

Department of Computer Science

Iteratively Learning Data Transformation Programs from Examples

Bo Wu

Ph.D. defense 2015-10-21

Agenda

- Introduction
- Previous work
- Our approach
 - Learning conditional statements
 - Synthesizing branch transformation programs
 - Maximize user correctness with minimal effort
- Related work
- Conclusion and future work

Programming by example

Accession	Credit	Dimensions	Medium	Name
01.2	Gift of the artist	5.25 in HIGH x 9.375 in WIDE	Oil on canvas	John Mix Stanley
05.411	Gift of James L. Edison	20 in HIGH x 24 in WIDE	Oil on canvas	Mortimer L. Smith
06.1	Gift of the artist	Image: 20.5 in. HIGH x 17.5 in. WIDE	Oil on canvas	Theodore Scott Dabo
06.2	Gift of the artist	9.75 in 16 in HIGH x 13.75 in 19.5 in WIDE	Oil on canvas	Leon Dabo
09.8	Gift of the artist	12 in 14 in HIGH x 16 in 18 in WIDE	Oil on canvas	Gari Melchers

Programming by Example

	Raw Value	Target Value
R1	5.25 in HIGH x 9.375 in WIDE	9.375
R2	20 in HIGH x 24 in WIDE	24
R3	9.75 in 16 in HIGH x 13.75 in 19.5 in WIDE	19.5
R4	Image: 20.5 in. HIGH x 17.5 in. WIDE	1 7:5
/		

R5	12 in 14 in HIGH x 16 in 18 in WIDE	Pates

Challenges

- Various formats and few examples
- Stringent time limits
- Verifying the correctness on large datasets

Research problem

Enabling PBE approaches to efficiently generate correct transformation programs for large datasets with multiple formats using minimal user effort

Iterative Transformation

Agenda

- Introduction
- Previous work
- Our approach
 - Learning conditional statements
 - Synthesizing branch transformation programs
 - Maximize user correctness with minimal effort
- Related work
- Conclusion and future work

R ₁	5.25 in HIGH x 9.375 in WIDE	9.375
R ₂	20 in HIGH x 24 in WIDE	24
R ₃	9.75 in 16 in HIGH x 13.75 in 19.5 in WIDE	19.5
R ₄	Image: 20.5 in. HIGH x 17.5 in. WIDE	17.5

Transformation Program

 BNK: blankspace

 NUM([0-9]+): 98
 C

 UWRD([A-Z]): I
 st

 LWRD([a-z]+): mage
 st

 WORD([a-zA-Z]+): Image
 st

 START:
 B

 END:
 tr

 VBAR:
 p1

Segment program: return a substring

Position program: return a position in the input

Conditional	Transform(value)
statement	switch (classify(value)) :
	case format ₁ :
Branch transformation	$pos_1 = value.indexOf(BNK, NUM, -1)$
program	<pre>pos₂ = value.indexOf(NUM, BNK, 2)</pre>
	output=value.substr(pos_1, pos_2)
Branch	case format ₂ :
transformation	$pos_3 = value.indexOf(" ", NUM, 2)$
program	$pos_4 = value.indexOf(NUM, BNK, -1)$
	output=value.substr(pos_3, pos_4)

return output

9.75 in|16 in HIGH x 13.75 in|19.5 in WIDE → 19.5

Creating Hypothesis Spaces

• Create traces

Traces: A trace here defines how the output string is constructed from a specific set of substrings from the input string.

Original: 5.25 in HIGH x 9.375 in WIDE

Target:

• Derive hypothesis spaces

11

Generating Branch Programs

• Generate programs from hypothesis space

Generate-and-test

- Generate simpler programs first

Programs with one segment programs earlier than Programs with three segment programs

Learning Conditional Statements

• Cluster examples

R_1	5.25 in HIGH x 9.375 in WIDE	9.375
R ₂	20 in HIGH x 24 in WIDE	24
R_4	Image: 20.5 in. HIGH x 17.5 in. WIDE	17.5

R₃ 9.75 in 16 in HIGH x 13.75 in 19.5 in WIDE 19.5

Cluster1-format₁

Cluster2-format₂

- Learn a multiclass classifier
 - Recognize the format of the inputs

R ₅	Image: 20.5 in. HIGH x 17.5 in. WIDE	format ₁
R ₆	12 in 14 in HIGH x 16 in 18 in WIDE	format ₂

Agenda

- Introduction
- Previous work
- Our approach
 - Learning conditional statements
 - Synthesizing branch transformation programs
 - Maximize user correctness with minimal effort
- Related work
- Conclusion and future work

Our contributions

- Efficiently learning accurate conditional statements [DINA, 2014]
- Efficiently synthesizing branch transformation programs [IJCAI, 2015]
- Maximizing the user correctness with minimal user effort [IUI, 2014; IUI, 2016(submitted)]

Agenda

- Introduction
- Previous work
- Our approach
 - Learning conditional statements
 - Synthesizing branch transformation programs
 - Maximize user correctness with minimal effort
- Related work
- Conclusion and future work

