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Motivation

2

Unmanned Underwater Vehicle (UUV)

Challenges for software systems:
• Changing and uncertain environment
• System failures and changes

How to build long-lived, survivable software systems?

Self-driving Car 



Motivation

• Long-lived, survivable software systems: automatic 
adaptation to changes
• Significantly reducing maintenance cost
• Goal of the DARPA BRASS (Building Resource Adaptive 

Software Systems) program

• Our focus: adaptation to sensor changes and failures
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surge, heave, sway, pitch, roll, depth, heading



Thesis Statement

This thesis proposes a series of machine learning 
approaches for automatically adapting to sensor failures 
and changes. These approaches exploit sensor relationships 
and can address failures/changes in both individual sensors 
and compound sensors. They empirically achieve high 
adaptation accuracy on the weather and UUV domains.
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Real-world Example of Sensor Failures
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Compound Sensor

2015-04-25 15:07    33.292    118.541    35.2     26.2

2015-04-25 15:12    33.274    118.532    34.8     10.1

Reading

Reading

Reading

Location
timestamp

latitude
longitude

temperature

pressure
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Real-world Example of Sensor Failures
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Compound Sensor

2015-04-25 15:07    33.292    118.541    35.2     26.2

2015-04-25 15:12    33.274    118.532    34.8     10.1

Reading

Reading

Reading

Location
timestamp

latitude
longitude

temperature

pressure

Real-world Example of Sensor Failures

Sensor Failure

f
Can we combine the working 
sensors to reconstruct the original 
temperature?

26.0
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2015-04-25 15:07    33.292    118.541    35.2     26.2

2015-04-25 15:12    33.274    118.532    34.8     26.9
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pressure

Compound Sensor

Sensor Change 

Replaced by a new temperature sensor

Real-world Example of Sensor Changes



9

2015-04-25 15:07    33.292    118.541    35.2     26.2

2015-04-25 15:12    33.274    118.532    34.8     26.9
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latitude
longitude

temperature

pressure

Compound Sensor

Sensor Change 

Direct replacement can be bad!

Real-world Example of Sensor Changes

Replaced by a new temperature sensor



10

2015-04-25 15:07    33.292    118.541    35.2     26.2

2015-04-25 15:12    33.274    118.532    34.8     26.9

Reading

Reading

Reading

Location
timestamp

latitude
longitude

temperature

pressure

Compound Sensor

Sensor Change 

Real-world Example of Sensor Changes

Can we combine the working sensors 
and the new sensor to reconstruct the 
original temperature?

f

26.1



Scenarios of Sensor Failures and Changes 
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Sensor-level and Model-level Adaptation

• Sensor-level Adaptation: reconstructing original sensor values
• No change for upper-level software

• Model-level Adaptation: directly adapting software components 
(e.g. a classifier) that are built on sensor values
• Domain adaptation (adapting a model from a source domain to 

a different target domain) [Daume III and Marcu, 2006] [Pan and 
Yang, 2010]

• May be feasible when sensor-level adaptation is not
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Scenarios of Sensor Failures and Changes 
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Outline
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• Sensor-level Adaptation to Sensor Changes
• Yuan Shi, T. K. Satish Kumar and Craig Knoblock. Automatic Adaptation to 

Sensor Replacements. FLAIRS-32, 2019
• Yuan Shi and Craig Knoblock. Learning with Previously Unseen Features. IJCAI, 

2017

• Model-level Adaptation to Sensor Changes
• Yuan Shi and Fei Sha. Information-Theoretical Learning of Discriminative 

Clusters for Unsupervised Domain Adaptation. ICML, 2012

• Joint Detection and Adaptation to Sensor Failures
• Avi Pfeffer , Curt Wu , Gerald Fry , Kenneth Lu, Stephen Marotta, Mike Reposa, 

Yuan Shi, T. K. Satish Kumar, Craig Knoblock, David Parker, Irfan Muhammad 
and Chris Novakovic. Software Adaptation for an Unmanned Undersea Vehicle. 
IEEE Software, 2019

• Yuan Shi, T. K. Satish Kumar and Craig Knoblock. Constraint-Based Learning for 
Sensor Failure Detection and Adaptation. ICTAI, 2018



