

Parsing, Representing and Transforming Units of Measure

May 14th, 2019 Basel Shbita, Arunkumar Rajendran, Jay Pujara, and Craig A. Knoblock

Research funded under the DARPA World Modelers program

Units of Measure

Data Normalization

Data normalization is a **difficult** task! Occupies as much as **80%** [Dasu and Johnson] of total data analysis time

To combine datasets, scientists must

select, understand, and align them manually

Requires understanding different domains and formats

Information Sciences Institute

USC Viterbi School of Engineering

Data Normalization

Data normalization is a **difficult** task!

Occupies as much as 80% [Dasu and Johnson] of total data analysis time

netcdf filename { dimensions: lat = 3; lon = 4; time = UNLIMITED ; // (2 currently) variables: float lat(lat) ; lat:long name = "Latitude" ; lat:units = "degrees_north" ; float lon(lon); lon:long_name = "Longitude"; lon:units = "degrees east" ; int time(time); time:long name = "Time" ; time:units = "days since 1895-01-01"; time:calendar = "gregorian"; float rainfall(time, lat, lon); rainfall:long name = "Precipitation"; rainfall:units = "mm yr-1" rainfall:missing value = -9999.f; // global attributes: :title = "Historical Climate Scenarios" ; :Conventions = "CF-1.0"; data: lat = 48.75, 48.25, 47.75; lon = -124.25, -123.75, -123.25, -122.75; time = 364, 730; rainfall = 761, 1265, 2184, 1812, 1405, 688, 366, 269, 328, 1019, 714, 865, 697, 927, 926, 1452, 626, 275;

> USC Viterbi School of Engineering

Identify and provide a semantic representation for units of measure associated with data

Challenges:

- Textual Form
 - abbreviations, compound units, prefixes
- Reusable semantic format
- Automated process (i.e. transformation)

Need an **automated** pipeline from raw data to semantic representation which can be easily **interpreted** by humans & machines

Across-domains

Create ideal setting for **multidisciplinary** scientists

Existing Approaches

- Semi-automated or ad-hoc strategies
 - Harm the transparency and reproducibility of the results
 - Intractable and tedious
 - Susceptible to human error
- State of the Art:
 - Measurement units in R [Pebesma et al.] and the yt project [Turk et al.] allow automatic unit conversion
 - Requires user interaction
 - No automatic detection or semantics that can be interchanged
 - quantulum extracts units from unstructured text and associates it with a corresponding Wikipedia page
 - Requires a numeric value within the context of the textual form of the unit

Our Approach: Motivation

- Published ontologies are a beneficial resource:
 - NASA published QUDT
 - Defines the base classes and attributes for modeling physical quantities, units of measure, and their dimensions
- <u>Compound units</u> (i.e. 'A/cm^2') can be decomposed to components which include
 - <u>Atomic units</u> (i.e. 'cm')
 - Composing elements (i.e. exponents, prefixes)
 - Relations between them
- Intuitive to integrate QUDT into a framework
 - Enable automatic data understanding, normalization and transformation

Information Sciences Institute

USC Viterbi School of Engineering

Information Sciences Institute

USC Viterbi School of Engineering

Parsing

- <u>Goal</u>: string \rightarrow structured form with relations
 - Parse nominators, denominators, exponents, multipliers and prefixes
 - Re-decompose recursively
- We defined a grammar using Arpeggio
 - Recursive descent parser
 - Based on a Parsing Expression Grammar formalism

def exponent(): return Optional("^"), ([number, ("(", number, ")")])
def numerator(): return simple_unit, ZeroOrMore(Optional([" ", "."]), simple_unit)
def denominator(): return simple_unit, ZeroOrMore(Optional([" ", ".", "/"]), simple_unit)

Parsing Challenges

- Incomplete definition in KB
 - Define closed set of base dimension classes which were derived from the original ontology
- Unit prefixes (micro = $mu = \mu$)
 - Define closed set of SI prefixes with variants
- Compound units ambiguity ('min' = minute or milli-inch?)
 - Iterative joint matching algorithm for {prefix, unit} pairs
 - higher confidence to single atomic unit

Structured Unit Representation

- Goal: capture a semantic meaning
 - Map decomposed elements to QUDT
- Utilize additional grammar elements
- Normalize compound units
- Present cost-free interpretable representation with unique URIs for each individual element

http://data.qudt.org/	/gudt/owl/1.0.0/unit	/Instances.html#Foot

unit:Foot					
Property	Value				
gudt:abbreviation	ft				
<u>qudt:code</u>	0625				
<u>qudt:conversionMultiplier</u>	0.3048				
qudt:conversionOffset	0.0				
qudt:quantityKind	guantity:Length				
<u>qudt:symbol</u>	ft				