Motivation

- Example clustering is time consuming
 - Many ways (2ⁿ) to cluster the examples
 - Many examples are not compatible

R ₁	5.25 in HIGH x 9.375 in WIDE		9.375
R ₂	20 in HIGH x 24 in WIDE	\wedge	24
R ₃	9.75 in 16 in HIGH x 13.75 in 19.5 in WI	DE	19.5

- Verifying compatibility is expensive

- Learned conditional statement is not accurate
 - Users are willing to provide a few examples

Utilizing known compatibilities

After providing 3 examples

R ₁	5.25 in HIGH x 9.375 in WIDE	\checkmark	9.375
R ₂	20 in HIGH x 24 in WIDE	$\boldsymbol{\wedge}$	24
R ₃	9.75 in 16 in HIGH x 13.75 in 19.5 i	n WIDE	19.5

Constraints

- Two types of constraints:
 - Cannot-merge constraints:

Ex:	5.25 in HIGH x 9.375 in WIDE	9.375
	9.75 in 16 in HIGH x 13.75 in 19.5 in WIDE	13.75
	20 in HIGH x 24 in WIDE	24

• Must-merge constraints:

Ex:	5.25 in HIGH x 9.375 in WIDE	9.375
	20 in HIGH x 24 in WIDE	24

Constrained Agglomerative Clustering

Distance between clusters $(p_i \text{ and } p_i)$:

$$d(p_i, p_j) = \min\{d(e_x, e_y) | e_x \in p_i, e_y \in p_j\}$$

 R_1 R_2 R_3 R_4

R ₁	5.25 in HIGH x 9.375 in WIDE
R ₂	20 in HIGH x 24 in WIDE
R ₃	9.75 in 16 in HIGH x 13.75 in 19.5 in WIDE

Distance Metric Learning

• Distance metric learning

$$d(x,y) = ||x - y||_w = \sqrt{\sum_i w_i (x_i - y_i)^2}$$

Objective function

Utilizing Unlabeled data

Partition 1		
	5.25 in HIGH x 9.375 in WIDE	9.375
Examples	20 in HIGH x 24 in WIDE	24
-	Image: 20.5 in. HIGH x 17.5 in. WIDE	17.5
	26 in. HIGH x 23 in. WIDE	
Unlabeled	19.75 in HIGH x 22.75 in WIDE x 0.25 in DEEP	
	33.5 in HIGH x 39 in WIDE	

	Partition 2		
	Examples	9.75 in 16 in HIGH x 13.75 in 19.5 in WIDE	13.75
		12 in 14 in HIGH x 16 in 18 in WIDE	
		20.25 in 19.75 in HIGH x 15.75 in 15.875 i	n WIDE
	Unlabeled 55 in HIGH x 46 in 290 in WIDE		
23			

Evaluation

- Dataset:
 - 30 editing scenarios collected from student course projects

Avg records	Min formats	Max formats	Avg formats
350	2	12	4.4

- Methods:
 - SP
 - The state-of-the-art approach that uses compatibility score to select partitions to merge
 - SPIC
 - Utilize previous constraints besides using compatibility score
 - DP
 - Learn distance metric
 - DPIC
 - Utilize previous constraints besides learning distance metric
 - DPICED
 - Our approach in this paper

Results

Time and Examples:

	Total Time (seconds)	Examples
DPICED	3.9	5.4
DPIC	6.4	6.8
DP	8.3	6.8
SPIC	21.3	6.8
SP	26.5	6.9

Agenda

- Introduction
- Previous work
- Our approach
 - Learning conditional statements
 - Synthesizing branch transformation programs
 - Maximize user correctness with minimal effort
- Related work
- Conclusion and future work

Learning Transformation Programs by Example

Input Data	Target Data
2000 Ford Expedition 11k runs great los angeles \$4900 (los angeles)	2000 Ford Expedition los angeles \$4900
1998 Honda Civic 12k miles s. Auto \$3800 (Arcadia)	1998 Honda Civic Arcadia \$3800
2008 Mitsubishi Galant ES \$7500 (Sylmar CA) pic	2008 Mitsubishi Galant Sylmar CA \$7500
1996 Isuzu Trooper 14k clean title west covina \$999 (west covina) pic	1996 Isuzu Trooper west covina \$999

Reuse subprograms

Identify incorrect subprograms

Input	Output	
2000 Ford Expedition 11k runs great los angeles \$4900 (los angeles)	2000 Ford Expedition los angeles \$4900	
1998 Honda Civic 12k miles s. Auto \$3800 (Arcadia)	1998 Honda Civic Arcadia \$3800	

Update hypothesis spaces

Evaluation

- Dataset
 - D1: 17 scenarios used in (Lin et al., 2014)
 - 5 records per scenario
 - D2: 30 scenarios collected from student data integration projects
 - about 350 records per scenario
 - D3: synthetic dataset
 - designed to evaluate scale-up
- Alternative approaches
 - Our implementation of Gulwani's approach: (Gulwani, 2011)
 - Metagol: (Lin et al., 2014)
- Metric
 - Time (in **seconds**) to generate a transformation program