Outline
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• Sensor-level Adaptation to Sensor Changes

• Model-level Adaptation to Sensor Changes

• Joint Detection and Adaptation to Sensor Failures



Notations of Individual Sensor Changes

16



Notations of Individual Sensor Changes

17



Sensor-level Adaptation to Individual Sensor Changes

Goal: learning a reconstruction function:
f(reference sensors, new sensors)         replaced sensors
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Unexplored in previous work



Intuition of Exploiting New Sensors
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reference sensor

new sensorreplaced sensor



Sensor-level Adaptation to Individual Sensor Changes

Unexplored in previous work

Reconstruction function:
f(reference sensors, new sensors)         replaced sensors

Challenge: no overlapping between the replaced sensors and new sensors
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Sensor-level Adaptation to Individual Sensor Changes

Unexplored in previous work

Reconstruction function:
f(reference sensors, new sensors)         replaced sensors

Challenge: no overlapping between the replaced sensors and new sensors

Idea: using the reference sensors as a bridge

Assumption: 
1.Sensor values from reference sensors are correlated with those from replaced 

sensors
2.Sensor values from reference sensors are correlated with those from new sensors
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Methodology of ASC (Adaptation to Sensor Changes)
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f



Methodology of ASC (Adaptation to Sensor Changes)
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f

Source domain Target domain



Methodology of ASC (Adaptation to Sensor Changes)
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Source domain Target domain

Samples in the two domains distribute similarly

f



Methodology of ASC (Adaptation to Sensor Changes)
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Source domain Target domainSamples in the two domains distribute similarly

Two sets of samples mixed as much as possible

Minimize cross-domain k-nearest neighbor distances

’s k neighbors in the target domain  ’s k neighbors in the source domain  



non-smooth in   , because neighbors are dependent on 

Alternating Optimization (EM-like algorithm):
• Fix   , update neighbors         and 
• Fix neighbors         and        , update 

regularization term

Formulation and Optimization of ASC
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Weather Underground Data
13 geographical clusters, each with 3 stations

Sensor change: an individual sensor is replaced by the 
same sensor at a nearby station from the same cluster

Ref error: average signal difference of a particular 
sensor over a cluster

Success: reconstruction error < ref error

Evaluation in BRASS Project Phase 1

ID Type Unit

1 Temperature ℃

2 Dew point ℃

3 Humidity %

4 Wind speed mph

5 Wind gust mph

5 individual sensors from a station
(sample rate: every 5-10 mins)
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Evaluation in BRASS Project Phase 1
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A UUV travels from a starting point to an end point in a simulated environment

Sensors: propeller RPM, Waterspeed, DVL (surge, heave, sway, pitch, roll, depth and 
heading)

Replaced sensor: surge/heave/sway
New sensor: biased version of surge/heave/sway
Reference sensors: remaining sensors 

ASC achieves an average improvement of 8.83% over the competing methods

Results on UUV Data
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Reconstruction errors (RMSE) averaged over 20 simulated trips 

Directly using the new 
sensor

Adaptation using the 
reference sensors only

Adaptation using the 
reference sensors and 
“guessed” new sensors



Further Improvement on ASC
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• Estimating Adaptation Quality

• Exploiting Many Sensors

• Leveraging Spatial and Temporal Information



Estimating Adaptation Quality
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• Useful for Upper-layer Software
• Minimizing the “excess error”
• Estimated from similar data points in the source domain



Exploiting Many Sensors
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A large number of sensors is challenging
• More noise 
• Larger parameter space

ASCSEL: 
• Selecting a subset of reference sensors more correlated with the replaced 

sensors
• Selecting a subset of new sensors more correlated with the replaced sensors

Results with over 200 sensors
16.5% average improvement  



Leveraging Spatial and Temporal Information
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Spatial and temporal information of sensors are often available

Time Temp
8:50 AM 24.2

8:55 AM 24.3

9:00 AM --

9:05 AM --

9:10 AM --

Time Temp
9:02 AM 26.6

9:12 AM 27.5

Station 1: 
34.0°N, 118.4°W

Station 2:
37.7°N, 122.4°W

direct replacement 
(closest time)

calibration
function

based on time 
and location

learned from historical data 
of multiple stations



Outline
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• Sensor-level Adaptation to Sensor Changes

• Model-level Adaptation to Sensor Changes

• Joint Detection and Adaptation to Sensor Failures



Model-level Adaptation to Sensor Changes

y1 y2 …    yS      

Domain adaptation (DA)
Goal: optimizing a classifier on the 
target domain

Unsupervised: no labels on the 
target domain

Heterogeneous: two domains 
have different feature 
representations

Source domain           Target domain

35

label ?   ?   …     ?