Structured Unit Representation – Example

• Example output for 'km/s^2':

```
ccut:hasDimension: "L T-2",
- ccut:hasPart: [
   - {
         ccut:hasDimension: "L",
         ccut:prefix: "http://www.gudt.org/gudt/owl/1.0.0/unit/Instances.html#Kilo"
         ccut:prefixConversionMultiplier: 1000,
         ccut:prefixConversionOffset: 0,
         qudtp:conversionMultiplier: 1,
         gudtp:conversionOffset: 0.
         qudtp:quantityKind: "http://www.qudt.org/gudt/owl/1.0.0/unit/Instances.html#Meter
         qudtp:symbol: "km"
     },
   - {
         ccut:exponent: "-2",
         ccut:hasDimension: "T",
         qudtp:conversionMultiplier: 1,
         gudtp:conversionOffset: 0.
         qudtp:quantityKind: "http://www.qudt.org/gudt/owl/1.0.0/unit/Instances.html#SecondTime
         qudtp:symbol: "s"
  1,
 qudtp:abbreviation: "km s-2"
```


Transforming Units

- Goal: enable arbitrary transformations between units
- Given:
 - Structured semantic representation
 - Conversion attributes
 - Grammar elements
- Compute:
 - Transformation Attributes
 - Dimension Normalization

The CCUT Service

- Prototype system: CCUT
 - Canonicalization Compound Unit Representation and Transformation
- Deployed over a docker image
 - No user additional installations
- Invoked via:
 - Application program interface (API) with an HTTP endpoint
 - User-friendly web service

[forms3/web_br1.xls][Data][4][I]

s {'ccut:hasDimension': 'T', 'ccut:hasPart': [{'ccut:hasDimension': 'T', 'qudtp:conversionMultiplier': 1.0, 'qudtp:conversionC fset': 0.0, 'qudtp:quantityKind': 'http://www.qudt.org/qudt/owl/1.0.0/unit/Instances.html#SecondTime', 'qudtp:symbol': 's'}], 'a dtp:abbreviation': 's'} u-actual: http://www.qudt.org/qudt/owl/1.0.0/unit/Instances.html#SecondTime

CCUT Demonstration

Evaluation

- EUSES spreadsheet corpus [Fisher and Rothermel]
 - **1345** files
 - 5891 spreadsheets
 - Different sources (financial, physical, inventories, databases, modeling)
- Random sample:
 - **30** files
 - 112 spreadsheets
 - 267 <u>compound</u> units
 - Total of 530 <u>atomic</u> units

- Spreadsheet file reader as PoC
- Manual annotation to match QUDT URIs

Results

• Atomic unit **detection**:

Total Detected (TP + FN) (TP (True Positives)		FP (False Positives)		Total Misdetected (False Negatives)	
882		32	8 554		150		
	Ρ	recision	Re	call	F1-scor	е	
	m	7.2%	68.6%		0.48		

- Compound units **representation**: **62.1%**
 - Normalized correctly (dimension inference was precise)
- Compound units **transformation**: **100%**
 - Identified **11** distinct dimension groups
 - Total of **42** test cases of pairs
 - Normally what we expected due to correct representation

Results Discussion

- Why is the performance low?
 - Irrelevant text
 - Abbreviations of entities or organizations
 - Ambiguity
 - 'L' = liter (volume) vs. lambert (luminance)
 - Incomplete knowledge base
- Several limitations:
 - Naïve text matching
 - Inability to use context for disambiguation

Future work

- Use context
 - Co-occurrence of units within a domain
 - Locations in datasets (e.g., column headers)
- Use machine learning techniques
- Expand KB
- UI for self customized units and their attributes
- Detect variables with temporal and geospatial scoping
 - Solve the broader problem of table understanding

Conclusions

- Presented baseline **unsupervised** approach to:
 - Identify units of measurement in source data
 - Provide corresponding semantic representation
 - Provide a method (API) that enables unit conversions
- Our preliminary results demonstrate:
 - Automatic capture and transform units over spreadsheets
 - Easy deployment over quantitative data resources
 - Accelerate modeling process in scientific domains
- Source code available at:

https://github.com/basels/ccut