Program generation time comparisons

Table: time (in seconds) to generate programs on D1 and D2 datasets

		Min	Max	Avg	Median
	IPBE	0	5	0.34	0
D1	Gulwani's approach	0	8	0.59	0
	Metagol	0	213.93	55.1	0.14
	IPBE	0	1.28	0.20	0
D2	Gulwani's approach	0	17.95	4.02	0.33
	Metagol	~	~	2	~

Agenda

- Introduction
- Previous work
- Our approach
 - Learning conditional statements
 - Synthesizing branch transformation programs
 - Maximize user correctness with minimal effort
- Related work
- Conclusion and future work

Motivation

- Thousands of records in datasets
- Various transformation scenarios

Raw (Input)	Transformed (Output)	
300 or more	3	
Between 100 and 299	2	_
Fewer than 100	3	

Raw (Input)	Transformed (Output)	_
10″ × 8	10	
26" H x 24" W x 12.5″	26	
3 x 6"	3 x 6	

• Overconfident users

User Interface

Examples you entered: 10" H x 8" W 10 × "14.75" H x 14.75" W x 1.5" D 14.75 × H: 58 x W: 25" 58 × 30 × Recommended Examples: 30 x 46" 30 x 46 11" H x 6" 11 Sampled Records: 12" H x 9" W 12 10" H x 8" W 10

Augusta Savage	
Pippin, Horace	

Augusta Savage

Horace Pippin

Θ

~

~

Learning from various past results

Raw	Transformed	
26" H x 24" W x 12.5	26	
Framed at 21.75" H x 24.25" W	21	
12" H x 9"	12	

Examples Incorrect

records

Correct records

Raw	Transformed
Ravage 2099#24 (November, 1994)	November, 1994
Gambit III#1 (September, 1997)	September, 1997
(comic) Spidey Super Stories#12/2 (September, 1975)	comic

. . .

Approach Overview

Entire dataset

Sampled records

Raw	Transformed	Random	Raw	Transformed	
10" H x 8" W	10	Sampling	10" H x 8" W	10	
H: 58 x W:25″	58		11"H x 6"	11	
12"H x 9"\\/	12				
		-	30 x 46″	30 x 46	
11″H x 6″	11				
] Verifying record			
30 x 46"	30 x 46				1
		Sorting and	Raw	Transformed	
Raw	Transformed	color-coding	11″H x 6″	11	1
30 x 46"	30 x 46				-
11/11	11		30 x 46″	30 x 46	
11 Н Х б″	11				
				····]

Verifying Records

- Recommend records causing runtime errors
 - Records cause the program exit abnormally

Program: (LWRD, ')', 1) Input: 2008 Mitsubishi Galant ES \$7500 (Sylmar CA) pic

- Recommend potentially incorrect records
 - Learn a binary meta-classifier

Ex:	Raw	Transformed	
	11"H x 6"	11	
	30 x 46"	30 x 46	

Learning the Meta-classifier

$$F(r) = sign(\sum_{i} w_i * f_i(r)) = \begin{cases} 1, \text{ if } r \text{ is correct} \\ -1, \text{ if } r \text{ is incorrect} \end{cases}$$

Learn an ensemble of classifiers using ADABOOST: (1) Select a f_i from a pool of binary classifiers

- (2) Assign weight w_i to f_i
- (3) Loop until error below a threshold

Evaluation

Dataset:

- 30 scenarios
- 350 records per scenario

Experiment setup:

- Approach-β
- Baseline
- **Metrics**:
- Iteration correctness
- MRR

$$MRR = \frac{1}{Q} \sum_{i=1}^{Q} \frac{1}{Rank_i}$$

Iteration accuracy comparision

Agenda

- Introduction
- Previous work
- Our approach
 - Learning conditional statements
 - Synthesizing branch transformation programs
 - Maximize user correctness with minimal effort
- Related work
- Conclusion and future work

Related Work

- Approaches not focusing on data transformation
 - Wrapper induction
 - Kushmerick,1997; Hsu and Dung, 1998; Muslea et al., 1999
 - Inductive programming (we learn)
 - Summers, 1977; Kitzelmam and Schmid, 2006;Shaprio, 1981; Muggleton and Lin, 2013
- Approaches not learning program iteratively
 - FlashFill (Gulwani, 2011); SmartPython (Lau, 2001), SmartEdit (Lau, 2001); Singh and Gulwani 2012; Raza et al., 2014; Harris, et al., 2011
 - Approaches learning part of the programs iteratively
 - Metagol_{DF} (Lin et al., 2014); Preleman, et al 2014

Conclusion: contributions

- Enable users to generate complicated programs in real time
- Enable users to work on large datasets
- Improve the performance of other PBE approaches

Conclusion: future work

• Managing user expectation

• Incorporating third-party functions

• Handling user errors

Questions ?