Model-level Adaptation to Sensor Changes

Earlier approaches for unsupervised domain adaptation (before [Shi 
and Sha, ‘12]): Two-stage learning paradigm
1) Identify a domain-invariant feature space
2) Build a classifier in that feature space

Issue: the domain-invariant feature space may NOT be 
discriminative: projecting into irrelevant feature dimensions may 
make two domains look invariant!

36



Model-level Adaptation to Sensor Changes

Earlier approaches for unsupervised domain adaptation (before [Shi 
and Sha, ‘12]): Two-stage learning paradigm
1) Identify a domain-invariant feature space
2) Build a classifier in that feature space

Issue: the domain-invariant feature space may NOT be 
discriminative: projecting into irrelevant feature dimensions may 
make two domains look invariant!

Our approach: One-stage learning
Identify a latent feature space
• Discriminative for the target domain
• Domain-invariant

37



Model-level Adaptation to Sensor Changes

y1 y2 …     yS

Source domain           Target domain

latent feature space 
V

Discriminative for the target domain
Domain-invariant

transformation matrices to learn
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Nearest-neighbor-based formulation

Better than competing methods on 
object recognition, sentiment analysis 
[Shi and Sha, ’12] and weather 
classification tasks



Outline
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• Sensor-level Adaptation to Sensor Changes

• Model-level Adaptation to Sensor Changes

• Joint Detection and Adaptation to Sensor Failures



Joint Detection and Adaptation to Sensor Failures
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• Constraint-based framework: determine the reconstruction 
relationships among sensors and express them into constraints

reconstruction function reconstruction error



Joint Detection and Adaptation to Sensor Failures
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• Constraint-based framework: determine the reconstruction 
relationships among sensors and express them into constraints

reconstruction function reconstruction error

• When new sensor values come in:
• Detection: check violated constraints and infer failed sensors
• Adaptation: reconstruct failed sensor values by using relevant constraint



Training Phase: Learning the Constraints Among Sensors
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S1
S2
S3
S4
S5

Extract sensor 
relationships 
into constraints (S3 + 3S4

2 – 4.6S5 – 0.5)2 < 0.22

Historical sensor data 
(all sensors work properly)

Constraint Set

(S1 – 2 log(S3) + 2.3)2 < 0.12

(S1 – 3.5)2 < 0.82

……

Encoding nonlinear reconstruction
relationships among sensors



Testing Phase: Using Constraints for Detection and Adaptation
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S1
S2
S3
S4
S5

5.63
1.91
3.42
70.89
3.16

Detection
1. Find violated constraints

2. Identify minimum set of failed 
sensors by solving a special 
Integer Linear Program (ILP)

Constraint SetNew sensor values at time t 



Testing Phase: Using Constraints for Detection and Adaptation
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S1
S2
S3
S4
S5

5.63
1.91
3.42
70.89
3.16

Constraint Set

= 1 if sensor k fails, otherwise 0Detection
1. Find violated constraints

2. Identify minimum set of failed 
sensors by solving a special 
Integer Linear Program (ILP)

New sensor values at time t 



Testing Phase: Using Constraints for Detection and Adaptation
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S1
S2
S3
S4
S5

5.63
1.91
3.42
70.89
3.16

Constraint Set

= 1 if sensor k fails, otherwise 0

If a constraint is violated, then at least 
one sensor involved in the constraint 
fails:

k in the constraint 

Detection
1. Find violated constraints

2. Identify minimum set of failed 
sensors by solving a special 
Integer Linear Program (ILP)

New sensor values at time t 



Testing Phase: Using Constraints for Detection and Adaptation
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S1
S2
S3
S4
S5

