr>
<td>3</td>
<td>0.262</td>
</tr>
<tr>
<td>5</td>
<td>0.259</td>
</tr>
<tr>
<td>10</td>
<td>0.252</td>
</tr>
</tbody>
</table>
Data Issues: Long words

- kuwait
- kyrgyzstan
- laos
- latvia
- lebanon
- lesotho
- lithuania
- luxembourg
- macau
- macedonia
- madagascar
- malawi
- malaysia
- maldives
- malta
- marshall

- apioverview
- collections
- projectsoverview
- deleteevents
- projects

- cashprovidedbyusedinoperatingactivitiesdiscontinuedoperations

<table>
<thead>
<tr>
<th>Max Length</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0.262</td>
</tr>
<tr>
<td>17</td>
<td>0.284</td>
</tr>
<tr>
<td>20</td>
<td>0.286</td>
</tr>
<tr>
<td>25</td>
<td>0.285</td>
</tr>
</tbody>
</table>
Top-ranked terms by TF-IDF metric

- blog
- accessories
- clinical
- shop
- cloud
- hughes
- loans
- cards
- brands
- loan
- oil

<table>
<thead>
<tr>
<th>Top %</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.289</td>
</tr>
<tr>
<td>15</td>
<td>0.286</td>
</tr>
<tr>
<td>20</td>
<td>0.220</td>
</tr>
</tbody>
</table>
Comparing Manual and Automatic Feature Selection

<table>
<thead>
<tr>
<th>Feature Selection Method</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curated word lists</td>
<td>0.261</td>
</tr>
<tr>
<td>Filtered TF-IDF scores</td>
<td>0.286</td>
</tr>
</tbody>
</table>
Conclusion

• Competitor relationships can be difficult to define or predict

• Company-associated text often contains implicit signals of product offerings, markets, production processes, and strategic goals

• Feature selection is important for identifying the meaningful terms

• Manual feature curation works, but using automated approaches from the information retrieval community performs better