5.63
1.91
3.42
70.89
3.16

Constraint Set

= 1 if sensor k fails, otherwise 0

If a constraint is violated, then at least 
one sensor involved in the constraint 
fails:

Objective: 

0-1 Integer Linear Program

k in the constraint 

Detection
1. Find violated constraints

2. Identify minimum set of failed 
sensors by solving a special 
Integer Linear Program (ILP)

New sensor values at time t 



Testing Phase: Using Constraints for Detection and Adaptation
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70.89
3.16

Detection
1. Find violated constraints
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Testing Phase: Using Constraints for Detection and Adaptation
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S1
S2
S3
S4
S5

5.63
1.91
3.42
70.89
3.16

Detection
1. Find violated constraints

2. Identify minimum set of failed 
sensors by solving a special 
Integer Linear Program (ILP)

Constraint SetNew sensor values at time t 

Adaptation

Reconstruct failed sensor 
values from the working 
sensors using the most 
relevant constraint



Testing Phase: Using Constraints for Detection and Adaptation
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S1
S2
S3
S4
S5

5.63
1.91
3.42
70.89
3.16

Detection
1. Find violated constraints

2. Identify minimum set of failed 
sensors by solving a special 
Integer Linear Program (ILP)

Constraint SetNew sensor values at time t 

Adaptation

Reconstruct failed sensor 
values from the working 
sensors using the most 
relevant constraint

S3 fails, S4 and S5 work properly
(S3 + 3S4

2 – 4.6S5 – 0.5)2 < 0.22

S3 -3S4
2 + 4.6S5 + 0.5



Learning Constraints From Historical Data
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• Properties of desired reconstruction relationships
• Accuracy: low reconstruction error
• Comprehensiveness: capturing various types of relationships
• Compactness: small # of sensors involved; small # of learned 

constraints



Learning Constraints From Historical Data
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• Iteratively grouping sensors into “disjoint” subsets and learn 
reconstruction functions within subsets 
Input sensors: Target sensors: y

y = f(x1, x2, x5)



Learning Constraints From Historical Data
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• Iteratively grouping sensors into “disjoint” subsets and learn 
reconstruction functions within subsets 
Input sensors: Target sensors: y

y = f(x1, x2, x5)

y = g(x5, x6, x8)



Learning Constraints From Historical Data
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• Iteratively grouping sensors into “disjoint” subsets and learn 
reconstruction functions within subsets 
Input sensors: Target sensors: y

y = f(x1, x2, x5)

y = g(x5, x6, x8)

y = h(x4, x7)



Learning Constraints From Historical Data
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• Iteratively grouping sensors into “disjoint” subsets and learn 
reconstruction functions within subsets 
Input sensors: Target sensors: y

selecting vector

selecting vector

Reducing reconstruction error 

Selecting 
“disjoint” subsets  

LASSO Problem



Identifying Failure Modes
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• Five common modes: Outlier, Spike, Stuck-at, High-noise, Mis-
calibration



Results on Weather Data
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• Five modes of sensor failures are simulated (multi-sensor failures 
involved)

• Our approach (JDA) achieves higher detection rates and lower 
reconstruction errors
• more significant on sensor values with smaller variances

Results on Austin weather stations



Evaluation in BRASS Project Phase 2: UUV Results
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• A UUV travels to a 
destination

• Perturbations are 
simulated to affect the 
UUV’s ability to localize its 
position

• PASS: if the UUV is less 
than 75 meters from the 
destination

• Our system achieves PASS 
in 90% of the cases



Related Work

• Detecting Sensor Failures and Changes
• Change point detection [Aminikhanghahi and Cook ‘16] [Pimentel et al., ‘14]

• Distribution-based [Kawahara and Sugiyama, ‘12] [Harchaoui et al., ‘09] [Yamanishi and 
Takeuchi, ‘02]

• Reconstruction-based [Crook et al., ‘02] [Singh and Markou, ‘04] [Ide and Tsuda, ‘07] 
[Chatzigiannakis et al., ‘06] 

• Probabilistic [Adams and MacKay, ‘07] [Saatci et al., ‘10] [Dereszynski and Dietterich, ‘12] 
[Dietterich et al. ‘12] 

• Distance-based [Angiulli and Pizzuti, ‘02] [Bay and Schwabacher, ‘03] [Chawla and Sun, ‘06] 
[Keogh et al., ‘01] [Ide et al., ‘13] [Budalakoti et al., ‘06] [Chen et al., ‘15]

• Reconstruction of Sensor Readings
• Most detection methods do not address how to automatically recover
• Some probabilistic methods [Dereszynski and Dietterich, ‘12] [Dietterich et al. ‘12] can be 

used to reconstruct changed sensor, but cannot leverage new sensors
• FFX [McConaghy ‘11] is applied to extract sensor-specific transformations
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Our detection approach explores multiple nonlinear relationships among 
sensors, and can potentially detect sensor changes with significantly higher 
accuracy

Our sensor-level adaptation approach can adapt to new sensors, which are 
not possible by existing approaches



Related Work

• Domain Adaptation [Pan and Yang, ‘10]
• Unsupervised domain adaptation

• Two-stage learning paradigm: domain invariant, then 
discriminative [Pan et al., ‘11] [Gopalan et al., ‘11] [Gong et al., ‘12] [Chen et al., ‘12] 
[Shimodaira, ‘00] [Bickel et al., ‘07] [Huang et al., ‘07] [Blitzer et al., ‘06] [Glorot et al., ‘11]

• One-stage learning paradigm: discriminative + domain invariant 
[Csurka et al., ‘16] [Baktashmotlagh et al., ‘13] [Baktashmotlagh et al., ‘14] [Tzeng et al., ‘15] [Ganin 
et al., ‘16]

• Heterogeneous domain adaptation
• Domain invariant feature space [Kulis et al., ‘11] [Wang and Mahadevan, ‘11] 

[Argyriou et al., ‘08] [Duan et al., ‘12] [Shi et al., ‘10] [Harel and Mannor, ‘10] [Wei and Pal, ‘11] [Yeh 
et al., ‘14] [Chen et al., ‘16] 

• Sample-correspondence between domains [Dai et al., ‘08] [Socher et al., ‘13] 
[Zhou et al., ‘14]

• Feature correlations [Zhao and Hoi, ‘10] [Hou and Zhou, ‘16] 

• Domain adaptation on time-series data [Purushotham et al., ‘17]
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Our sensor-level adaptation approach does not require labels in the target domain.
Our model-level adaptation approach is based on our publication [Shi and Sha, ‘12], 
which proposed the one-stage learning paradigm and enabled direct optimization of 
classifiers on the target domain. 



Conclusions

• Sensor-level adaptation approaches for sensor failures and changes
• Adapting to new sensors
• Estimating the quality of adaptation
• Leveraging sensor-specific transformations as well as spatial and 

temporal information

• Model-level adaptation approach for sensor failures and changes
• One-stage domain adaptation that is unsupervised and heterogeneous 

• Constraint-based framework for joint detection and adaptation to 
sensor failures
• Detecting and adapting to multi-sensor failures

• Validated on sensor data from the weather and UUV domains (BRASS 
Evaluation)

• Future work: applying to large-scale sensor data; integration into 
survivable software systems
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Thank You!

Question?
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• Why reconstructing replaced sensors than using new sensors 
directly?

• Show General applicability 
• Domains: Image recognition and sentiment analysis

• More diagrams. Significant impact
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Weather Underground Data

Results on Weather Data

ID Type Unit

1 Temperature ℃

2 Dew point ℃

3 Humidity %

4 Wind speed mph

5 Wind gust mph

6 Pressure Pa

6 individual sensors from a station

63

30 weather stations from 10 geographical clusters

Random triplet: station A1, A2 from one cluster, B from another

Replaced sensor: a sensor from A1
New sensor: the same sensor from A2
Reference sensors: remaining sensors from A1 and all sensors from B

2016 data for training, 2017 data for testing 



Weather Underground Data

Results on Weather Data
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Reconstruction errors (RMSE) averaged over random triplets

ASC achieves an average improvement of 6.35% over the competing methods 

Directly using the new 
sensor

Reconstruction 
function learned on the 
reference sensors

Reconstruction function learned 
on the reference sensors and 
estimated new sensors (on the 
source domain)



Weather Underground Data

Results on Weather Data
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Reconstructed pressure

Wind speed


